Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 155(3): 621-35, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243019

RESUMEN

Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine, with poorly understood mechanisms. Here, we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an "on-target" pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead, Ascl1 recruits Brn2 to Ascl1 sites genome wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, a precise match between pioneer factors and the chromatin context at key target genes is determinative for transdifferentiation to neurons and likely other cell types.


Asunto(s)
Reprogramación Celular , Embrión de Mamíferos/citología , Fibroblastos/citología , Redes Reguladoras de Genes , Neuronas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Fibroblastos/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factores del Dominio POU/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
3.
Liver Int ; 43(3): 673-683, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36367321

RESUMEN

Patients with cirrhosis exhibit features of circadian disruption. Hyperammonaemia has been suggested to impair both homeostatic and circadian sleep regulation. Here, we tested if hyperammonaemia directly disrupts circadian rhythm generation in the central pacemaker, the suprachiasmatic nuclei (SCN) of the hypothalamus. Wheel-running activity was recorded from mice fed with a hyperammonaemic or normal diet for ~35 days in a 12:12 light-dark (LD) cycle followed by ~15 days in constant darkness (DD). The expression of the clock protein PERIOD2 (PER2) was recorded from SCN explants before, during and after ammonia exposure, ±glutamate receptor antagonists. In LD, hyperammonaemic mice advanced their daily activity onset time by ~1 h (16.8 ± 0.3 vs. 18.1 ± 0.04 h, p = .009) and decreased their total activity, concentrating it during the first half of the night. In DD, hyperammonaemia reduced the amplitude of daily activity (551.5 ± 27.7 vs. 724.9 ± 59 counts, p = .007), with no changes in circadian period. Ammonia (≥0.01 mM) rapidly and significantly reduced PER2 amplitude, and slightly increased circadian period. The decrease in PER2 amplitude correlated with decreased synchrony among circadian cells in the SCN and increased extracellular glutamate, which was rescued by AMPA glutamate receptor antagonists. These data suggest that hyperammonaemia affects circadian regulation of rest-activity behaviour by increasing extracellular glutamate in the SCN.


Asunto(s)
Ácido Glutámico , Hiperamonemia , Ratones , Animales , Amoníaco , Antagonistas de Aminoácidos Excitadores , Ritmo Circadiano/fisiología
4.
Nature ; 544(7649): 245-249, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28379941

RESUMEN

Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar 'many-but-one' lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.


Asunto(s)
Linaje de la Célula/genética , Reprogramación Celular/genética , Silenciador del Gen , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/deficiencia , Especificidad de Órganos/genética , Dominios Proteicos , Receptores Notch/deficiencia , Proteínas Represoras/química , Proteínas Represoras/deficiencia , Transducción de Señal , Factor de Transcripción HES-1/deficiencia , Factores de Transcripción/deficiencia
5.
J Virol ; 95(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328313

RESUMEN

Infectious bursal disease virus (IBDV), the best characterized member of the Birnaviridae family, is a highly relevant avian pathogen causing both acute and persistent infections in different avian hosts. Here, we describe the establishment of clonal, long-term, productive persistent IBDV infections in DF-1 chicken embryonic fibroblasts. Although virus yields in persistently-infected cells are exceedingly lower than those detected in acutely infected cells, the replication fitness of viruses isolated from persistently-infected cells is higher than that of the parental virus. Persistently-infected DF-1 and IBDV-cured cell lines derived from them do not respond to type I interferon (IFN). High-throughput genome sequencing revealed that this defect is due to mutations affecting the IFNα/ß receptor subunit 2 (IFNAR2) gene resulting in the expression of IFNAR2 polypeptides harbouring large C-terminal deletions that abolish the signalling capacity of IFNα/ß receptor complex. Ectopic expression of a recombinant chicken IFNAR2 gene efficiently rescues IFNα responsiveness. IBDV-cured cell lines derived from persistently infected cells exhibit a drastically enhanced susceptibility to establishing new persistent IBDV infections. Additionally, experiments carried out with human HeLa cells lacking the IFNAR2 gene fully recapitulate results obtained with DF-1 cells, exhibiting a highly enhanced capacity to both survive the acute IBDV infection phase and to support the establishment of persistent IBDV infections. Results presented here show that the inactivation of the JAK-STAT signalling pathway significantly reduces the apoptotic response induced by the infection, hence facilitating the establishment and maintenance of IBDV persistent infections.IMPORTANCE Members of the Birnaviridae family, including infectious bursal disease virus (IBDV), exhibit a dual behaviour, causing acute infections that are often followed by the establishment of life-long persistent asymptomatic infections. Indeed, persistently infected specimens might act as efficient virus reservoirs, hence potentially contributing to virus dissemination. Despite the key importance of this biological trait, information about mechanisms triggering IBDV persistency is negligible. Our report evidences the capacity of IBDV, a highly relevant avian pathogen, to establishing long-term, productive, persistent infections in both avian and human cell lines. Data presented here provide novel and direct evidence about the crucial role of type I IFNs on the fate of IBDV-infected cells and their contribution to controlling the establishment of IBDV persistent infections. The use of cell lines unable to respond to type I IFNs opens a promising venue to unveiling additional factors contributing to IBDV persistency.

6.
J Virol ; 95(17): e0186820, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34132574

RESUMEN

Pathogenic clade B New World mammarenaviruses (NWM) can cause Argentine, Venezuelan, Brazilian, and Bolivian hemorrhagic fevers. Sequence variability among NWM glycoproteins (GP) poses a challenge to the development of broadly neutralizing therapeutics against the entire clade of viruses. However, blockade of their shared binding site on the apical domain of human transferrin receptor 1 (hTfR1/CD71) presents an opportunity for the development of effective and broadly neutralizing therapeutics. Here, we demonstrate that the murine monoclonal antibody OKT9, which targets the apical domain of hTfR1, can sterically block cellular entry by viral particles presenting clade B NWM glycoproteins (GP1-GP2). OKT9 blockade is also effective against viral particles pseudotyped with glycoproteins of a recently identified pathogenic Sabia-like virus. With nanomolar affinity for hTfR1, the OKT9 antigen binding fragment (OKT9-Fab) sterically blocks clade B NWM-GP1s and reduces infectivity of an attenuated strain of Junin virus. Binding of OKT9 to the hTfR1 ectodomain in its soluble, dimeric state produces stable assemblies that are observable by negative-stain electron microscopy. A model of the OKT9-sTfR1 complex, informed by the known crystallographic structure of sTfR1 and a newly determined structure of the OKT9 antigen binding fragment (Fab), suggests that OKT9 and the Machupo virus GP1 share a binding site on the hTfR1 apical domain. The structural basis for this interaction presents a framework for the design and development of high-affinity, broadly acting agents targeting clade B NWMs. IMPORTANCE Pathogenic clade B NWMs cause grave infectious diseases, the South American hemorrhagic fevers. Their etiological agents are Junin (JUNV), Guanarito (GTOV), Sabiá (SABV), Machupo (MACV), Chapare (CHAV), and a new Sabiá-like (SABV-L) virus recently identified in Brazil. These are priority A pathogens due to their high infectivity and mortality, their potential for person-to-person transmission, and the limited availability of effective therapeutics and vaccines to curb their effects. While low homology between surface glycoproteins of NWMs foils efforts to develop broadly neutralizing therapies targeting NWMs, this work provides structural evidence that OKT9, a monoclonal antibody targeting a single NWM glycoprotein binding site on hTfR1, can efficiently prevent their entry into cells.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Arenavirus del Nuevo Mundo/fisiología , Glicoproteínas/inmunología , Fiebre Hemorrágica Americana/prevención & control , Receptores de Transferrina/inmunología , Células A549 , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Humanos , Estructura Terciaria de Proteína , Receptores de Transferrina/química , Receptores de Transferrina/genética
7.
Proc Natl Acad Sci U S A ; 115(37): 9300-9305, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150403

RESUMEN

Extracting complex interactions (i.e., dynamic topologies) has been an essential, but difficult, step toward understanding large, complex, and diverse systems including biological, financial, and electrical networks. However, reliable and efficient methods for the recovery or estimation of network topology remain a challenge due to the tremendous scale of emerging systems (e.g., brain and social networks) and the inherent nonlinearity within and between individual units. We develop a unified, data-driven approach to efficiently infer connections of networks (ICON). We apply ICON to determine topology of networks of oscillators with different periodicities, degree nodes, coupling functions, and time scales, arising in silico, and in electrochemistry, neuronal networks, and groups of mice. This method enables the formulation of these large-scale, nonlinear estimation problems as a linear inverse problem that can be solved using parallel computing. Working with data from networks, ICON is robust and versatile enough to reliably reveal full and partial resonance among fast chemical oscillators, coherent circadian rhythms among hundreds of cells, and functional connectivity mediating social synchronization of circadian rhythmicity among mice over weeks.


Asunto(s)
Modelos Teóricos
8.
Sensors (Basel) ; 21(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34577208

RESUMEN

Currently, solutions based on the Internet of Things (IoT) concept are increasingly being adopted in several fields, namely, industry, agriculture, and home automation. The costs associated with this type of equipment is reasonably small, as IoT devices usually do not have output peripherals to display information about their status (e.g., a screen or a printer), although they may have informative LEDs, which is sometimes insufficient. For most IoT devices, the price of a minimalist display, to output and display the device's running status (i.e., what the device is doing), might cost much more than the actual IoT device. Occasionally, it might become necessary to visualize the IoT device output, making it necessary to find solutions to show the hardware output information in real time, without requiring extra equipment, only what the administrator usually has with them. In order to solve the above, a technological solution that allows for the visualization of IoT device information in actual time, using augmented reality and a simple smartphone, was developed and analyzed. In addition, the system created integrates a security layer, at the level of AR, to secure the shown data from unwanted eyes. The results of the tests carried out allowed us to validate the operation of the solution when accessing the information of the IoT devices, verify the operation of the security layer in AR, analyze the interaction between smartphones, the platform, and the devices, and check which AR markers are most optimized for this use case. This work results in a secure augmented reality solution, which can be used with a simple smartphone, to monitor/manage IoT devices in industrial, laboratory or research environments.


Asunto(s)
Realidad Aumentada , Internet de las Cosas , Seguridad Computacional , Confidencialidad , Atención a la Salud
9.
Sensors (Basel) ; 21(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34577256

RESUMEN

The Portuguese population is aging at an increasing rate, which introduces new problems, particularly in rural areas, where the population is small and widely spread throughout the territory. These people, mostly elderly, have low income and are often isolated and socially excluded. This work researches and proposes an affordable Ambient Assisted Living (AAL)-based solution to monitor the activities of elderly individuals, inside their homes, in a pervasive and non-intrusive way, while preserving their privacy. The solution uses a set of low-cost IoT sensor devices, computer vision algorithms and reasoning rules, to acquire data and recognize the activities performed by a subject inside a home. A conceptual architecture and a functional prototype were developed, the prototype being successfully tested in an environment similar to a real case scenario. The system and the underlying concept can be used as a building block for remote and distributed elderly care services, in which the elderly live autonomously in their homes, but have the attention of a caregiver when needed.


Asunto(s)
Envejecimiento , Computadores , Anciano , Humanos , Procesamiento de Imagen Asistido por Computador , Monitoreo Fisiológico , Privacidad
10.
Nature ; 514(7521): 228-32, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25119037

RESUMEN

CHARGE syndrome is a multiple anomaly disorder in which patients present with a variety of phenotypes, including ocular coloboma, heart defects, choanal atresia, retarded growth and development, genitourinary hypoplasia and ear abnormalities. Despite 70-90% of CHARGE syndrome cases resulting from mutations in the gene CHD7, which encodes an ATP-dependent chromatin remodeller, the pathways underlying the diverse phenotypes remain poorly understood. Surprisingly, our studies of a knock-in mutant mouse strain that expresses a stabilized and transcriptionally dead variant of the tumour-suppressor protein p53 (p53(25,26,53,54)), along with a wild-type allele of p53 (also known as Trp53), revealed late-gestational embryonic lethality associated with a host of phenotypes that are characteristic of CHARGE syndrome, including coloboma, inner and outer ear malformations, heart outflow tract defects and craniofacial defects. We found that the p53(25,26,53,54) mutant protein stabilized and hyperactivated wild-type p53, which then inappropriately induced its target genes and triggered cell-cycle arrest or apoptosis during development. Importantly, these phenotypes were only observed with a wild-type p53 allele, as p53(25,26,53,54)(/-) embryos were fully viable. Furthermore, we found that CHD7 can bind to the p53 promoter, thereby negatively regulating p53 expression, and that CHD7 loss in mouse neural crest cells or samples from patients with CHARGE syndrome results in p53 activation. Strikingly, we found that p53 heterozygosity partially rescued the phenotypes in Chd7-null mouse embryos, demonstrating that p53 contributes to the phenotypes that result from CHD7 loss. Thus, inappropriate p53 activation during development can promote CHARGE phenotypes, supporting the idea that p53 has a critical role in developmental syndromes and providing important insight into the mechanisms underlying CHARGE syndrome.


Asunto(s)
Anomalías Múltiples/metabolismo , Síndrome CHARGE/genética , Síndrome CHARGE/metabolismo , Fenotipo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Anomalías Múltiples/genética , Alelos , Animales , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Oído/anomalías , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos , Eliminación de Gen , Heterocigoto , Humanos , Masculino , Ratones , Proteínas Mutantes/metabolismo , Regiones Promotoras Genéticas/genética
11.
Proc Natl Acad Sci U S A ; 113(16): 4512-7, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27044085

RESUMEN

In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.


Asunto(s)
Relojes Circadianos/fisiología , Red Nerviosa/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Genes Reporteros , Ratones Transgénicos , Red Nerviosa/citología , Núcleo Supraquiasmático/citología
13.
Neural Plast ; 2018: 5257285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755512

RESUMEN

Alzheimer's disease (AD) is the most common type of dementia, mainly encompassing cognitive decline in subjects aged ≥65 years. Further, AD is characterized by selective synaptic and neuronal degeneration, vascular dysfunction, and two histopathological features: extracellular amyloid plaques composed of amyloid beta peptide (Aß) and neurofibrillary tangles formed by hyperphosphorylated tau protein. Dementia and AD are chronic neurodegenerative conditions with a complex physiopathology involving both genetic and environmental factors. Recent clinical studies have shown that proton pump inhibitors (PPIs) are associated with risk of dementia, including AD. However, a recent case-control study reported decreased risk of dementia. PPIs are a widely indicated class of drugs for gastric acid-related disorders, although most older adult users are not treated for the correct indication. Although neurological side effects secondary to PPIs are rare, several preclinical reports indicate that PPIs might increase Aß levels, interact with tau protein, and affect the neuronal microenvironment through several mechanisms. Considering the controversy between PPI use and dementia risk, as well as both cognitive and neuroprotective effects, the aim of this review is to examine the relationship between PPI use and brain effects from a neurobiological and clinical perspective.


Asunto(s)
Demencia/inducido químicamente , Demencia/metabolismo , Inhibidores de la Bomba de Protones/metabolismo , Inhibidores de la Bomba de Protones/uso terapéutico , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Estudios de Casos y Controles , Demencia/tratamiento farmacológico , Humanos , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/metabolismo , Placa Amiloide/inducido químicamente , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/metabolismo , Inhibidores de la Bomba de Protones/efectos adversos , Proteínas tau/metabolismo
14.
J Sex Med ; 14(3): 347-354, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28117268

RESUMEN

INTRODUCTION: Despite the serious behavioral consequences faced by individuals with sexual compulsivity, related neuropsychological studies are sparse. AIM: To compare decision making and cognitive flexibility at baseline and after exposure to an erotic video in sexually compulsive participants and non-sexually compulsive controls. METHODS: The sample consisted of 30 sexually compulsive men and 30 controls. Cognitive flexibility was investigated through the Wisconsin Card Sorting Test and decision making was examined through the Iowa Gambling Task. MAIN OUTCOME MEASURES: Wisconsin Card Sorting Test categories, correct responses, and perseverative errors and Iowa Gambling Task general trends and blocks. RESULTS: Sexually compulsive subjects and controls performed similarly at baseline. After watching an erotic video, controls performed better in block 1 of the Iowa Gambling Task (P = .01) and had more correct responses on the Wisconsin Card Sorting Test (P = .01). CONCLUSIONS: The controls presented fewer impulsive initial choices and better cognitive flexibility after exposure to erotic stimuli. Messina B, Fuentes D, Tavares H, et al. Executive Functioning of Sexually Compulsive and Non-Sexually Compulsive Men Before and After Watching an Erotic Video. J Sex Med 2017;14:347-354.


Asunto(s)
Conducta Compulsiva/psicología , Literatura Erótica/psicología , Función Ejecutiva , Juego de Azar/psicología , Adulto , Humanos , Control Interno-Externo , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Autoimagen , Disfunciones Sexuales Psicológicas/psicología , Adulto Joven
15.
Nature ; 476(7359): 220-3, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21617644

RESUMEN

Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix-loop-helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Corteza Cerebral/citología , Técnicas de Cocultivo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Conductividad Eléctrica , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Potenciales de la Membrana , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Medicina Regenerativa , Sinapsis/metabolismo , Factores de Transcripción/genética , Transgenes
16.
Dement Geriatr Cogn Disord ; 41(3-4): 123-36, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26891227

RESUMEN

BACKGROUND: There is a proven link between Down syndrome and the early development of the neuropathological features of Alzheimer's disease (AD). Changes in the personality and behavior of adults with Down syndrome might indicate the early stages of dementia or of frontotemporal lobar degeneration. The objective of this study was to investigate the executive functions and changes in behavior associated with frontal lobe degeneration in individuals with Down syndrome who develop AD. We conducted a systematic review selecting studies employing cognitive assessments. SUMMARY: We identified few studies using objective measurements to determine whether cognitive aspects associated with the frontal lobe correlate with dementia in this population. We observed a tendency toward such correlations. KEY MESSAGES: There is a need for further studies in which objective measures of cognitive and behavioral factors are evaluated together with data related to brain function and morphology.


Asunto(s)
Enfermedad de Alzheimer/patología , Síndrome de Down/patología , Lóbulo Frontal/fisiopatología , Adulto , Anciano , Enfermedad de Alzheimer/fisiopatología , Síndrome de Down/fisiopatología , Síndrome de Down/psicología , Función Ejecutiva , Femenino , Lóbulo Frontal/patología , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas
17.
Proc Natl Acad Sci U S A ; 110(46): E4355-61, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24167276

RESUMEN

Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or "phase tumbling", could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Modelos Biológicos , Transducción de Señal/fisiología , Núcleo Supraquiasmático/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Animales , Relojes Biológicos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Mediciones Luminiscentes , Masculino , Ratones , Actividad Motora/fisiología , Proteínas Circadianas Period/metabolismo , Fotoperiodo , Temperatura , Péptido Intestinal Vasoactivo/farmacología
18.
J Neurosci ; 34(17): 6040-6, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760863

RESUMEN

Accumulating evidence suggests that the olfactory bulbs (OBs) function as an independent circadian system regulating daily rhythms in olfactory performance. However, the cells and signals in the olfactory system that generate and coordinate these circadian rhythms are unknown. Using real-time imaging of gene expression, we found that the isolated olfactory epithelium and OB, but not the piriform cortex, express similar, sustained circadian rhythms in PERIOD2 (PER2). In vivo, PER2 expression in the OB of mice is circadian, approximately doubling with a peak around subjective dusk. Furthermore, mice exhibit circadian rhythms in odor detection performance with a peak at approximately subjective dusk. We also found that circadian rhythms in gene expression and odor detection performance require vasoactive intestinal polypeptide (VIP) or its receptor VPAC2R. VIP is expressed, in a circadian manner, in interneurons in the external plexiform and periglomerular layers, whereas VPAC2R is expressed in mitral and external tufted cells in the OB. Together, these results indicate that VIP signaling modulates the output from the OB to maintain circadian rhythms in the mammalian olfactory system.


Asunto(s)
Ritmo Circadiano/fisiología , Bulbo Olfatorio/metabolismo , Vías Olfatorias/metabolismo , Olfato/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Animales , Corteza Cerebral/metabolismo , Masculino , Ratones , Actividad Motora/fisiología , Mucosa Olfatoria/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo
19.
Eur J Neurosci ; 42(10): 2833-42, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26417679

RESUMEN

The suprachiasmatic nucleus (SCN) in mammals is the master clock which regulates circadian rhythms. Neural activity of SCN neurons is synchronized to external light through the retinohypothalamic tract (RHT). The paraventricular thalamic nucleus (PVT) is a neural structure that receives synaptic inputs from, and projects back to, the SCN. Lesioning the anterior PVT (aPVT) modifies the behavioral phase response curve induced by short pulses of bright light. In order to study the influence of the aPVT on SCN neural activity, we addressed whether the stimulation of the aPVT can modulate the electrical response of the SCN to either retinal or RHT stimulation. Using in vitro and in vivo recordings, we found a large population of SCN neurons responsive to the stimulation of either aPVT or RHT pathways. Furthermore, we found that simultaneous stimulation of the aPVT and the RHT increased neuronal responsiveness and spontaneous firing rate (SFR) in neurons with a low basal SFR (which also have more negative membrane potentials), such as quiescent and arrhythmic neurons, but no change was observed in neurons with rhythmic firing patterns and more depolarized membrane potentials. These results suggest that inputs from the aPVT could shift the membrane potential of an SCN neuron to values closer to its firing threshold and thus contribute to integration of the response of the circadian clock to light.


Asunto(s)
Núcleos Talámicos de la Línea Media/fisiología , Neuronas/fisiología , Retina/fisiología , Núcleo Supraquiasmático/fisiología , Potenciales de Acción , Animales , Estimulación Eléctrica , Masculino , Ratas , Ratas Wistar , Vías Visuales/fisiología
20.
J Geriatr Psychiatry Neurol ; 28(1): 49-56, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25009159

RESUMEN

BACKGROUND: Depression and anxiety are comorbidities often associated with Parkinson disease (PD). Recent studies debate on how affective disorders can influence the cognition of patients with PD. This study sought to investigate how depression and anxiety affect specific executive functions and impulsivity traits in these patients. METHODS: Twenty-eight patients with advanced PD and 28 closely matched healthy volunteers (HV) were assessed for depressive and anxiety symptoms, impulsivity, executive function and control attention and behavioral response. RESULTS: Compared to the HV group, the PD group showed significantly higher perseverative responses and slowness to adapt to changes in environmental stimuli and longer reaction time for inter-stimulus interval change. Depression symptoms were significantly correlated to motor impulsivity score and total Barratt Impulsiveness Scale (BIS -11) score. Moreover, there was also significant correlation between anxiety symptoms and attentional impulsivity score and total BIS-11 score. Correlation analysis between impulsivity and control attention indicated a positive correlation in commission and a negative correlation in reaction time and detectability in the PD group. CONCLUSIONS: The present results suggest that depression and anxiety were highly correlated to impulsivity but not to executive functions changes in these PD patients.


Asunto(s)
Depresión/psicología , Función Ejecutiva/fisiología , Conducta Impulsiva/fisiología , Enfermedad de Parkinson/psicología , Anciano , Ansiedad/epidemiología , Ansiedad/psicología , Atención , Cognición/fisiología , Comorbilidad , Depresión/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA