RESUMEN
To improve the sluggish kinetics of the hydrogen evolution reaction (HER), a key component in water-splitting applications, there is an urgent desire to develop efficient, cost-effective, and stable electrocatalysts. Strain engineering is proving an efficient strategy for increasing the catalytic activity of electrocatalysts. This work presents the development of Ru-Au bimetallic aerogels by a simple one-step in situ reduction-gelation approach, which exhibits strain effects and electron transfer to create a remarkable HER activity and stability in an alkaline environment. The surface strain induced by the bimetallic segregated structure shifts the d-band center downward, enhancing catalysis by balancing the processes of water dissociation, OH* adsorption, and H* adsorption. Specifically, the optimized catalyst shows low overpotentials of only 24.1 mV at a current density of 10 mA cm-2 in alkaline electrolytes, surpassing commercial Pt/C. This study can contribute to the understanding of strain engineering in bimetallic electrocatalysts for HER at the atomic scale.
RESUMEN
ConspectusMetal aerogels assembled from nanoparticles have captured grand attention because they combine the virtues of metals and aerogels and are regarded as ideal materials to address current environmental and energy issues. Among these aerogels, those composed of two metals not only display combinations (superpositions) of the properties of their individual metal components but also feature novel properties distinctly different from those of their monometallic relatives. Therefore, quite some effort has been invested in refining the synthetic methods, compositions, and structures of such bimetallic aerogels as to boost their performance for the envisaged application(s). One such use would be in the field of electrocatalysis, whereby it is also of utmost interest to unravel the element distributions of the (multi)metallic catalysts to achieve a ratio of their bottom-to-up design. Regarding the element distributions in bimetallic aerogels, advanced characterization techniques have identified alloys, core-shells, and structures in which the two metal particles are segregated (i.e., adjacent but without alloy or core-shell structure formation). While an almost infinite number of metal combinations to form bimetallic aerogels can be envisaged, the knowledge of their formation mechanisms and the corresponding element distributions is still in its infancy. The evolution of the observed musters is all but well understood, not to mention the positional changes of the elements observed in operando or in beginning- vs end-of-life comparisons (e.g., in fuel cell applications).With this motivation, in this Account we summarize the endeavors made in element distribution monitoring in bimetallic aerogels in terms of synthetic methods, expected structures, and their evolution during electrocatalysis. After an introductory chapter, we first describe briefly the two most important characterization techniques used for this, namely, scanning transmission electron microscopy (STEM) combined with element mapping (e.g., energy-dispersive X-ray spectroscopy (EDXS)) and X-ray absorption spectroscopy (XAS). We then explain the universal methods used to prepare bimetallic aerogels with different compositions. Those are divided into one-step methods in which gels formed from mixtures of the respective metal salts are coreduced and two-step approaches in which monometallic nanoparticles are mixed and gelated. Subsequently, we summarize the current state-of-knowledge on the element distributions unraveled using diverse characterization methods. This is extended to investigations of the element distributions being altered during electrochemical cycling or other loads. So far, a theoretical understanding of these processes is sparse, not to mention predictions of element distributions. The Account concludes with a series of remarks on current challenges in the field and an outlook on the gains that the field would earn from a solid understanding of the underlying processes and a predictive theoretical backing.
RESUMEN
Over the past decades, the electrochemical CO2-reduction reaction (CO2RR) has emerged as a promising option for facilitating intermittent energy storage while generating industrial raw materials of economic relevance such as CO. Recent studies have reported that Au-Cu bimetallic nanocatalysts feature a superior CO2-to-CO conversion as compared with the monometallic components, thus improving the noble metal utilization. Under this premise and with the added advantage of a suppressed H2-evolution reaction due to absence of a carbon support, herein, we employ bimetallic Au3Cu and AuCu aerogels (with a web thickness ≈7 nm) as CO2-reduction electrocatalysts in 0.5 M KHCO3 and compare their performance with that of a monometallic Au aerogel. We supplement this by investigating how the CO2RR-performance of these materials is affected by their surface composition, which we modified by systematically dissolving a part of their Cu-content using cyclic voltammetry (CV). To this end, the effect of this CV-driven composition change on the electrochemical surface area is quantified via Pb underpotential deposition, and the local structural and compositional changes are visually assessed by employing identical-location transmission electron microscopy and energy-dispersive X-ray analyses. When compared to the pristine aerogels, the CV-treated samples displayed superior CO Faradaic efficiencies (≈68 vs ≈92% for Au3Cu and ≈34 vs ≈87% for AuCu) and CO partial currents, with the AuCu aerogel outperforming the Au3Cu and Au counterparts in terms of Au-mass normalized CO currents among the CV-treated samples.
RESUMEN
Alkaline water electrolysis holds promise for large-scale hydrogen production, yet it encounters challenges like high voltage and limited stability at higher current densities, primarily due to inefficient electron transport kinetics. Herein, a novel cobalt-based metallic heterostructure (Co3Mo3N/Co4N/Co) is designed for excellent water electrolysis. In operando Raman experiments reveal that the formation of the Co3Mo3N/Co4N heterointerface boosts the free water adsorption and dissociation, increasing the available protons for subsequent hydrogen production. Furthermore, the altered electronic structure of the Co3Mo3N/Co4N heterointerface optimizes ΔGH of the nitrogen atoms at the interface. This synergistic effect between interfacial nitrogen atoms and metal phase cobalt creates highly efficient active sites for the hydrogen evolution reaction (HER), thereby enhancing the overall HER performance. Additionally, the heterostructure exhibits a rapid OH- adsorption rate, coupled with great adsorption strength, leading to improved oxygen evolution reaction (OER) performance. Crucially, the metallic heterojunction accelerates electron transport, expediting the afore-mentioned reaction steps and enhancing water splitting efficiency. The Co3Mo3N/Co4N/Co electrocatalyst in the water electrolyzer delivers excellent performance, with a low 1.58â V cell voltage at 10â mA cm-2, and maintains 100 % retention over 100â hours at 200â mA cm-2, surpassing the Pt/C||RuO2 electrolyzer.
RESUMEN
Electrochemical upgrading of ethanol to acetic acid provides a promising strategy to couple with the current hydrogen production from water electrolysis. This work reports the design of a series of bimetallic PtHg aerogels, where the PtHg aerogel exhibits a 10.5-times higher mass activity than that of commercial Pt/C toward ethanol oxidation. More impressively, the PtHg aerogel demonstrates nearly 100% selectivity toward the production of acetic acid. The operando infrared spectroscopic studies and nuclear magnetic resonance analysis verify the preferable C2 pathway mechanism during the reaction. This work opens an avenue for the electrochemical synthesis of acetic acid via ethanol electrolysis.
RESUMEN
In recent years, operando/in situ X-ray absorption spectroscopy (XAS) has become an important tool in the electrocatalysis community. However, the high catalyst loadings often required to acquire XA-spectra with a satisfactory signal-to-noise ratio frequently imply the use of thick catalyst layers (CLs) with large ion- and mass-transport limitations. To shed light on the impact of this variable on the spectro-electrochemical results, in this study we investigate Pd-hydride formation in carbon-supported Pd-nanoparticles (Pd/C) and an unsupported Pd-aerogel with similar Pd surface areas but drastically different morphologies and electrode packing densities. Our in situ XAS and rotating disk electrode (RDE) measurements with different loadings unveil that the CL-thickness largely determines the hydride formation trends inferred from spectro-electrochemical experiments, therewith calling for the minimization of the CL-thickness in such experiments and the use of complementary thin-film control measurements.
RESUMEN
Electrochemiluminescence (ECL) represents a widely explored technique to generate light, in which the emission intensity relies critically on the charge-transfer reactions between electrogenerated radicals. Two types of charge-transfer mechanisms have been postulated for ECL generation, but the manipulation and effective probing of these routes remain a fundamental challenge. Here, we demonstrate the design of quantum dot (QD) aerogels as novel ECL luminophores via a versatile water-induced gelation strategy. The strong electronic coupling between adjacent QDs enables efficient charge transport within the aerogel network, leading to the generation of highly efficient ECL based on the selectively improved interparticle charge-transfer route. This mechanism is further verified by designing CdSe-CdTe mixed QD aerogels, where the two mechanistic routes are clearly decoupled for ECL generation. We anticipate our work will advance the fundamental understanding of ECL and prove useful for designing next-generation QD-based devices.
RESUMEN
DNA nanostructures provide a powerful platform for the programmable assembly of nanomaterials. Here this approach is extended to synthesize rod-like gold nanoparticles in a full DNA controlled manner. The approach is based on DNA molds containing elongated cavities. Gold is deposited inside the molds using a seeded-growth procedure. By carefully exploring the growth parameters it is shown that gold nanostructures with aspect ratios of up to 7 can be grown from single seeds. The highly anisotropic growth is in this case controlled only by the rather soft and porous DNA walls. The optimized seeded growth procedure provides a robust and simple routine to achieve continuous gold nanostructures using DNA templating.
Asunto(s)
Oro , Nanopartículas del Metal , Anisotropía , ADN/química , Oro/química , Nanopartículas del Metal/químicaRESUMEN
As there is a great demand of 2D metal networks, especially out of gold for a plethora of applications we show a universal synthetic method via phase boundary gelation which allows the fabrication of networks displaying areas of up to 2â cm2 . They are transferred to many different substrates: glass, glassy carbon, silicon, or polymers such as PDMS. In addition to the standardly used web thickness, the networks are parametrized by their fractal dimension. By variation of experimental conditions, we produced web thicknesses between 4.1â nm and 14.7â nm and fractal dimensions in the span of 1.56 to 1.76 which allows to tailor the structures to fit for various applications. Furthermore, the morphology can be tailored by stacking sheets of the networks. For each different metal network, we determined its optical transmission and sheet resistance. The obtained values of up to 97 % transparency and sheet resistances as low as 55.9â Ω/sq highlight the great potential of the obtained materials.
RESUMEN
Solar radiation is a versatile source of energy, convertible to different forms of power. A direct path to exploit it is the generation of heat, for applications including passive building heating, but it can also drive secondary energy-conversion steps. We present a novel concept for a hybrid material which is both strongly photo-absorbing and with superior characteristics for the insulation of heat. The combination of that two properties is rather unique, and make this material an optical superheater. To realize such a material, we are combining plasmonic nanoheaters with alumina aerogel. The aerogel has the double function of providing structural support for plasmonic nanocrystals, which serve as nanoheaters, and reducing the diffusion rate of the heat generated by them, resulting in large local temperature increases under a relatively low radiation intensity. This work includes theoretical discussion on the physical mechanisms impacting the system's balanced thermal equilibrium.
RESUMEN
Noble-metal aerogels (NMAs) have drawn increasing attention because of their self-supported conductive networks, high surface areas, and numerous optically/catalytically active sites, enabling their impressive performance in diverse fields. However, the fabrication methods suffer from tedious procedures, long preparation times, unavoidable impurities, and uncontrolled multiscale structures, discouraging their developments. By utilizing the self-healing properties of noble-metal aggregates, the freezing-promoted salting-out behavior, and the ice-templating effect, a freeze-thaw method is crafted that is capable of preparing various hierarchically structured noble-metal gels within one day without extra additives. In light of their cleanliness, the multi-scale structures, and combined catalytic/optical properties, the electrocatalytic and photoelectrocatalytic performance of NMAs are demonstrated, which surpasses that of commercial noble-metal catalysts.
RESUMEN
Noble metal aerogels (NMAs) are an emerging class of porous materials. Embracing nano-sized highly-active noble metals and porous structures, they display unprecedented performance in diverse electrocatalytic processes. However, various impurities, particularly organic ligands, are often involved in the synthesis and remain in the corresponding products, hindering the investigation of the intrinsic electrocatalytic properties of NMAs. Here, starting from laser-generated inorganic-salt-stabilized metal nanoparticles, various impurity-free NMAs (Au, Pd, and Au-Pd aerogels) were fabricated. In this light, we demonstrate not only the intrinsic electrocatalytic properties of NMAs, but also the prominent roles played by ligands in tuning electrocatalysis through modulating the electron density of catalysts. These findings may offer a new dimension to engineer and optimize the electrocatalytic performance for various NMAs and beyond.
RESUMEN
Tuning the surface structure at the atomic level is of primary importance to simultaneously meet the electrocatalytic performance and stability criteria required for the development of low-temperature proton-exchange membrane fuel cells (PEMFCs). However, transposing the knowledge acquired on extended, model surfaces to practical nanomaterials remains highly challenging. Here, we propose 'surface distortion' as a novel structural descriptor, which is able to reconciliate and unify seemingly opposing notions and contradictory experimental observations in regards to the electrocatalytic oxygen reduction reaction (ORR) reactivity. Beyond its unifying character, we show that surface distortion is pivotal to rationalize the electrocatalytic properties of state-of-the-art of PtNi/C nanocatalysts with distinct atomic composition, size, shape and degree of surface defectiveness under a simulated PEMFC cathode environment. Our study brings fundamental and practical insights into the role of surface defects in electrocatalysis and highlights strategies to design more durable ORR nanocatalysts.
RESUMEN
DNA nanostructures provide a powerful platform for the programmable assembly of nanomaterials. Here, this approach is extended to semiconductor nanorods that possess interesting electrical properties and could be utilized for the bottom-up fabrication of nanoelectronic building blocks. The assembly scheme is based on an efficient DNA functionalization of the nanorods. A complete coverage of the rod surface with DNA ensures a high colloidal stability while maintaining the rod size and shape. It furthermore supports the assembly of the nanorods at defined docking positions of a DNA origami platform with binding efficiencies of up to 90 % as well as the formation of nanorod dimers with defined relative orientations. By incorporating orthogonal binding sites for gold nanoparticles, defined metal-semiconductor heterostructures can be fabricated. Subsequent application of a seeded growth procedure onto the gold nanoparticles (AuNPs) allows for to establish a direct metal-semiconductor interface as a crucial basis for the integration of semiconductors in self-assembled nanoelectronic devices.
RESUMEN
We simulated irreversible aggregation of non-interacting particles and of particles interacting via repulsive and attractive potentials explicitly implementing the rotational diffusion of aggregating clusters. Our study confirms that the attraction between particles influences neither the aggregation mechanism nor the structure of the aggregates, which are identical to those of non-interacting particles. In contrast, repulsive particles form more compact aggregates and their fractal dimension and aggregation times increase with the decrease of the temperature. A comparison of the fractal dimensions obtained for non-rotating clusters of non-interacting particles and for rotating clusters of repulsive particles provides an explanation for the conformity of the respective values obtained earlier in the well established model of diffusion-limited cluster aggregation neglecting rotational diffusion and in experiments on colloidal particles.
RESUMEN
We investigate the influence of the average molar mass (Mw) of the capping agent poly(N-vinylpyrrolidone) (PVP) on the conductivity of a silver nanowire (AgNW) network. During the polyol process, the chain length of PVP is known to influence the AgNW diameters and lengths. By altering the reaction temperature and time and using PVP of different chain lengths, we synthesized AgNWs with varying diameters, lengths and PVP coverage. The obtained plethora of AgNWs is the basis for conductivity investigations of networks made of AgNWs with a diameter of either 60 nm or 80 nm. The results show a negative influence of long-chain PVP on the conductivity of the subsequent network if 60 nm thick AgNWs are employed. Overall, we obtain well performing AgNW transparent electrodes on glass with RS = 24.4 Ω sq-1 at 85.5%T550nm.
RESUMEN
Electrochemistry is a highly versatile part of chemical research which is involved in many of the processes in the field of micromotion. Its input has been crucial from the synthesis of microstructures to the explanation of phoretic mechanisms. However, using electrochemical effects to propel artificial micromotors is still to be achieved. Here, we show that the forces generated by electrochemical reactions can not only create active motion, but they are also strong enough to overcome the adhesion to the substrate, caused by the increased ionic strength of the solutions containing the ions of more noble metals themselves. The galvanic replacement of copper by platinum ions is a spontaneous process, which not only provides a sufficiently strong electromotive force to propel the Janus structures but also results in asymmetric Pt-hatted structures, which can be further used as catalytic micromotors.
RESUMEN
A general synthesis approach of aqueous glutathione-capped ternary Ag-In-S, Cu-In-S, and Hg-In-S nanocrystals (NCs) is introduced, allowing the NC composition to be varied in a broad range. Ternary Hg-In-S (HIS) NCs are reported for the first time and found to have the same tetragonal chalcopyrite motif as Cu-In-S and Ag-In-S NCs, corroborated by phonon spectra, while X-ray photoelectron spectroscopic data indicate mercury to be present as Hg+ in the Hg-In-S NCs. Colloidal HIS and Hg-In-S/ZnS NCs showed little or no variations of the spectral width of the photoluminescence band upon NC size selection, temperature variation in a broad range of 10-350 K, deposition of a ZnS shell, or postsynthesis annealing. All these observations are similar to those reported earlier for Ag-In-S and Ag-In-S/ZnS NCs and allowed us to assume a general photoluminescence mechanism for all three ternary compounds, based on the model of radiative self-trapped exciton recombination.
RESUMEN
The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pdx Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pdx Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25â A mgPt-1 and 2.53â mA cm-2 , which are 18.7 and 4.1â times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts.
RESUMEN
Essentially, the term aerogel describes a special geometric structure of matter. It is neither limited to any material nor to any synthesis procedure. Hence, the possible variety of materials and therefore the multitude of their applications are almost unbounded. In fact, the same applies for nanoparticles. These are also just defined by their geometrical properties. In the past few decades nano-sized materials have been intensively studied and possible applications appeared in nearly all areas of natural sciences. To date a large variety of metal, semiconductor, oxide, and other nanoparticles are available from colloidal synthesis. However, for many applications of these materials an assembly into macroscopic structures is needed. Here we present a comprehensive picture of the developments that enabled the fusion of the colloidal nanoparticle and the aerogel world. This became possible by the controlled destabilization of pre-formed nanoparticles, which leads to their assembly into three-dimensional macroscopic networks. This revolutionary approach makes it possible to use precisely controlled nanoparticles as building blocks for macroscopic porous structures with programmable properties.