Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 70(1): 83-94.e7, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625040

RESUMEN

Growing resistance of pathogenic bacteria and shortage of antibiotic discovery platforms challenge the use of antibiotics in the clinic. This threat calls for exploration of unconventional sources of antibiotics and identification of inhibitors able to eradicate resistant bacteria. Here we describe a different class of antibiotics, odilorhabdins (ODLs), produced by the enzymes of the non-ribosomal peptide synthetase gene cluster of the nematode-symbiotic bacterium Xenorhabdus nematophila. ODLs show activity against Gram-positive and Gram-negative pathogens, including carbapenem-resistant Enterobacteriaceae, and can eradicate infections in animal models. We demonstrate that the bactericidal ODLs interfere with protein synthesis. Genetic and structural analyses reveal that ODLs bind to the small ribosomal subunit at a site not exploited by current antibiotics. ODLs induce miscoding and promote hungry codon readthrough, amino acid misincorporation, and premature stop codon bypass. We propose that ODLs' miscoding activity reflects their ability to increase the affinity of non-cognate aminoacyl-tRNAs to the ribosome.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Proteínas Bacterianas/biosíntesis , ADN Bacteriano/genética , Infecciones por Klebsiella/tratamiento farmacológico , Subunidades Ribosómicas Pequeñas/efectos de los fármacos , Xenorhabdus/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Animales , Antibacterianos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Modelos Animales de Enfermedad , Femenino , Células Hep G2 , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Masculino , Ratones Endogámicos ICR , Biosíntesis de Proteínas/efectos de los fármacos , Subunidades Ribosómicas Pequeñas/genética , Subunidades Ribosómicas Pequeñas/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(46): 23068-23074, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31672910

RESUMEN

Chemical modifications of RNAs have long been established as key modulators of nonprotein-coding RNA structure and function in cells. There is a growing appreciation that messenger RNA (mRNA) sequences responsible for directing protein synthesis can also be posttranscriptionally modified. The enzymatic incorporation of mRNA modifications has many potential outcomes, including changing mRNA stability, protein recruitment, and translation. We tested how one of the most common modifications present in mRNA coding regions, pseudouridine (Ψ), impacts protein synthesis using a fully reconstituted bacterial translation system and human cells. Our work reveals that replacing a single uridine nucleotide with Ψ in an mRNA codon impedes amino acid addition and EF-Tu GTPase activation. A crystal structure of the Thermus thermophilus 70S ribosome with a tRNAPhe bound to a ΨUU codon in the A site supports these findings. We also find that the presence of Ψ can promote the low-level synthesis of multiple peptide products from a single mRNA sequence in the reconstituted translation system as well as human cells, and increases the rate of near-cognate Val-tRNAVal reacting on a ΨUU codon. The vast majority of Ψ moieties in mRNAs are found in coding regions, and our study suggests that one consequence of the ribosome encountering Ψ can be to modestly alter both translation speed and mRNA decoding.


Asunto(s)
Biosíntesis de Proteínas , Seudouridina/metabolismo , ARN Bacteriano/genética , ARN Mensajero/genética , Thermus thermophilus/genética , Codón/genética , Codón/metabolismo , Sistemas de Lectura Abierta , Extensión de la Cadena Peptídica de Translación , Seudouridina/genética , Procesamiento Postranscripcional del ARN , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Thermus thermophilus/metabolismo , Uridina/metabolismo
3.
J Am Chem Soc ; 141(12): 5051-5061, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30793894

RESUMEN

Infectious diseases due to multidrug-resistant pathogens, particularly carbapenem-resistant Enterobacteriaceae (CREs), present a major and growing threat to human health and society, providing an urgent need for the development of improved potent antibiotics for their treatment. We describe the design and development of a new class of aminoglycoside antibiotics culminating in the discovery of propylamycin. Propylamycin is a 4'-deoxy-4'-alkyl paromomycin whose alkyl substituent conveys excellent activity against a broad spectrum of ESKAPE pathogens and other Gram-negative infections, including CREs, in the presence of numerous common resistance determinants, be they aminoglycoside modifying enzymes or rRNA methyl transferases. Importantly, propylamycin is demonstrated not to be susceptible to the action of the ArmA resistance determinant whose presence severely compromises the action of plazomicin and all other 4,6-disubstituted 2-deoxystreptamine aminoglycosides. The lack of susceptibility to ArmA, which is frequently encoded on the same plasmid as carbapenemase genes, ensures that propylamycin will not suffer from problems of cross-resistance when used in combination with carbapenems. Cell-free translation assays, quantitative ribosome footprinting, and X-ray crystallography support a model in which propylamycin functions by interference with bacterial protein synthesis. Cell-free translation assays with humanized bacterial ribosomes were used to optimize the selectivity of propylamycin, resulting in reduced ototoxicity in guinea pigs. In mouse thigh and septicemia models of Escherichia coli, propylamycin shows excellent efficacy, which is better than paromomycin. Overall, a simple novel deoxy alkyl modification of a readily available aminoglycoside antibiotic increases the inherent antibacterial activity, effectively combats multiple mechanisms of aminoglycoside resistance, and minimizes one of the major side effects of aminoglycoside therapy.


Asunto(s)
Aminoglicósidos/síntesis química , Aminoglicósidos/farmacología , Antibacterianos/síntesis química , Antibacterianos/farmacología , Diseño de Fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Enterobacteriaceae/efectos de los fármacos , Aminoglicósidos/química , Animales , Antibacterianos/química , Técnicas de Química Sintética , Cobayas , Hexosaminas/síntesis química , Hexosaminas/química , Hexosaminas/farmacología , Hexosaminas/toxicidad , Ratones , Pruebas de Sensibilidad Microbiana , Células 3T3 NIH , Relación Estructura-Actividad
4.
Science ; 376(6599): 1338-1343, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35709277

RESUMEN

The elongation of eukaryotic selenoproteins relies on a poorly understood process of interpreting in-frame UGA stop codons as selenocysteine (Sec). We used cryo-electron microscopy to visualize Sec UGA recoding in mammals. A complex between the noncoding Sec-insertion sequence (SECIS), SECIS-binding protein 2 (SBP2), and 40S ribosomal subunit enables Sec-specific elongation factor eEFSec to deliver Sec. eEFSec and SBP2 do not interact directly but rather deploy their carboxyl-terminal domains to engage with the opposite ends of the SECIS. By using its Lys-rich and carboxyl-terminal segments, the ribosomal protein eS31 simultaneously interacts with Sec-specific transfer RNA (tRNASec) and SBP2, which further stabilizes the assembly. eEFSec is indiscriminate toward l-serine and facilitates its misincorporation at Sec UGA codons. Our results support a fundamentally distinct mechanism of Sec UGA recoding in eukaryotes from that in bacteria.


Asunto(s)
Codón de Terminación , Extensión de la Cadena Peptídica de Translación , Proteínas de Unión al ARN , Ribosomas , Selenocisteína , Selenoproteínas , Codón de Terminación/genética , Microscopía por Crioelectrón , Humanos , Extensión de la Cadena Peptídica de Translación/genética , Conformación Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribosomas/química , Selenocisteína/química , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/biosíntesis , Selenoproteínas/genética
5.
J Mol Biol ; 430(6): 842-852, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29410130

RESUMEN

Antibiotic chloramphenicol (CHL) binds with a moderate affinity at the peptidyl transferase center of the bacterial ribosome and inhibits peptide bond formation. As an approach for modifying and potentially improving properties of this inhibitor, we explored ribosome binding and inhibitory activity of a number of amino acid analogs of CHL. The L-histidyl analog binds to the ribosome with the affinity exceeding that of CHL by 10 fold. Several of the newly synthesized analogs were able to inhibit protein synthesis and exhibited the mode of action that was distinct from the action of CHL. However, the inhibitory properties of the semi-synthetic CHL analogs did not correlate with their affinity and in general, the amino acid analogs of CHL were less active inhibitors of translation in comparison with the original antibiotic. The X-ray crystal structures of the Thermus thermophilus 70S ribosome in complex with three semi-synthetic analogs showed that CHL derivatives bind at the peptidyl transferase center, where the aminoacyl moiety of the tested compounds established idiosyncratic interactions with rRNA. Although still fairly inefficient inhibitors of translation, the synthesized compounds represent promising chemical scaffolds that target the peptidyl transferase center of the ribosome and potentially are suitable for further exploration.


Asunto(s)
Aminoácidos/farmacología , Antibacterianos/farmacología , Cloranfenicol/farmacología , Unión Proteica/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Sitios de Unión , Cloranfenicol/metabolismo , Cristalografía por Rayos X , Escherichia coli/metabolismo , Modelos Moleculares , Peptidil Transferasas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Conformación Proteica , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Thermus thermophilus/metabolismo
6.
Nat Commun ; 7: 12941, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27708257

RESUMEN

Selenocysteine is the only proteinogenic amino acid encoded by a recoded in-frame UGA codon that does not operate as the canonical opal stop codon. A specialized translation elongation factor, eEFSec in eukaryotes and SelB in prokaryotes, promotes selenocysteine incorporation into selenoproteins by a still poorly understood mechanism. Our structural and biochemical results reveal that four domains of human eEFSec fold into a chalice-like structure that has similar binding affinities for GDP, GTP and other guanine nucleotides. Surprisingly, unlike in eEF1A and EF-Tu, the guanine nucleotide exchange does not cause a major conformational change in domain 1 of eEFSec, but instead induces a swing of domain 4. We propose that eEFSec employs a non-canonical mechanism involving the distinct C-terminal domain 4 for the release of the selenocysteinyl-tRNA during decoding on the ribosome.


Asunto(s)
Factores de Elongación de Péptidos/química , Selenocisteína/química , Codón de Terminación , Cristalografía por Rayos X , Guanosina Difosfato/química , Guanosina Trifosfato/química , Humanos , Filogenia , Biosíntesis de Proteínas , Dominios Proteicos , Estructura Secundaria de Proteína , Aminoacil-ARN de Transferencia/química , Ribosomas/metabolismo , Selenoproteínas/genética
7.
Methods Mol Biol ; 1120: 19-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24470016

RESUMEN

Post-translational modifications in proteins play a major functional role. Post-translational modifications affect the way proteins interact with each other, bind nucleotides, and localize in cellular compartments. Given the importance of post-translational modifications in protein biology, development of methods to produce post-translationally modified proteins for biochemical and biophysical studies is timely and significant. At the same time, obtaining post-translationally modified proteins in bacterial expression systems is often problematic. Here, we describe a novel recombinant approach to prepare human K-Ras 4B, a protein that is post-translationally farnesylated, proteolytically cleaved, and methylated in its C-terminus. K-Ras 4B is a member of the Ras subfamily of small GTPases and is of interest because it is frequently mutated in human cancer. The method relies on separate production of two structural domains-the N-terminal catalytic domain and the C-terminal peptide chemically modified with S-farnesyl-L-cysteine methyl ester. After the two domains are prepared, they are ligated together using the transpeptidase enzyme, sortase. Our procedure starts with the use of the plasmid of K-Ras 4B catalytic domain containing the sortase recognition sequence. After this, we describe the bacterial expression and purification steps used to purify K-Ras 4B and the preparation of the conjugated C-terminal peptide. The procedure ends with the sortase-mediated ligation technique. The produced post-translationally modified K-Ras 4B is active in a number of assays, including a GTP hydrolysis assay, Raf-1 binding assay, and surface plasmon resonance-based phospholipid binding assay.


Asunto(s)
Ingeniería Genética/métodos , Proteínas Proto-Oncogénicas p21(ras)/biosíntesis , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Prenilación de Proteína , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/aislamiento & purificación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA