Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Genet Dev ; 9(5): 505-14, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10508687

RESUMEN

Transcriptional activation of many developmentally regulated genes is mediated by proteins binding to enhancer sequences located several kilobases from the promoter. Existing models for how activator proteins function do not adequately explain long-range activation. Recent experiments in Drosophila on insulators that block enhancer-promoter interactions, interchromosomal activation, and mutants deficient in long-range activation are consistent with models in which facilitator factors that function between enhancers and promoters bring them into physical proximity of each other.


Asunto(s)
Proteínas de Drosophila , Drosophila/genética , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Animales , Proteínas de Unión al ADN/fisiología , Proteínas de Homeodominio/fisiología , Proteínas Nucleares/fisiología
2.
Mol Cell Biol ; 11(4): 1894-900, 1991 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-1900919

RESUMEN

The suppressor of hairy-wing [su(Hw)] locus of Drosophila melanogaster encodes a zinc finger protein that binds a repeated motif in the gypsy retroposon. Mutations of su(Hw) suppress the phenotypes associated with mutations caused by gypsy insertions. To examine the mechanisms by which su(Hw) alters gene expression, a fragment of gypsy containing multiple su(Hw) protein-binding sites was inserted into various locations in the well-characterized Drosophila hsp70 heat shock gene promoter. We found no evidence for activation of basal hsp70 transcription by su(Hw) protein in cultured Drosophila cells but observed that it can repress heat shock-induced transcription. Repression occurred only when su(Hw) protein-binding sites were positioned between binding sites for proteins required for heat shock transcription. We propose that su(Hw) protein interferes nonspecifically with protein-protein interactions required for heat shock transcription, perhaps sterically, or by altering the ability of DNA to bend or twist.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/genética , Proteínas de Choque Térmico/genética , Hormonas de Insectos/genética , Proteínas de Insectos , Proteínas Represoras , Supresión Genética , Factores de Transcripción/genética , Transcripción Genética , Dedos de Zinc/genética , Alelos , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Sitios de Unión , Northern Blotting , Línea Celular , Regulación de la Expresión Génica , Genes , Datos de Secuencia Molecular , Mutación , Fenotipo
3.
Mol Cell Biol ; 14(9): 5645-52, 1994 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8065301

RESUMEN

Insertion of the gypsy retrotransposon of Drosophila melanogaster into a gene control region can repress gene expression. The zinc finger protein (SUHW) encoded by the suppressor of Hairy-wing [su(Hw)] gene binds to gypsy and prevents gene enhancers from activating transcription. SUHW blocks an enhancer only when positioned between the enhancer and promoter. Although position dependent, SUHW enhancer blocking is distance independent. These properties indicate that SUHW does not interact with the transcription activator proteins that bind to enhancers. To explore if DNA distortions are involved in enhancer blocking, the ability of SUHW to alter DNA structure was examined in gel mobility assays. Indeed, SUHW induces an unusual change in the structure of the binding-site DNA. The change is not a directed DNA bend but correlates with loss of sequence-directed bends in the unbound DNA. The DNA distortion requires a SUHW protein domain not required for DNA binding, and mutant proteins that fail to alter DNA structure also fail to eliminate the sequence-directed bends. These results suggest that SUHW increases DNA flexibility. The DNA distortion is not sufficient to block enhancers, and therefore it is suggested that increased DNA flexibility may help SUHW interact and interfere with proteins that support long-distance enhancer-promoter interactions.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Nucleares/química , Dedos de Zinc , Animales , Secuencia de Bases , Análisis Mutacional de ADN , Proteínas de Drosophila , Drosophila melanogaster , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Genes de Insecto , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Proteínas Represoras , Relación Estructura-Actividad
4.
Mol Cell Biol ; 5(4): 869-80, 1985 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2985972

RESUMEN

Linear forms of simian virus 40 (SV40) DNA, when added to transfection mixtures containing circular SV40 and phi X174 RFI DNAs, enhanced the frequency of SV40/phi X174 recombination, as measured by infectious center in situ plaque hybridization in monkey BSC-1 cells. The sequences required for the enhancement of recombination by linear DNA reside within the SV40 replication origin/regulatory region (nucleotides 5,171 to 5,243/0 to 128). Linearization of phi X174 RFI DNA did not increase the recombination frequency. The SV40/phi X174 recombinant structures arising from transfections supplemented with linear forms of origin-containing SV40 DNA contained phi X174 DNA sequences interspersed within tandem head-to-tail repeats derived from the recombination-enhancing linear DNA. Evidence is presented that the tandem repeats are not formed by homologous recombination and that linear forms of SV40 DNA must compete with circular SV40 DNA for the available T antigen to enhance recombination. We propose that the enhancement of recombination by linear SV40 DNA results from the entry of that DNA into a rolling circle type of replication pathway which generates highly recombinogenic intermediates.


Asunto(s)
ADN Circular/genética , ADN Viral/genética , Recombinación Genética , Virus 40 de los Simios/genética , Bacteriófago phi X 174/genética , Secuencia de Bases , Replicación del ADN , Secuencias Repetitivas de Ácidos Nucleicos , Replicación Viral
5.
Mol Cell Biol ; 21(14): 4807-17, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11416154

RESUMEN

The Drosophila mod(mdg4) gene products counteract heterochromatin-mediated silencing of the white gene and help activate genes of the bithorax complex. They also regulate the insulator activity of the gypsy transposon when gypsy inserts between an enhancer and promoter. The Su(Hw) protein is required for gypsy-mediated insulation, and the Mod(mdg4)-67.2 protein binds to Su(Hw). The aim of this study was to determine whether Mod(mdg4)-67.2 is a coinsulator that helps Su(Hw) block enhancers or a facilitator of activation that is inhibited by Su(Hw). Here we provide evidence that Mod(mdg4)-67.2 acts as a coinsulator by showing that some loss-of-function mod(mdg4) mutations decrease enhancer blocking by a gypsy insert in the cut gene. We find that the C terminus of Mod(mdg4)-67.2 binds in vitro to a region of Su(Hw) that is required for insulation, while the N terminus mediates self-association. The N terminus of Mod(mdg4)-67.2 also interacts with the Chip protein, which facilitates activation of cut. Mod(mdg4)-67.2 truncated in the C terminus interferes in a dominant-negative fashion with insulation in cut but does not significantly affect heterochromatin-mediated silencing of white. We infer that multiple contacts between Su(Hw) and a Mod(mdg4)-67.2 multimer are required for insulation. We theorize that Mod(mdg4)-67.2 usually aids gene activation but can also act as a coinsulator by helping Su(Hw) trap facilitators of activation, such as the Chip protein.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila , Elementos de Facilitación Genéticos , Proteínas de Insectos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Retroelementos , Factores de Transcripción/fisiología , Animales , Drosophila , Femenino , Genes de Insecto , Proteínas de Homeodominio , Masculino , Mutagénesis Insercional , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Mol Cell Biol ; 16(7): 3381-92, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8668153

RESUMEN

Mutations in the suppressor of Hairy-wing [su(Hw)] gene of Drosophila melanogaster can cause female sterility and suppress mutations that are insertions of the gypsy retrotransposon. Gypsy binds the protein (SUHW) encoded by su(Hw), and SUHW prevents enhancers promoter-distal to gypsy from activating gene transcription. SUHW contains 12 zinc fingers flanked by acidic N- and C-terminal domains. We examined the roles of each of the 12 zinc fingers in binding gypsy DNA and classified them into four groups: essential (fingers 6 through 10); beneficial but nonessential (fingers 1, 2, 3, and 11); unimportant (fingers 5 and 12); and inhibitory (finger 4). Because finger 10 is not required for female fertility but is essential for binding gypsy, these results imply that the SUHW-binding sites required for oogenesis differ in sequence from the gypsy-binding sites. We also examined the functions of the N- and C-terminal domains of SUHW by determining the ability of various deletion mutants to support female fertility and to alter expression of gypsy insertion alleles of the yellow, cut, forked, and Ultrabithorax genes. No individual segment of the N- and C-terminal domains of SUHW is absolutely required to alter expression of gypsy insertion alleles. However, the most important domain lies between residues 737 and 880 in the C-terminal domain. This region also contains the residues required for female fertility, and the fertility domain may be congruent with the enhancer-blocking domain. These results imply that SUHW blocks different enhancers and supports oogenesis by the same or closely related molecular mechanisms.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/fisiología , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/química , Proteínas de Drosophila , Drosophila melanogaster/genética , Femenino , Fertilidad/genética , Regulación de la Expresión Génica , Variación Genética , Infertilidad Femenina , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/química , Oligodesoxirribonucleótidos , Oogénesis , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Retroelementos , Eliminación de Secuencia , Transcripción Genética , Dedos de Zinc
7.
Mol Cell Biol ; 12(2): 773-83, 1992 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-1732743

RESUMEN

The fructose-1,6-bisphosphate aldolase gene of Drosophila melanogaster contains three divergent copies of an evolutionarily conserved 3' exon. Two mRNAs encoding aldolase contain three exons and differ only in the poly(A) site. The first exon is small and noncoding. The second encodes the first 332 amino acids, which form the catalytic domain, and is homologous to exons 2 through 8 of vertebrates. The third exon encodes the last 29 amino acids, thought to control substrate specificity, and is homologous to vertebrate exon 9. A third mRNA substitutes a different 3' exon (4a) for exon 3 and encodes a protein very similar to aldolase. A fourth mRNA begins at a different promoter and shares the second exon with the aldolase messages. However, two exons, 3a and 4a, together substitute for exon 3. Like exon 4a, exon 3a is homologous to terminal aldolase exons. The exon 3a-4a junction is such that exon 4a would be translated in a frame different from that which would produce a protein with similarity to aldolase. The putative proteins encoded by the third and fourth mRNAs are likely to be aldolases with altered substrate specificities, illustrating alternate use of duplicated and diverged exons as an evolutionary mechanism for adaptation of enzymatic activities.


Asunto(s)
Drosophila melanogaster/enzimología , Exones/genética , Fructosa-Bifosfato Aldolasa/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Mapeo Cromosómico , Drosophila melanogaster/genética , Frecuencia de los Genes/genética , Datos de Secuencia Molecular , Poli A/genética , ARN Mensajero/genética , Especificidad por Sustrato
8.
Mol Cell Biol ; 5(7): 1787-90, 1985 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-2991751

RESUMEN

A linear simian virus 40 origin-containing DNA fragment replicated in monkey COS cells, generating tandemly repeated (head-to-tail) structures. Electron microscopy revealed circle-and-tail configurations characteristic of rolling-circle replication intermediates. Circularization of the same DNA before transfection led to a theta type of replication which generated supercoiled DNA molecules.


Asunto(s)
Replicación del ADN , ADN Viral/genética , Virus 40 de los Simios/genética , Animales , Chlorocebus aethiops , ADN Circular/genética , Microscopía Electrónica
9.
Genetics ; 134(4): 1135-44, 1993 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8375652

RESUMEN

When the gypsy retrotransposon of Drosophila inserts between an enhancer and promoter it prevents the enhancer from activating transcription. Enhancers are blocked because the protein (SUHW) encoded by the suppressor of Hairy-wing [su(Hw)] gene binds to gypsy. For example, gypsy insertions in an 85 kilobase region between a wing margin-specific enhancer and the promoter in the cut gene cause a cut wing phenotype that is suppressed by su(Hw) mutations. A temperature-sensitive combination of mutant su(Hw) alleles was used to investigate the mechanism by which SUHW blocks the cut wing margin enhancer. By shifting from the nonpermissive to the permissive temperature and vice versa at various stages in development it was found that active SUHW is only required around pupariation when the wing margin enhancer is active to cause a cut wing phenotype. This was true whether gypsy was in the embryonic control region near the promoter, or in the late larval control region near the wing margin enhancer. These results indicate that SUHW must be active only when an enhancer is active to block the enhancer. Furthermore, the observations also indicate that enhancer-blocking by SUHW is reversible and that it occurs soon after binding of active SUHW to gypsy DNA. These results are consistent with models in which SUHW structurally interferes with enhancer-promoter interactions.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Hormonas de Insectos/genética , Proteínas de Insectos , Proteínas Nucleares/genética , Proteínas Represoras , Supresión Genética , Factores de Transcripción/genética , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Fenotipo , Temperatura
10.
Genetics ; 135(2): 343-55, 1993 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8243999

RESUMEN

Many mutations in Drosophila melanogaster are gypsy retrotransposon insertions. Gypsy binds the protein (SUHW) encoded by the suppressor of Hairy-wing [su(Hw)] gene, and SUHW alters expression of surrounding genes. When gypsy is between an enhancer and promoter, SUHW blocks activation of transcription by the enhancer. Additionally, when gypsy is downstream of a promoter in a parallel orientation, SUHW increases truncation of transcripts at the poly(A) site in the gypsy 5' long terminal repeat, thereby decreasing the gene transcript levels. The effects of SUHW appear to involve fundamental and general mechanisms controlling gene expression because SUHW potentiates other poly(A) sites and blocks several enhancers in Drosophila. To investigate these mechanisms, SUHW was expressed in Saccharomyces cerevisiae. Although SUHW enters the nucleus and binds DNA in yeast, it has surprisingly minor effects on utilization of the CYC1 poly(A) site and transcription activation by a GAL upstream activation sequence. These observations indicate that the observed effects of SUHW on gene expression in Drosophila require specific interactions with other factors that are absent or unrecognizable in yeast.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/genética , Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Animales , Secuencia de Bases , Elementos Transponibles de ADN , Proteínas de Unión al ADN/genética , Proteínas de Drosophila , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Vectores Genéticos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Oligodesoxirribonucleótidos , Proteínas Represoras , Retroviridae/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcripción Genética , Dedos de Zinc/genética , Dedos de Zinc/fisiología
11.
Genetics ; 144(3): 1143-54, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8913756

RESUMEN

The mechanisms that allow enhancers to activate promoters from thousands of base pairs away are disrupted by the suppressor of Hairy-wing protein (SUHW) of Drosophila. SUHW binds a DNA sequence in the gypsy retrotransposon and prevents enhancers promoter-distal to a gypsy insertion in a gene from activating without affecting promoter-proximal enhancers. Several observations indicate that SUHW does not affect enhancer-binding activators. Instead, SUHW may interfere with factors that structurally facilitate interactions between an enhancer and promoter. To identify putative enhancer facilitators, a screen for mutations that reduce activity of the remote wing margin enhancer in the cut gene was performed. Mutations in scalloped, mastermind, and a previously unknown gene, Chip, were isolated. A TEA DNA-binding domain in the Scalloped protein binds the wing margin enhancer. Interactions between scalloped, mastermind and Chip mutations indicate that mastermind and Chip act synergistically with scalloped to regulate the wing margin enhancer. Chip is essential and also affects expression of a gypsy insertion in Ultrabithorax. Relative to mutations in scalloped or mastermind, a Chip mutation hypersensitizes the wing margin enhancer in cut to gypsy insertions. Therefore, Chip might encode a target of SUHW enhancer-blocking activity.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila , Drosophila/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Genes de Insecto , Proteínas Nucleares/genética , Animales , Femenino , Genes Dominantes , Genes Supresores , Proteínas de Homeodominio , Hormonas de Insectos/genética , Masculino , Mutagénesis Insercional , Fenotipo , Proteínas Represoras , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alas de Animales
12.
Genetics ; 148(4): 1865-74, 1998 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9560400

RESUMEN

The DNA-binding protein encoded by the zeste gene of Drosophila activates transcription and mediates interchromosomal interactions such as transvection. The mutant protein encoded by the zeste1 (z1) allele retains the ability to support transvection, but represses white. Similar to transvection, repression requires Zeste-Zeste protein interactions and a second copy of white, either on the homologous chromosome or adjacent on the same chromosome. We characterized two pseudorevertants of z1 (z1-35 and z1-42) and another zeste mutation (z78c) that represses white. The z1 lesion alters a lysine residue located between the N-terminal DNA-binding domain and the C-terminal hydrophobic repeats involved in Zeste self-interactions. The z78c mutation alters a histidine near the site of the z1 lesion. Both z1 pseudorevertants retain the z1 lesion and alter different prolines in a proline-rich region located between the z1 lesion and the self-interaction domain. The pseudorevertants retain the ability to self-interact, but fail to repress white or support transvection at Ultrabithorax. To account for these observations and evidence indicating that Zeste affects gene expression through Polycomb group (Pc-G) protein complexes that epigenetically maintain chromatin states, we suggest that the regions affected by the z1, z78c, and pseudorevertant lesions mediate interactions between Zeste and the maintenance complexes.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila , Drosophila melanogaster/fisiología , Proteínas del Ojo , Proteínas de Insectos/genética , Prolina , Factores de Transcripción , Alelos , Animales , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Drosophila melanogaster/genética , Femenino , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Masculino , Mutagénesis , Fenotipo
13.
Genetics ; 152(2): 577-93, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10353901

RESUMEN

How enhancers are able to activate promoters located several kilobases away is unknown. Activation by the wing margin enhancer in the cut gene, located 85 kb from the promoter, requires several genes that participate in the Notch receptor pathway in the wing margin, including scalloped, vestigial, mastermind, Chip, and the Nipped locus. Here we show that Nipped mutations disrupt one or more of four essential complementation groups: l(2)41Ae, l(2)41Af, Nipped-A, and Nipped-B. Heterozygous Nipped mutations modify Notch mutant phenotypes in the wing margin and other tissues, and magnify the effects that mutations in the cis regulatory region of cut have on cut expression. Nipped-A and l(2)41Af mutations further diminish activation by a wing margin enhancer partly impaired by a small deletion. In contrast, Nipped-B mutations do not diminish activation by the impaired enhancer, but increase the inhibitory effect of a gypsy transposon insertion between the enhancer and promoter. Nipped-B mutations also magnify the effect of a gypsy insertion in the Ultrabithorax gene. Gypsy binds the Suppressor of Hairy-wing insulator protein [Su(Hw)] that blocks enhancer-promoter communication. Increased insulation by Su(Hw) in Nipped-B mutants suggests that Nipped-B products structurally facilitate enhancer-promoter communication. Compatible with this idea, Nipped-B protein is homologous to a family of chromosomal adherins with broad roles in sister chromatid cohesion, chromosome condensation, and DNA repair.


Asunto(s)
Cadherinas/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila , Elementos de Facilitación Genéticos , Proteínas de Homeodominio/genética , Proteínas de Insectos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Factores de Transcripción , Animales , ADN Complementario/química , ADN Complementario/genética , Drosophila/embriología , Drosophila/genética , Eliminación de Gen , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto/genética , Genes Letales , Prueba de Complementación Genética , Heterocigoto , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Fenotipo , Receptores Notch , Retroelementos , Análisis de Secuencia de ADN , Alas de Animales/embriología , Alas de Animales/metabolismo
14.
Genetics ; 142(4): 1157-68, 1996 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8846895

RESUMEN

Viable mutant alleles of purple (pr), such as prbw, exhibit mutant eye colors. This reflects low 6-pyruvoyl tetrahydropterin (PTP) synthase activity required for pigment synthesis. PTP synthase is also required for synthesis of the enzyme cofactor biopterin; presumably this is why some pr alleles are lethal. The prbw eye color phenotype is suppressed by suppressor of sable [su(s)] mutations. The pr gene was cloned to explore the mechanism of this suppression. pr produces two PTP synthase mRNAs: one constitutively from a distal promoter and one in late pupae and young adult heads from a proximal promoter. The latter presumably supports eye pigment synthesis. The prbw allele has a 412 retrotransposon in an intron spliced from both mRNAs. However, the head-specific mRNA is reduced > 10-fold in prbw and is restored by a su(s) mutation, while the constitutive transcript is barely affected. The Su(s) protein probably alters processing of RNA containing 412. Because the intron containing 412 is the first in the head-specific mRNA and the second in the constitutive mRNA, binding of splicing machinery to nascent transcripts before the 412 insertion is transcribed may preclude the effects of Su(s) protein.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Drosophila/genética , Liasas de Fósforo-Oxígeno , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Paseo de Cromosoma , Cartilla de ADN , Color del Ojo/genética , Expresión Génica , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Supresión Genética
15.
AIDS Res Hum Retroviruses ; 7(1): 73-81, 1991 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-1707643

RESUMEN

Culture supernatants from the rabbit macrophage cell line 6083 infected with a retrovirus, human immunodeficiency virus type 1 (HIV-1), were negative for reverse transcriptase (RT) expression although the line was shown to be productively infected by all other criteria tested. Supernatants from uninfected cultures of 6083, the human monocyte line U937, and from freshly isolated peripheral human monocytes, were found to contain a monocyte-derived inhibitory factor (MDIF) which interferes with a standard assay for RT. MDIF is a heat-labile activity of approximately of 40 kD. Both substrates and products of the reverse transcriptase assay are degraded by MDIF which is not affected by reduction and alkylation of disulfide bonds. MDIF is inhibited by the addition of a particular thioated oligonucleotide (S-dG30) to the reaction mixture but this addition also inhibits RT. The optimum method to minimize MDIF interference in the RT assay is by addition of ethylene glycol bis-(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA); MDIF requires divalent cations for activity and has a strong preference for calcium which is preferentially chelated by EGTA. The potential presence of this inhibitory activity should be considered when using RT levels as a measure of retroviral infection.


Asunto(s)
Factores Biológicos/metabolismo , VIH-1/enzimología , Macrófagos/microbiología , Inhibidores de la Transcriptasa Inversa , Animales , Cationes , Línea Celular Transformada , Desoxirribonucleasas/metabolismo , VIH-1/fisiología , Humanos , Macrófagos/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Conejos , Replicación Viral
16.
J Periodontol ; 58(4): 231-5, 1987 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-3295181

RESUMEN

A group of 162 maintenance patients, previously studied for compliance to suggested maintenance schedules, were surveyed for tooth loss over a 5-year period. The group was divided into those who complied to suggested maintenance schedules and those whose compliance was erratic. It was found that none of the patients who had complied to suggested maintenance schedules lost any teeth. In the erratic group, where all tooth loss occurred, it was found that the more often a patient presented for maintenance, the less likely he was to lose teeth. These findings are discussed in relation to current studies on efficacy of various therapies for periodontal diseases.


Asunto(s)
Arcada Parcialmente Edéntula/etiología , Cooperación del Paciente , Periodontitis/prevención & control , Raspado Dental , Humanos , Periodontitis/complicaciones , Pronóstico , Raíz del Diente/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA