Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 297(6): 101362, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34756886

RESUMEN

The Nsp9 replicase is a conserved coronaviral protein that acts as an essential accessory component of the multi-subunit viral replication/transcription complex. Nsp9 is the predominant substrate for the essential nucleotidylation activity of Nsp12. Compounds specifically interfering with this viral activity would facilitate its study. Using a native mass-spectrometry-based approach to screen a natural product library for Nsp9 binders, we identified an ent-kaurane natural product, oridonin, capable of binding to purified SARS-CoV-2 Nsp9 with micromolar affinities. By determining the crystal structure of the Nsp9-oridonin complex, we showed that oridonin binds through a conserved site near Nsp9's C-terminal GxxxG-helix. In enzymatic assays, oridonin's binding to Nsp9 reduces its potential to act as substrate for Nsp12's Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain. We also showed using in vitro cellular assays oridonin, while cytotoxic at higher doses has broad antiviral activity, reducing viral titer following infection with either SARS-CoV-2 or, to a lesser extent, MERS-CoV. Accordingly, these preliminary findings suggest that the oridonin molecular scaffold may have the potential to be developed into an antiviral compound to inhibit the function of Nsp9 during coronaviral replication.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Diterpenos de Tipo Kaurano/farmacología , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Animales , Antivirales/química , Sitios de Unión/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacología , COVID-19/metabolismo , COVID-19/virología , Chlorocebus aethiops , Diterpenos de Tipo Kaurano/química , Humanos , Simulación del Acoplamiento Molecular , Proteínas de Unión al ARN/química , SARS-CoV-2/química , SARS-CoV-2/fisiología , Células Vero , Proteínas no Estructurales Virales/química
2.
J Biol Chem ; 294(10): 3720-3734, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30598509

RESUMEN

Peroxisome proliferator-activated receptor α (PPARα) is a transcriptional regulator of lipid metabolism. GW7647 is a potent PPARα agonist that must reach the nucleus to activate this receptor. In cells expressing human fatty acid-binding protein 1 (FABP1), GW7647 treatment increases FABP1's nuclear localization and potentiates GW7647-mediated PPARα activation; GW7647 is less effective in cells that do not express FABP1. To elucidate the underlying mechanism, here we substituted residues in FABP1 known to dictate lipid signaling by other intracellular lipid-binding proteins. Substitutions of Lys-20 and Lys-31 to Ala in the FABP1 helical cap affected neither its nuclear localization nor PPARα activation. In contrast, Ala substitution of Lys-57, Glu-77, and Lys-96, located in the loops adjacent to the ligand-binding portal region, abolished both FABP1 nuclear localization and GW7647-induced PPARα activation but had little effect on GW7647-FABP1 binding affinity. Using solution NMR spectroscopy, we determined the WT FABP1 structure and analyzed the dynamics in the apo and GW7647-bound structures of both the WT and the K57A/E77A/K96A triple mutant. We found that GW7647 binding causes little change in the FABP1 backbone, but solvent exposes several residues in the loops around the portal region, including Lys-57, Glu-77, and Lys-96. These residues also become more solvent-exposed upon binding of FABP1 with the endogenous PPARα agonist oleic acid. Together with previous observations, our findings suggest that GW7647 binding stabilizes a FABP1 conformation that promotes its interaction with PPARα. We conclude that full PPARα agonist activity of GW7647 requires FABP1-dependent transport and nuclear localization processes.


Asunto(s)
Butiratos/farmacología , Proteínas de Unión a Ácidos Grasos/química , Proteínas de Unión a Ácidos Grasos/metabolismo , PPAR alfa/agonistas , Compuestos de Fenilurea/farmacología , Butiratos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Humanos , Ligandos , Modelos Moleculares , Mutación , Compuestos de Fenilurea/metabolismo , Conformación Proteica/efectos de los fármacos
3.
J Mol Recognit ; 29(6): 281-91, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26804042

RESUMEN

Plasmodium falciparum apical membrane antigen 1 (PfAMA1) plays an important role in the invasion by merozoites of human red blood cells during a malaria infection. A key region of PfAMA1 is a conserved hydrophobic cleft formed by 12 hydrophobic residues. As anti-apical membrane antigen 1 antibodies and other inhibitory molecules that target this hydrophobic cleft are able to block the invasion process, PfAMA1 is an attractive target for the development of strain-transcending antimalarial agents. As solution nuclear magnetic resonance spectroscopy is a valuable technique for the rapid characterization of protein-ligand interactions, we have determined the sequence-specific backbone assignments for PfAMA1 from two P. falciparum strains, FVO and 3D7. Both selective labelling and unlabelling strategies were used to complement triple-resonance experiments in order to facilitate the assignment process. We have then used these assignments for mapping the binding sites for small molecules, including benzimidazoles, pyrazoles and 2-aminothiazoles, which were selected on the basis of their affinities measured from surface plasmon resonance binding experiments. Among the compounds tested, benzimidazoles showed binding to a similar region on both FVO and 3D7 PfAMA1, suggesting that these compounds are promising scaffolds for the development of novel PfAMA1 inhibitors. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Antimaláricos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Secuencia de Aminoácidos , Antimaláricos/química , Bencimidazoles/química , Bencimidazoles/metabolismo , Sitios de Unión , Diseño de Fármacos , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Pirazoles/química , Pirazoles/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Tiazoles/química , Tiazoles/metabolismo
4.
Molecules ; 21(7)2016 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-27438818

RESUMEN

(19)F-NMR has proved to be a valuable tool in fragment-based drug discovery. Its applications include screening libraries of fluorinated fragments, assessing competition among elaborated fragments and identifying the binding poses of promising hits. By observing fluorine in both the ligand and the target protein, useful information can be obtained on not only the binding pose but also the dynamics of ligand-protein interactions. These applications of (19)F-NMR will be illustrated in this review with studies from our fragment-based drug discovery campaigns against protein targets in parasitic and infectious diseases.


Asunto(s)
Descubrimiento de Drogas , Imagen por Resonancia Magnética con Fluor-19 , Relación Estructura-Actividad Cuantitativa , Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Sitios de Unión , Descubrimiento de Drogas/métodos , Imagen por Resonancia Magnética con Fluor-19/métodos , Ligandos , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas
5.
Biochemistry ; 54(30): 4672-82, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26173083

RESUMEN

SOCS5 can negatively regulate both JAK/STAT and EGF-receptor pathways and has therefore been implicated in regulating both the immune response and tumorigenesis. Understanding the molecular basis for SOCS5 activity may reveal novel ways to target key components of these signaling pathways. The N-terminal region of SOCS5 coordinates critical protein interactions involved in inhibition of JAK/STAT signaling, and a conserved region within the N-terminus of SOCS5 mediates direct binding to the JAK kinase domain. Here we have characterized the solution conformation of this conserved JAK interaction region (JIR) within the largely disordered N-terminus of SOCS5. Using nuclear magnetic resonance (NMR) chemical shift analysis, relaxation measurements, and NOE analysis, we demonstrate the presence of preformed structural elements in the JIR of mouse SOCS5 (mSOCS5175-244), consisting of an α-helix encompassing residues 224-233, preceded by a turn and an extended structure. We have identified a phosphorylation site (Ser211) within the JIR of mSOCS5 and have investigated the role of phosphorylation in modulating JAK binding using site-directed mutagenesis.


Asunto(s)
Proteínas Supresoras de la Señalización de Citocinas/química , Sustitución de Aminoácidos , Animales , Ratones , Mutagénesis Sitio-Dirigida , Mutación Missense , Fosforilación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
6.
Biochemistry ; 53(46): 7310-20, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25360546

RESUMEN

Apical membrane antigen 1 (AMA1) interacts with RON2 to form a protein complex that plays a key role in the invasion of host cells by malaria parasites. Blocking this protein-protein interaction represents a potential route to controlling malaria and related parasitic diseases, but the polymorphic nature of AMA1 has proven to be a major challenge to vaccine-induced antibodies and peptide inhibitors exerting strain-transcending inhibitory effects. Here we present the X-ray crystal structure of AMA1 domains I and II from Plasmodium falciparum strain FVO. We compare our new structure to those of AMA1 from P. falciparum 3D7 and Plasmodium vivax. A combination of normalized B factor analysis and computational methods has been used to investigate the flexibility of the domain I loops and how this correlates with their roles in determining the strain specificity of human antibody responses and inhibitory peptides. We also investigated the domain II loop, a key region involved in inhibitor binding, by comparison of multiple AMA1 crystal structures. Collectively, these results provide valuable insights that should contribute to the design of strain-transcending agents targeting P. falciparum AMA1.


Asunto(s)
Antígenos de Protozoos/química , Malaria Falciparum/parasitología , Proteínas de la Membrana/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Plasmodium vivax/química , Estructura Terciaria de Proteína
7.
PLoS One ; 18(4): e0283194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37036856

RESUMEN

Nsp9 is a conserved accessory component of the coronaviral replication and transcription complex. It is the predominant substrate of nsp12's nucleotidylation activity while also serving to recruit proteins required for viral 5'-capping. Anti-nsp9 specific nanobodies have been isolated previously. We confirm that their binding mode is centred upon Trp-53 within SARS-CoV-2 nsp9. Antibody binding at this site surprisingly results in large-scale changes to the overall topology of this coronaviral unique fold. We further characterise the antibody-induced structural dynamism within nsp9, identifying a number of potentially flexible regions. A large expansion of the cavity between the s2-s3 and s4-s5 loops is particularly noteworthy. As is the potential for large-scale movements in the C-terminal GxxxG helix.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo
8.
RSC Med Chem ; 14(1): 135-143, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36760747

RESUMEN

Fragment-based drug design relies heavily on structural information for the elaboration and optimisation of hits. The ability to identify neighbouring binding hot spots, energetically favourable interactions and conserved binding motifs in protein structures through X-ray crystallography can inform the evolution of fragments into lead-like compounds through structure-based design. The composition of fragment libraries can be designed and curated to fit this purpose and herein, we describe and compare screening libraries containing compounds comprising between 2 and 18 heavy atoms. We evaluate the properties of the compounds in these libraries and assess their ability to probe protein surfaces for binding hot spots.

9.
Eur J Med Chem ; 261: 115786, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37716187

RESUMEN

Perforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development. In this study, by screening a fragment library using NMR and surface plasmon resonance, we identified 4,4-diaminodiphenyl sulfone (dapsone) as a perforin ligand. We also found that dapsone has modest (mM) inhibitory activity of perforin lytic activity in a red blood cell lysis assay in vitro. Sequential modification of this lead fragment, guided by structural knowledge of the ligand binding site and binding pose, and supported by SPR and ligand-detected 19F NMR, enabled the design of nanomolar inhibitors of the cytolytic activity of intact NK cells against various tumour cell targets. Interestingly, the ligands we developed were largely inert with respect to direct perforin-mediated red blood cell lysis but were very potent in the context of perforin's action on delivering granzymes in the immune synapse, the context in which it functions physiologically. Our work indicates that a fragment-based, structure-guided drug discovery strategy can be used to identify novel ligands that bind perforin. Moreover, these molecules have superior physicochemical properties and solubility compared to previous generations of perforin ligands.


Asunto(s)
Dapsona , Células Asesinas Naturales , Perforina/metabolismo , Ligandos , Células Asesinas Naturales/metabolismo , Muerte Celular , Dapsona/metabolismo
10.
Proteins ; 80(3): 946-57, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22423360

RESUMEN

Suppressors of cytokine signaling (SOCS) proteins function as negative regulators of cytokine signaling and are involved in fine tuning the immune response. The structure and role of the SH2 domains and C-terminal SOCS box motifs of the SOCS proteins are well characterized, but the long N-terminal domains of SOCS4-7 remain poorly understood. Here, we present bioinformatic analyses of the N-terminal domains of the mammalian SOCS proteins, which indicate that these domains of SOCS4, 5, 6, and 7 are largely disordered. We have also identified a conserved region of about 70 residues in the N-terminal domains of SOCS4 and 5 that is predicted to be more ordered than the surrounding sequence. The conservation of this region can be traced as far back as lower vertebrates. As conserved regions with increased structural propensity that are located within long disordered regions often contain molecular recognition motifs, we expressed the N-terminal conserved region of mouse SOCS4 for further analysis. This region, mSOCS486₋155, has been characterized by circular dichroism and nuclear magnetic resonance spectroscopy, both of which indicate that it is predominantly unstructured in aqueous solution, although it becomes helical in the presence of trifluoroethanol. The high degree of sequence conservation of this region across different species and between SOCS4 and SOCS5 nonetheless implies that it has an important functional role, and presumably this region adopts a more ordered conformation in complex with its partners. The recombinant protein will be a valuable tool in identifying these partners and defining the structures of these complexes.


Asunto(s)
Proteínas Supresoras de la Señalización de Citocinas/química , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Bases de Datos de Proteínas , Humanos , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Supresoras de la Señalización de Citocinas/genética
11.
Arch Biochem Biophys ; 513(2): 153-7, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21784057

RESUMEN

Merozoite surface protein 2 (MSP2), one of the most abundant proteins on the surface of Plasmodium falciparum merozoites, is a promising malaria vaccine candidate. MSP2 is intrinsically unstructured and forms amyloid-like fibrils in solution. As this propensity of MSP2 to form fibrils in solution has the potential to impede its development as a vaccine candidate, finding an inhibitor that inhibits fibrillogenesis may enhance vaccine development. We have shown previously that EGCG inhibits the formation of MSP2 fibrils. Here we show that EGCG can alter the ß-sheet-like structure of the fibril and disaggregate pre-formed fibrils of MSP2 into soluble oligomers. The fibril remodelling effects of EGCG and other flavonoids were characterised using Thioflavin T fluorescence assays, electron microscopy and other biophysical methods.


Asunto(s)
Antígenos de Protozoos/química , Antígenos de Protozoos/efectos de los fármacos , Catequina/análogos & derivados , Plasmodium falciparum/química , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/química , Proteínas Protozoarias/efectos de los fármacos , Amiloide/química , Amiloide/efectos de los fármacos , Amiloide/ultraestructura , Antígenos de Protozoos/ultraestructura , Fenómenos Biofísicos , Catequina/farmacología , Flavonoides/farmacología , Vacunas contra la Malaria/química , Merozoítos/química , Merozoítos/efectos de los fármacos , Microscopía Electrónica de Transmisión , Multimerización de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , Proteínas Protozoarias/ultraestructura
12.
Biochemistry ; 49(28): 5899-908, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20545323

RESUMEN

Merozoite surface protein 2 (MSP2) is a glycosylphosphatidylinositol (GPI)-anchored protein expressed abundantly on the surface of Plasmodium falciparum merozoites. The results of a phase 2 trial in Papua New Guinean children showed MSP2 to be a promising malaria vaccine candidate. MSP2 is intrinsically unstructured and forms amyloid-like fibrils under physiological conditions. Oligomers containing beta-strand interactions similar to those in amyloid fibrils may be a component of the fibrillar surface coat on P. falciparum merozoites. As the propensity of MSP2 to form fibrils in solution also has the potential to impede its development as a vaccine candidate, finding an inhibitor that specifically inhibits fibrillogenesis may enhance vaccine development. In this study, we tested the ability of three flavonoids, EGCG, baicalein, and resveratrol, to inhibit MSP2 fibrillogenesis and found marked inhibition with EGCG but not with the other two flavonoids. The inhibitory effect and the interactions of the flavonoids with MSP2 were characterized using NMR spectroscopy, thioflavin T fluorescence assays, electron microscopy, and other biophysical methods. EGCG stabilizes soluble oligomers and blocks fibrillogenesis by preventing the conformational transition of MSP2 from a random coil to an amyloidogenic beta-sheet structure. Structural comparison of the three flavonoids indicates an association between their propensity for autoxidation and their fibril inhibitory activity; the activity of EGCG can be attributed to the vicinal hydroxyl groups present in this flavonoid and their ability to form quinones. The molecular mechanism of fibril inhibition by EGCG appears to be complex and involves noncovalent binding followed by covalent modification of the protein. Although the addition of EGCG appears to be an effective means of stabilizing MSP2 in solution, the covalent modification of MSP2 would most likely not be acceptable in a vaccine formulation. However, these small molecule inhibitors of MSP2 fibril formation will be useful as mechanistic probes in studying oligomerization and fibril assembly of MSP2.


Asunto(s)
Amiloide/química , Plasmodium falciparum/química , Amiloide/inmunología , Animales , Antígenos de Protozoos , Catequina/análogos & derivados , Niño , Flavonoides/inmunología , Humanos , Espectroscopía de Resonancia Magnética , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/inmunología , Merozoítos/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias
13.
Pept Sci (Hoboken) ; 111(4)2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32411924

RESUMEN

A peptide comprising the juxtamembrane C-terminal intracellular loop 4 (IL4) of the CB1 cannabinoid receptor possesses three Serine residues (Ser402, Ser411 and Ser415). Here we report the effect of Ser phosphorylation on the CB1 IL4 peptide conformation and cellular signaling functions using nuclear magnetic resonance spectroscopy, circular dichroism, G protein activation and cAMP production. Circular dichroism studies indicated that phosphorylation at various Ser residues induced helical structure in different environments. NMR data indicates that helical content varies in the order of IL4pSer411 > IL4pSer415 > IL4 > IL4pSer402. The efficacy of phosphorylated IL4 peptides in activating Go and Gi3 ([35S]GTPγS binding) and inhibiting cAMP accumulation in N18TG2 cells were correlated with helicity changes. Treatment of cells with bradykinin, which activates PKC, augmented CB1-mediated inhibition of cAMP accumulation, and this was reversed by a PKC inhibitor, suggesting that phosphorylation of serine might be a physiologically relevant modification in vivo. We conclude that phosphorylation-dependent alterations of helicity of CB1 IL4 peptides can increase efficacy of G protein signaling.

14.
FEBS Lett ; 592(2): 179-189, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29266266

RESUMEN

Targeting the interaction between PKC isoforms and their anchoring proteins can specifically regulate kinase activity. εV1-2 and pseudoεRACK peptides, derived from the PKCε C2 domain, modulate its association with receptor for activated C-kinase 2 (RACK2) and thus its function. Details of these interactions remain obscure, and we therefore investigated binding of these peptides using biophysical techniques. Surface plasmon resonance (SPR) indicated that the inhibitory εV1-2 peptide bound to RACK2, and inhibited PKCε binding as expected. In contrast, SPR and NMR demonstrated that the activating pseudoεRACK peptide and related sequences did not bind to PKCε, indicating that their mechanisms of action do not involve binding to the kinase as previously proposed. Our results clarify which interactions could be targeted in developing new therapeutics that inhibit PKCε-RACK2 interaction.


Asunto(s)
Péptidos/farmacología , Proteína Quinasa C-epsilon/química , Proteína Quinasa C-epsilon/metabolismo , Receptores de Cinasa C Activada/metabolismo , Animales , Sitios de Unión , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Péptidos/química , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie
15.
J Med Chem ; 58(3): 1205-14, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25559643

RESUMEN

We have identified a class of molecules, known as 2-aminothiazoles (2-ATs), as frequent-hitting fragments in biophysical binding assays. This was exemplified by 4-phenylthiazol-2-amine being identified as a hit in 14/14 screens against a diverse range of protein targets, suggesting that this scaffold is a poor starting point for fragment-based drug discovery. This prompted us to analyze this scaffold in the context of an academic fragment library used for fragment-based drug discovery (FBDD) and two larger compound libraries used for high-throughput screening (HTS). This analysis revealed that such "promiscuous 2-aminothiazoles" (PrATs) behaved as frequent hitters under both FBDD and HTS settings, although the problem was more pronounced in the fragment-based studies. As 2-ATs are present in known drugs, they cannot necessarily be deemed undesirable, but the combination of their promiscuity and difficulties associated with optimizing them into a lead compound makes them, in our opinion, poor scaffolds for fragment libraries.


Asunto(s)
Tiazoles/química , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Espectroscopía de Resonancia Magnética , Estructura Molecular , Resonancia por Plasmón de Superficie
16.
PLoS One ; 8(8): e70536, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990909

RESUMEN

Suppressor of Cytokine Signaling (SOCS)5 is thought to act as a tumour suppressor through negative regulation of JAK/STAT and epidermal growth factor (EGF) signaling. However, the mechanism/s by which SOCS5 acts on these two distinct pathways is unclear. We show for the first time that SOCS5 can interact directly with JAK via a unique, conserved region in its N-terminus, which we have termed the JAK interaction region (JIR). Co-expression of SOCS5 was able to specifically reduce JAK1 and JAK2 (but not JAK3 or TYK2) autophosphorylation and this function required both the conserved JIR and additional sequences within the long SOCS5 N-terminal region. We further demonstrate that SOCS5 can directly inhibit JAK1 kinase activity, although its mechanism of action appears distinct from that of SOCS1 and SOCS3. In addition, we identify phosphoTyr317 in Shc-1 as a high-affinity substrate for the SOCS5-SH2 domain and suggest that SOCS5 may negatively regulate EGF and growth factor-driven Shc-1 signaling by binding to this site. These findings suggest that different domains in SOCS5 contribute to two distinct mechanisms for regulation of cytokine and growth factor signaling.


Asunto(s)
Janus Quinasa 1/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Sitios de Unión , Citocinas/metabolismo , Vectores Genéticos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 3/metabolismo , Ratones , Fosfopéptidos/química , Fosforilación , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Transducción de Señal , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Especificidad por Sustrato , Resonancia por Plasmón de Superficie , TYK2 Quinasa/metabolismo , Dominios Homologos src
17.
J Chem Inf Model ; 49(7): 1734-40, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19534508

RESUMEN

The neurokinin-2 receptor is a member of the rhodopsin family of G-protein coupled receptors, which represents one of the most relevant target families in small-molecule drug design. NK-2 receptors have been implicated in playing a pathophysiological role in asthma. Activation of the NK-2 receptor by its endogenous peptide agonist, tachykinins, is associated with diverse biological responses like bronchoconstriction, vasodepression, and regulation of endocrine functions. Agonist binding to the receptor is a crucial event in initiating signaling, and therefore characterization of the structural features of the agonists can reveal the molecular basis of receptor activation and help in rational design of novel therapeutics. In this study a molecular model for the interaction of the primary ligand NKA with its G-protein coupled receptor neurokinin-2 receptor has been developed. A three-dimensional model for the NK-2 receptor has been generated by homology modeling using rhodopsin as a template. A knowledge based docking of the NMR derived bioactive conformation of NKA to the receptor has been performed utilizing the ligand binding data obtained from the photoaffinity labeling and site-directed mutagenesis studies. The molecular model for the NKA/NK-2 receptor complex thus obtained sheds light on the topographical features of the binding pocket of the receptor and provides atomic insight into the biochemical data currently available for the receptor. The results of the receptor modeling studies have been used to discuss the molecular determinants for NK-2 receptor selectivity.


Asunto(s)
Neuroquinina A/metabolismo , Receptores de Neuroquinina-2/agonistas , Receptores de Neuroquinina-2/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bovinos , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Neuroquinina A/química , Unión Proteica , Conformación Proteica , Receptores de Neuroquinina-2/química , Rodopsina/química
18.
Biochemistry ; 46(11): 3065-74, 2007 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-17305365

RESUMEN

Insulin-like growth factor binding proteins (IGFBPs) modulate the activity and distribution of insulin-like growth factors (IGFs). IGFBP-6 differs from other IGFBPs in being a relatively specific inhibitor of IGF-II actions. Another distinctive feature of IGFBP-6 is its unique N-terminal disulfide linkages; the N-domains of IGFBPs 1-5 contain six disulfides and share a conserved GCGCC motif, but IGFBP-6 lacks the two adjacent cysteines in this motif, so its first three N-terminal disulfide linkages differ from those of the other IGFBPs. The contributions of the N- and C-domains of IGFBP-6 to its IGF binding properties and their structure-function relationships have been characterized in part, but the structure and function of the distinctive N-terminal subdomain of IGFBP-6 are unknown. Here we report the solution structure of a polypeptide corresponding to residues 1-45 of the N-terminal subdomain of IGFBP-6 (NN-BP-6). The extended structure of the N-terminal subdomain of IGFBP-6 is very different from that of the short two-stranded beta-sheet of the N-terminal subdomain of IGFBP-4 and, by implication, the other IGFBPs. NN-BP-6 contains a potential cation-binding motif; lanthanide ion binding was observed, but no significant interaction was found with physiologically relevant metal ions like calcium or magnesium. However, this subdomain of IGFBP-6 has a higher affinity for IGF-II than IGF-I, suggesting that it may contribute to the marked IGF-II binding preference of IGFBP-6. The extended structure and flexibility of this subdomain of IGFBP-6 could play a role in enhancing the rate of ligand association and thereby be significant in IGF recognition.


Asunto(s)
Proteína 6 de Unión a Factor de Crecimiento Similar a la Insulina/química , Proteína 6 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Somatomedinas/metabolismo , Secuencia de Aminoácidos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Elementos de la Serie de los Lantanoides/metabolismo , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/síntesis química , Estructura Terciaria de Proteína
19.
Biopolymers ; 87(1): 12-22, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17516503

RESUMEN

Merozoite surface protein 2 (MSP2) is a GPI-anchored protein on the surface of the merozoite stage of the malaria parasite Plasmodium falciparum. It is largely disordered in solution, but has a propensity to form amyloid-like fibrils under physiological conditions. The N-terminal conserved region (MSP2(1-25)) is part of the protease-resistant core of these fibrils. To investigate the structure and dynamics of this region, its ability to form fibrils, and the role of individual residues in these properties, we have developed a bacterial expression system that yields > or =10 mg of unlabeled or (15)N-labeled peptide per litre of culture. Two recombinant versions of MSP2(1-25), wild-type and a Y7A/Y16A mutant, have been produced. Detailed conformational analysis of the wild-type peptide and backbone (15)N relaxation data indicated that it contains beta-turn and nascent helical structures in the central and C-terminal regions. Residues 6-21 represent the most ordered region of the structure, although there is some flexibility around residues 8 and 9. The 10-residue sequence (MSP2(7-16)) (with two Tyr residues) was predicted to have a higher propensity for beta-aggregation than the 8-mer sequence (MSP2(8-15)), but there was no significant difference in conformation between MSP2(1-25) and [Y7A,Y16A]MSP2(1-25) and the rate of fibril formation was only slightly slower in the mutant. The peptide expression system described here will facilitate further mutational analyses to define the roles of individual residues in transient structural elements and fibril formation, and thus contribute to the further development of MSP2 as a malaria vaccine candidate.


Asunto(s)
Antígenos de Protozoos/química , Vacunas contra la Malaria/química , Mutación Missense , Plasmodium falciparum/química , Proteínas Protozoarias/química , Sustitución de Aminoácidos , Animales , Antígenos de Protozoos/genética , Expresión Génica , Vacunas contra la Malaria/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Plasmodium falciparum/genética , Estructura Terciaria de Proteína/genética , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA