Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 390(12): 1092-1104, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38507752

RESUMEN

BACKGROUND: Giant axonal neuropathy is a rare, autosomal recessive, pediatric, polysymptomatic, neurodegenerative disorder caused by biallelic loss-of-function variants in GAN, the gene encoding gigaxonin. METHODS: We conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with giant axonal neuropathy. Safety was the primary end point. The key secondary clinical end point was at least a 95% posterior probability of slowing the rate of change (i.e., slope) in the 32-item Motor Function Measure total percent score at 1 year after treatment, as compared with the pretreatment slope. RESULTS: One of four intrathecal doses of scAAV9/JeT-GAN was administered to 14 participants - 3.5×1013 total vector genomes (vg) (in 2 participants), 1.2×1014 vg (in 4), 1.8×1014 vg (in 5), and 3.5×1014 vg (in 3). During a median observation period of 68.7 months (range, 8.6 to 90.5), of 48 serious adverse events that had occurred, 1 (fever) was possibly related to treatment; 129 of 682 adverse events were possibly related to treatment. The mean pretreatment slope in the total cohort was -7.17 percentage points per year (95% credible interval, -8.36 to -5.97). At 1 year after treatment, posterior mean changes in slope were -0.54 percentage points (95% credible interval, -7.48 to 6.28) with the 3.5×1013-vg dose, 3.23 percentage points (95% credible interval, -1.27 to 7.65) with the 1.2×1014-vg dose, 5.32 percentage points (95% credible interval, 1.07 to 9.57) with the 1.8×1014-vg dose, and 3.43 percentage points (95% credible interval, -1.89 to 8.82) with the 3.5×1014-vg dose. The corresponding posterior probabilities for slowing the slope were 44% (95% credible interval, 43 to 44); 92% (95% credible interval, 92 to 93); 99% (95% credible interval, 99 to 99), which was above the efficacy threshold; and 90% (95% credible interval, 89 to 90). Between 6 and 24 months after gene transfer, sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in 6 participants but remained absent in 8. CONCLUSIONS: Intrathecal gene transfer with scAAV9/JeT-GAN for giant axonal neuropathy was associated with adverse events and resulted in a possible benefit in motor function scores and other measures at some vector doses over a year. Further studies are warranted to determine the safety and efficacy of intrathecal AAV-mediated gene therapy in this disorder. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT02362438.).


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Neuropatía Axonal Gigante , Niño , Humanos , Proteínas del Citoesqueleto/genética , Terapia Genética/efectos adversos , Terapia Genética/métodos , Neuropatía Axonal Gigante/genética , Neuropatía Axonal Gigante/terapia , Transgenes , Inyecciones Espinales
2.
Gene Ther ; 31(5-6): 234-241, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38135787

RESUMEN

EPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy. If treated early, these children's normally developed brains could be rescued from the neurodegeneration that otherwise follows, and their cross-reactive immunological material (CRIM) positive status greatly reduces transgene related toxicity. We performed a proof-of-concept CSTB gene replacement study in Cstb knockout mice by introducing full-length human CSTB driven by the CBh promoter packaged in AAV9 and administered at postnatal days 21 and 60. Mice were sacrificed at 2 or 9 months of age, respectively. We observed significant improvements in expression levels of neuroinflammatory pathway genes and cerebellar granule cell layer apoptosis, as well as amelioration of motor impairment. The data suggest that gene replacement is a promising therapeutic modality for EPM1 and could spare affected children and families the ravages of this otherwise severe neurodegenerative disease.


Asunto(s)
Cistatina B , Terapia Genética , Ratones Noqueados , Enfermedades Neuroinflamatorias , Animales , Ratones , Terapia Genética/métodos , Cistatina B/genética , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/genética , Humanos , Ataxia/genética , Ataxia/terapia , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/terapia , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación
3.
Mol Ther ; 30(7): 2416-2428, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35585789

RESUMEN

We are in an emerging era of gene-based therapeutics with significant promise for rare genetic disorders. The potential is particularly significant for genetic central nervous system disorders that have begun to achieve Food and Drug Administration approval for select patient populations. This review summarizes the discussions and presentations of the National Institute of Mental Health-sponsored workshop "Gene-Based Therapeutics for Rare Genetic Neurodevelopmental Psychiatric Disorders," which was held in January 2021. Here, we distill the points raised regarding various precision medicine approaches related to neurodevelopmental and psychiatric disorders that may be amenable to gene-based therapies.


Asunto(s)
Trastornos Mentales , Medicina de Precisión , Humanos , Trastornos Mentales/genética , Trastornos Mentales/psicología , Trastornos Mentales/terapia , Enfermedades Raras , Estados Unidos , United States Food and Drug Administration
4.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298170

RESUMEN

GM2 gangliosidosis is a group of genetic disorders that result in the accumulation of GM2 ganglioside (GM2) in brain cells, leading to progressive central nervous system (CNS) atrophy and premature death in patients. AB-variant GM2 gangliosidosis (ABGM2) arises from loss-of-function mutations in the GM2 activator protein (GM2AP), which is essential for the breakdown of GM2 in a key catabolic pathway required for CNS lipid homeostasis. In this study, we show that intrathecal delivery of self-complementary adeno-associated virus serotype-9 (scAAV9) harbouring a functional human GM2A transgene (scAAV9.hGM2A) can prevent GM2 accumulation in in GM2AP-deficient mice (Gm2a-/- mice). Additionally, scAAV9.hGM2A efficiently distributes to all tested regions of the CNS within 14 weeks post-injection and remains detectable for the lifespan of these animals (up to 104 weeks). Remarkably, GM2AP expression from the transgene scales with increasing doses of scAAV9.hGM2A (0.5, 1.0 and 2.0 × 1011 vector genomes (vg) per mouse), and this correlates with dose-dependent correction of GM2 accumulation in the brain. No severe adverse events were observed, and comorbidities in treated mice were comparable to those in disease-free cohorts. Lastly, all doses yielded corrective outcomes. These data indicate that scAAV9.hGM2A treatment is relatively non-toxic and tolerable, and biochemically corrects GM2 accumulation in the CNS-the main cause of morbidity and mortality in patients with ABGM2. Importantly, these results constitute proof-of-principle for treating ABGM2 with scAAV9.hGM2A by means of a single intrathecal administration and establish a foundation for future preclinical research.


Asunto(s)
Gangliósido G(M2) , Gangliosidosis GM2 , Humanos , Animales , Ratones , Gangliósido G(M2)/metabolismo , Mutación , Sistema Nervioso Central/metabolismo , Encéfalo/metabolismo , Proteína Activadora de G (M2)/genética , Gangliosidosis GM2/genética
5.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834060

RESUMEN

GM2 gangliosidoses are a group of neurodegenerative lysosomal storage disorders that are characterized by the accumulation of GM2 gangliosides (GM2), leading to rapid neurological decline and death. The hydrolysis of GM2 requires the specific synthesis, processing, and combination of products of three genes-HEXA, HEXB, and GM2A-within the cell's lysosomes. Mutations in these genes result in Tay-Sachs disease, Sandhoff disease, or AB-variant GM2 gangliosidosis (ABGM2), respectively. ABGM2, the rarest of the three types, is characterized by a mutation in the GM2A gene, which encodes the GM2 activator (GM2A) protein. Being a monogenic disease, gene therapy is a plausible and likely effective method of treatment for ABGM2. This study aimed at assessing the effects of administering a one-time intravenous treatment of single-stranded Adeno-associated virus serotype 9 (ssAAV9)-GM2A viral vector at a dose of 1 × 1014 vector genomes (vg) per kilogram per mouse in an ABGM2 mouse model (Gm2a-/-). ssAAV9-GM2A was administered at 1-day (neonatal) or 6-weeks of age (adult-stage). The results demonstrated that, in comparison to Gm2a-/- mice that received a vehicle injection, the treated mice had reduced GM2 accumulation within the central nervous system and had long-term persistence of vector genomes in the brain and liver. This proof-of-concept study is a step forward towards the development of a clinically therapeutic approach for the treatment of patients with ABGM2.


Asunto(s)
Gangliosidosis GM2 , Enfermedad de Tay-Sachs , Humanos , Animales , Ratones , Dependovirus/genética , Serogrupo , Enfermedad de Tay-Sachs/terapia , Gangliosidosis GM2/genética , Gangliosidosis GM2/terapia , Proteína Activadora de G (M2)/genética , Terapia Genética
6.
Brain ; 144(10): 3005-3019, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33950254

RESUMEN

MECP2 gene transfer has been shown to extend the survival of Mecp2-/y knockout mice modelling Rett syndrome, an X-linked neurodevelopmental disorder. However, controlling deleterious overexpression of MECP2 remains the critical unmet obstacle towards a safe and effective gene therapy approach for Rett syndrome. A recently developed truncated miniMECP2 gene has also been shown to be therapeutic after AAV9-mediated gene transfer in knockout neonates. We show that AAV9/miniMECP2 has a similar dose-dependent toxicity profile to that of a published second-generation AAV9/MECP2 vector after treatment in adolescent mice. To overcome that toxicity, we developed a risk-driven viral genome design strategy rooted in high-throughput profiling and genome mining to rationally develop a compact, synthetic microRNA target panel (miR-responsive auto-regulatory element, 'miRARE') to minimize the possibility of miniMECP2 transgene overexpression in the context of Rett syndrome gene therapy. The goal of miRARE is to have a built-in inhibitory element responsive to MECP2 overexpression. The data provided herein show that insertion of miRARE into the miniMECP2 gene expression cassette greatly improved the safety of miniMECP2 gene transfer without compromising efficacy. Importantly, this built-in regulation system does not require any additional exogenous drug application, and no miRNAs are expressed from the transgene cassette. Although broad applications of miRARE have yet to be determined, the design of miRARE suggests a potential use in gene therapy approaches for other dose-sensitive genes.


Asunto(s)
Terapia Genética/métodos , Proteína 2 de Unión a Metil-CpG/administración & dosificación , MicroARNs/administración & dosificación , Ingeniería de Proteínas/métodos , Elementos Reguladores de la Transcripción , Síndrome de Rett/terapia , Animales , Humanos , Inyecciones Espinales , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Elementos Reguladores de la Transcripción/genética , Síndrome de Rett/genética
7.
Brain ; 144(10): 3239-3250, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34114613

RESUMEN

Giant axonal neuropathy (GAN) is an ultra-rare autosomal recessive, progressive neurodegenerative disease with early childhood onset that presents as a prominent sensorimotor neuropathy and commonly progresses to affect both the PNS and CNS. The disease is caused by biallelic mutations in the GAN gene located on 16q23.2, leading to loss of functional gigaxonin, a substrate specific ubiquitin ligase adapter protein necessary for the regulation of intermediate filament turnover. Here, we report on cross-sectional data from the first study visit of a prospectively collected natural history study of 45 individuals, age range 3-21 years with genetically confirmed GAN to describe and cross-correlate baseline clinical and functional cohort characteristics. We review causative variants distributed throughout the GAN gene in this cohort and identify a recurrent founder mutation in individuals with GAN of Mexican descent as well as cases of recurrent uniparental isodisomy. Through cross-correlational analysis of measures of strength, motor function and electrophysiological markers of disease severity, we identified the Motor Function Measure 32 to have the strongest correlation across measures and age in individuals with GAN. We analysed the Motor Function Measure 32 scores as they correspond to age and ambulatory status. Importantly, we identified and characterized a subcohort of individuals with a milder form of GAN and with a presentation similar to Charcot-Marie-Tooth disease. Such a clinical presentation is distinct from the classic presentation of GAN, and we demonstrate how the two groups diverge in performance on the Motor Function Measure 32 and other functional motor scales. We further present data on the first systematic clinical analysis of autonomic impairment in GAN as performed on a subset of the natural history cohort. Our cohort of individuals with genetically confirmed GAN is the largest reported to date and highlights the clinical heterogeneity and the unique phenotypic and functional characteristics of GAN in relation to disease state. The present work is designed to serve as a foundation for a prospective natural history study and functions in concert with the ongoing gene therapy trial for children with GAN.


Asunto(s)
Neuropatía Axonal Gigante/diagnóstico por imagen , Neuropatía Axonal Gigante/fisiopatología , Adolescente , Niño , Preescolar , Estudios de Cohortes , Estudios Transversales , Femenino , Neuropatía Axonal Gigante/genética , Humanos , Masculino , Adulto Joven
8.
Mol Ther ; 29(3): 989-1000, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33186692

RESUMEN

Aspartylglucosaminuria (AGU) is an autosomal recessive lysosomal storage disease caused by loss of the enzyme aspartylglucosaminidase (AGA), resulting in AGA substrate accumulation. AGU patients have a slow but progressive neurodegenerative disease course, for which there is no approved disease-modifying treatment. In this study, AAV9/AGA was administered to Aga-/- mice intravenously (i.v.) or intrathecally (i.t.), at a range of doses, either before or after disease pathology begins. At either treatment age, AAV9/AGA administration led to (1) dose dependently increased and sustained AGA activity in body fluids and tissues; (2) rapid, sustained, and dose-dependent elimination of AGA substrate in body fluids; (3) significantly rescued locomotor activity; (4) dose-dependent preservation of Purkinje neurons in the cerebellum; and (5) significantly reduced gliosis in the brain. Treated mice had no abnormal neurological phenotype and maintained body weight throughout the whole experiment to 18 months old. In summary, these results demonstrate that treatment of Aga-/- mice with AAV9/AGA is effective and safe, providing strong evidence that AAV9/AGA gene therapy should be considered for human translation. Further, we provide a direct comparison of the efficacy of an i.v. versus i.t. approach using AAV9, which should greatly inform the development of similar treatments for other related lysosomal storage diseases.


Asunto(s)
Aspartilglucosaminuria/terapia , Aspartilglucosilaminasa/fisiología , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Células de Purkinje/metabolismo , Animales , Aspartilglucosaminuria/enzimología , Aspartilglucosaminuria/genética , Aspartilglucosaminuria/patología , Peso Corporal , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
9.
Mol Ther ; 29(2): 464-488, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33309881

RESUMEN

Hereditary diseases are caused by mutations in genes, and more than 7,000 rare diseases affect over 30 million Americans. For more than 30 years, hundreds of researchers have maintained that genetic modifications would provide effective treatments for many inherited human diseases, offering durable and possibly curative clinical benefit with a single treatment. This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome and has a low immunogenicity. There are now five treatments approved for commercialization and currently available, i.e., Luxturna, Zolgensma, the two chimeric antigen receptor T cell (CAR-T) therapies (Yescarta and Kymriah), and Strimvelis (the gammaretrovirus approved for adenosine deaminase-severe combined immunodeficiency [ADA-SCID] in Europe). Dozens of other treatments are under clinical trials. The review article presents a broad overview of the field of therapy by in vivo gene transfer. We review gene therapy for neuromuscular disorders (spinal muscular atrophy [SMA]; Duchenne muscular dystrophy [DMD]; X-linked myotubular myopathy [XLMTM]; and diseases of the central nervous system, including Alzheimer's disease, Parkinson's disease, Canavan disease, aromatic l-amino acid decarboxylase [AADC] deficiency, and giant axonal neuropathy), ocular disorders (Leber congenital amaurosis, age-related macular degeneration [AMD], choroideremia, achromatopsia, retinitis pigmentosa, and X-linked retinoschisis), the bleeding disorder hemophilia, and lysosomal storage disorders.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Animales , Estudios Clínicos como Asunto , Terapia Combinada , Expresión Génica , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Terapia Genética/efectos adversos , Terapia Genética/métodos , Terapia Genética/tendencias , Vectores Genéticos/administración & dosificación , Humanos , Especificidad de Órganos , Resultado del Tratamiento
10.
Neurobiol Dis ; 148: 105184, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221532

RESUMEN

Multiple system atrophy (MSA) is a rare and extremely debilitating progressive neurodegenerative disease characterized by variable combinations of parkinsonism, cerebellar ataxia, dysautonomia, and pyramidal dysfunction. MSA is a unique synucleinopathy, in which alpha synuclein-rich aggregates are present in the cytoplasm of oligodendroglia. The precise origin of the alpha synuclein (aSyn) found in the glial cytoplasmic inclusions (GCIs) as well the mechanisms of neurodegeneration in MSA remain unclear. Despite this fact, cell and animal models of MSA rely on oligodendroglial overexpression of aSyn. In the present study, we utilized a novel oligotrophic AAV, Olig001, to overexpress aSyn specifically in striatal oligodendrocytes of rats and nonhuman primates in an effort to further characterize our novel viral vector-mediated MSA animal models. Using two cohorts of animals with 10-fold differences in Olig001 vector titers, we show a dose-dependent formation of MSA-like pathology in rats. High titer of Olig001-aSyn in these animals were required to produce the formation of pS129+ and proteinase K resistant aSyn-rich GCIs, demyelination, and neurodegeneration. Using this knowledge, we injected high titer Olig001 in the putamen of cynomolgus macaques. After six months, histological analysis showed that oligodendroglial overexpression of aSyn resulted in the formation of hallmark GCIs throughout the putamen, demyelination, a 44% reduction of striatal neurons and a 12% loss of nigral neurons. Furthermore, a robust inflammatory response similar to MSA was produced in Olig001-aSyn NHPs, including microglial activation, astrogliosis, and a robust infiltration of T cells into the CNS. Taken together, oligodendroglial-specific viral vector-mediated overexpression of aSyn in rats and nonhuman primates faithfully reproduces many of the pathological disease hallmarks found in MSA. Future studies utilizing these large animal models of MSA would prove extremely valuable as a pre-clinical platform to test novel therapeutics that are so desperately needed for MSA.


Asunto(s)
Modelos Animales de Enfermedad , Atrofia de Múltiples Sistemas/genética , Neostriado/patología , Neuronas/patología , Oligodendroglía/patología , Putamen/patología , alfa-Sinucleína/genética , Animales , Dependovirus , Vectores Genéticos , Humanos , Macaca fascicularis , Atrofia de Múltiples Sistemas/metabolismo , Atrofia de Múltiples Sistemas/patología , Oligodendroglía/metabolismo , Ratas , Técnicas Estereotáxicas , alfa-Sinucleína/metabolismo
11.
Exp Eye Res ; 207: 108600, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33930398

RESUMEN

Neuronal ceroid lipofuscinoses (NCL; Batten disease) are a group of inherited neurodegenerative diseases primarily affecting children. A common feature across most NCLs is the progressive loss of vision. We performed intravitreal injections of self-complementary AAV9 vectors packaged with either ovine CLN5 or CLN6 into one eye of 3-month-old CLN5-/- or CLN6-/- animals, respectively. Electroretinography (ERG) was performed every month following treatment, and retinal histology was assessed post-mortem in the treated compared to untreated eye. In CLN5-/- animals, ERG amplitudes were normalised in the treated eye whilst the untreated eye declined in a similar manner to CLN5 affected controls. In CLN6-/- animals, ERG amplitudes in both eyes declined over time although the treated eye showed a slower decline. Post-mortem examination revealed significant attenuation of retinal atrophy and lysosomal storage body accumulation in the treated eye compared with the untreated eye in CLN5-/- animals. This proof-of-concept study provides the first observation of efficacious intravitreal gene therapy in a large animal model of NCL. In particular, the single administration of AAV9-mediated intravitreal gene therapy can successfully ameliorate retinal deficits in CLN5-/- sheep. Combining ocular gene therapy with brain-directed therapy presents a promising treatment strategy to be used in future sheep trials aiming to halt neurological and retinal disease in CLN5 Batten disease.


Asunto(s)
Terapia Genética/métodos , Proteínas de Membrana de los Lisosomas/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Degeneración Retiniana/terapia , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Vectores Genéticos , Proteína Ácida Fibrilar de la Glía/metabolismo , Inyecciones Intravítreas , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Retina/metabolismo , Retina/fisiopatología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/fisiopatología , Ovinos
12.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201771

RESUMEN

GM2 gangliosidosis disorders are a group of neurodegenerative diseases that result from a functional deficiency of the enzyme ß-hexosaminidase A (HexA). HexA consists of an α- and ß-subunit; a deficiency in either subunit results in Tay-Sachs Disease (TSD) or Sandhoff Disease (SD), respectively. Viral vector gene transfer is viewed as a potential method of treating these diseases. A recently constructed isoenzyme to HexA, called HexM, has the ability to effectively catabolize GM2 gangliosides in vivo. Previous gene transfer studies have revealed that the scAAV9-HEXM treatment can improve survival in the murine SD model. However, it is speculated that this treatment could elicit an immune response to the carrier capsid and "non-self"-expressed transgene. This study was designed to assess the immunocompetence of TSD and SD mice, and test the immune response to the scAAV9-HEXM gene transfer. HexM vector-treated mice developed a significant anti-HexM T cell response and antibody response. This study confirms that TSD and SD mouse models are immunocompetent, and that gene transfer expression can create an immune response in these mice. These mouse models could be utilized for investigating methods of mitigating immune responses to gene transfer-expressed "non-self" proteins, and potentially improve treatment efficacy.


Asunto(s)
Dependovirus/genética , Gangliósido G(M2)/metabolismo , Vectores Genéticos/administración & dosificación , Inmunidad/inmunología , Enfermedad de Sandhoff/inmunología , Enfermedad de Tay-Sachs/inmunología , Cadena alfa de beta-Hexosaminidasa/genética , Animales , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/terapia
13.
Mol Ther ; 26(10): 2366-2378, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30078766

RESUMEN

Neuronal ceroid lipofuscinoses (NCLs; Batten disease) are neurodegenerative lysosomal storage diseases predominantly affecting children. Single administration of brain-directed lentiviral or recombinant single-stranded adeno-associated virus 9 (ssAAV9) vectors expressing ovine CLN5 into six pre-clinically affected sheep with a naturally occurring CLN5 NCL resulted in long-term disease attenuation. Treatment efficacy was demonstrated by non-invasive longitudinal in vivo monitoring developed to align with assessments used in human medicine. The treated sheep retained neurological and cognitive function, and one ssAAV9-treated animal has been retained and is now 57 months old, almost triple the lifespan of untreated CLN5-affected sheep. The onset of visual deficits was much delayed. Computed tomography and MRI showed that brain structures and volumes remained stable. Because gene therapy in humans is more likely to begin after clinical diagnosis, self-complementary AAV9-CLN5 was injected into the brain ventricles of four 7-month-old affected sheep already showing early clinical signs in a second trial. This also halted disease progression beyond their natural lifespan. These findings demonstrate the efficacy of CLN5 gene therapy, using three different vector platforms, in a large animal model and, thus, the prognosis for human translation.


Asunto(s)
Encéfalo/efectos de los fármacos , Terapia Genética , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Proteínas de Membrana de los Lisosomas , Lisosomas/genética , Imagen por Resonancia Magnética , Proteínas de la Membrana/uso terapéutico , Lipofuscinosis Ceroideas Neuronales/diagnóstico por imagen , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Ovinos , Tomografía Computarizada por Rayos X
14.
Mol Ther ; 26(3): 874-889, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29433937

RESUMEN

We report a global adeno-associated virus (AAV)9-based gene therapy protocol to deliver therapeutic galactosylceramidase (GALC), a lysosomal enzyme that is deficient in Krabbe's disease. When globally administered via intrathecal, intracranial, and intravenous injections to newborn mice affected with GALC deficiency (twitcher mice), this approach largely surpassed prior published benchmarks of survival and metabolic correction, showing long-term protection of demyelination, neuroinflammation, and motor function. Bone marrow transplantation, performed in this protocol without immunosuppressive preconditioning, added minimal benefits to the AAV9 gene therapy. Contrasting with other proposed pre-clinical therapies, these results demonstrate that achieving nearly complete correction of GALC's metabolic deficiencies across the entire nervous system via gene therapy can have a significant improvement to behavioral deficits, pathophysiological changes, and survival. These results are an important consideration for determining the safest and most effective manner for adapting gene therapy to treat this leukodystrophy in the clinic.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Terapia Genética , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Fenotipo , Animales , Vías Autónomas/metabolismo , Vías Autónomas/patología , Vías Autónomas/ultraestructura , Axones/metabolismo , Axones/patología , Axones/ultraestructura , Conducta Animal , Encéfalo/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Vectores Genéticos/farmacocinética , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/terapia , Masculino , Ratones , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Distribución Tisular , Transducción Genética , Resultado del Tratamiento
15.
Hum Mol Genet ; 24(5): 1420-31, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25398950

RESUMEN

Giant axonal neuropathy (GAN) is a progressive neurodegenerative disease caused by autosomal recessive mutations in the GAN gene resulting in a loss of a ubiquitously expressed protein, gigaxonin. Gene replacement therapy is a promising strategy for treatment of the disease; however, the effectiveness and safety of gigaxonin reintroduction have not been tested in human GAN nerve cells. Here we report the derivation of induced pluripotent stem cells (iPSCs) from three GAN patients with different GAN mutations. Motor neurons differentiated from GAN iPSCs exhibit accumulation of neurofilament (NF-L) and peripherin (PRPH) protein and formation of PRPH aggregates, the key pathological phenotypes observed in patients. Introduction of gigaxonin either using a lentiviral vector or as a stable transgene resulted in normalization of NEFL and PRPH levels in GAN neurons and disappearance of PRPH aggregates. Importantly, overexpression of gigaxonin had no adverse effect on survival of GAN neurons, supporting the feasibility of gene replacement therapy. Our findings demonstrate that GAN iPSCs provide a novel model for studying human GAN neuropathologies and for the development and testing of new therapies in relevant cell types.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Neuropatía Axonal Gigante/genética , Células Madre Pluripotentes Inducidas/citología , Proteínas de Filamentos Intermediarios/genética , Neuronas Motoras/metabolismo , Axones , Diferenciación Celular , Células Cultivadas , Proteínas del Citoesqueleto/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Terapia Genética/métodos , Vectores Genéticos/genética , Neuropatía Axonal Gigante/terapia , Humanos , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Cariotipificación , Lentivirus/genética , Neuronas Motoras/citología , Mutación , Fenotipo
16.
Int J Mol Sci ; 18(4)2017 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-28346360

RESUMEN

Aspartylglucosaminidase (AGA) is a lysosomal hydrolase that participates in the breakdown of glycoproteins. Defects in the AGA gene result in a lysosomal storage disorder, aspartylglucosaminuria (AGU), that manifests mainly as progressive mental retardation. A number of AGU missense mutations have been identified that result in reduced AGA activity. Human variants that contain either Ser or Thr in position 149 have been described, but it is unknown if this affects AGA processing or activity. Here, we have directly compared the Ser149/Thr149 variants of AGA and show that they do not differ in terms of relative specific activity or processing. Therefore, Thr149 AGA, which is the rare variant, can be considered as a neutral or benign variant. Furthermore, we have here produced codon-optimized versions of these two variants and show that they are expressed at significantly higher levels than AGA with the natural codon-usage. Since optimal AGA expression is of vital importance for both gene therapy and enzyme replacement, our data suggest that use of codon-optimized AGA may be beneficial for these therapy options.


Asunto(s)
Aspartilglucosilaminasa/metabolismo , Aspartilglucosilaminasa/química , Aspartilglucosilaminasa/genética , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/patología , Frecuencia de los Genes , Genotipo , Células HEK293 , Células HeLa , Humanos , Enfermedades por Almacenamiento Lisosomal/enzimología , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/química , Lisosomas/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Polimorfismo de Nucleótido Simple , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transfección
17.
J Neurosci ; 35(16): 6495-505, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25904800

RESUMEN

Globoid cell leukodystrophy (GLD, Krabbe disease) is a lysosomal storage disease (LSD) caused by a deficiency in galactocerebrosidase (GALC) activity. In the absence of GALC activity, the cytotoxic lipid, galactosylsphingosine (psychosine), accumulates in the CNS and peripheral nervous system. Oligodendrocytes and Schwann cells are particularly sensitive to psychosine, thus leading to a demyelinating phenotype. Although hematopoietic stem-cell transplantation provides modest benefit in both presymptomatic children and the murine model (Twitcher), there is no cure for GLD. In addition, GLD has been relatively refractory to virtually every experimental therapy attempted. Here, Twitcher mice were simultaneously treated with CNS-directed gene therapy, substrate reduction therapy, and bone marrow transplantation to target the primary pathogenic mechanism (GALC deficiency) and two secondary consequences of GALC deficiency (psychosine accumulation and neuroinflammation). Simultaneously treating multiple pathogenic targets resulted in an unprecedented increase in life span with improved motor function, persistent GALC expression, nearly normal psychosine levels, and decreased neuroinflammation. Treating the primary pathogenic mechanism and secondary targets will likely improve therapeutic efficacy for other LSDs with complex pathological and clinical presentations.


Asunto(s)
Trasplante de Médula Ósea , Cicloserina/uso terapéutico , Galactosilceramidasa/genética , Terapia Genética , Leucodistrofia de Células Globoides/terapia , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Terapia Combinada , Citocinas/metabolismo , Femenino , Galactosilceramidasa/metabolismo , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Masculino , Ratones , Ratones Endogámicos , Destreza Motora/efectos de los fármacos , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/fisiología , Psicosina/metabolismo , Nervio Ciático/metabolismo
18.
Neurobiol Dis ; 96: 323-334, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27717881

RESUMEN

Breakdown of neuro-glial N-acetyl-aspartate (NAA) metabolism results in the failure of developmental myelination, manifest in the congenital pediatric leukodystrophy Canavan disease caused by mutations to the sole NAA catabolizing enzyme aspartoacylase. Canavan disease is a major point of focus for efforts to define NAA function, with available evidence suggesting NAA serves as an acetyl donor for fatty acid synthesis during myelination. Elevated NAA is a diagnostic hallmark of Canavan disease, which contrasts with a broad spectrum of alternative neurodegenerative contexts in which levels of NAA are inversely proportional to pathological progression. Recently generated data in the nur7 mouse model of Canavan disease suggests loss of aspartoacylase function results in compromised energetic integrity prior to oligodendrocyte death, abnormalities in myelin content, spongiform degeneration, and motor deficit. The present study utilized a next-generation "oligotropic" adeno-associated virus vector (AAV-Olig001) to quantitatively assess the impact of aspartoacylase reconstitution on developmental myelination. AAV-Olig001-aspartoacylase promoted normalization of NAA, increased bioavailable acetyl-CoA, and restored energetic balance within a window of postnatal development preceding gross histopathology and deteriorating motor function. Long-term effects included increased oligodendrocyte numbers, a global increase in myelination, reversal of vacuolation, and rescue of motor function. Effects on brain energy observed following AAV-Olig001-aspartoacylase gene therapy are shown to be consistent with a metabolic profile observed in mild cases of Canavan disease, implicating NAA in the maintenance of energetic integrity during myelination via oligodendroglial aspartoacylase.


Asunto(s)
Amidohidrolasas/metabolismo , Ácido Aspártico/análogos & derivados , Encéfalo/enzimología , Enfermedad de Canavan/patología , Vaina de Mielina/fisiología , Oligodendroglía/enzimología , Amidohidrolasas/genética , Animales , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Proteínas Relacionadas con la Autofagia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/patología , Enfermedad de Canavan/complicaciones , Enfermedad de Canavan/diagnóstico por imagen , Enfermedad de Canavan/genética , Niño , Preescolar , Dependovirus/genética , Progresión de la Enfermedad , Metabolismo Energético/genética , Femenino , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Transgénicos , Trastornos del Movimiento/etiología , Proteína Básica de Mielina/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética
19.
J Neurosci Res ; 94(11): 1349-58, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638617

RESUMEN

Globoid cell leukodystrophy (GLD, or Krabbe's disease) is a severe inherited neurodegenerative disease caused by the lack of a lysosomal enzyme, GALC. The disease has been characterized in humans as well as three naturally occurring animal models, murine, canine, and nonhuman primate. Multiple treatment strategies have been explored for GLD, including enzyme replacement therapy, small-molecule pharmacological approaches, gene therapy, and bone marrow transplant. No single therapeutic approach has proved to be entirely effective, and the reason for this is not well understood. It is unclear whether initiation of a neuroinflammatory cascade in GLD precedes demyelination, a hallmark of the disease, but it does precede overt symptoms. This Review explores what is known about the role of inflammation and the immune response in the progression of GLD as well as how various treatment strategies might interplay with innate and adaptive immune responses involved in GLD. The focus of this Review is on GLD, but these concepts may have relevance for other, related diseases. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Inmunidad Adaptativa/fisiología , Leucodistrofia de Células Globoides/inmunología , Leucodistrofia de Células Globoides/terapia , Animales , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/fisiología
20.
J Neurosci Res ; 94(11): 1138-51, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638599

RESUMEN

Globoid cell leukodystrophy (GLD), or Krabbe disease, is an autosomal recessive neurodegenerative disease caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). Hematopoietic stem cell transplantation (HSCT) provides modest benefit in presymptomatic patients but is well short of a cure. Gene transfer experiments using viral vectors have shown some success in extending the survival in the mouse model of GLD, twitcher mice. The present study compares three single-stranded (ss) AAV serotypes, two natural and one engineered (with oligodendrocyte tropism), and a self-complementary (sc) AAV vector, all packaged with a codon-optimized murine GALC gene. The vectors were delivered via a lumbar intrathecal route for global CNS distribution on PND10-11 at a dose of 2 × 10(11) vector genomes (vg) per mouse. The results showed a similar significant extension of life span of the twitcher mice for all three serotypes (AAV9, AAVrh10, and AAV-Olig001) as well as the scAAV9 vector, compared to control cohorts. The rAAV gene transfer facilitated GALC biodistribution and detectable enzymatic activity throughout the CNS as well as in sciatic nerve and liver. When combined with BMT from syngeneic wild-type mice, there was significant improvement in survival for ssAAV9. Histopathological analysis of brain, spinal cord, and sciatic nerve showed significant improvement in preservation of myelin, with ssAAV9 providing the greatest benefit. In summary, we demonstrate that lumbar intrathecal delivery of rAAV/mGALCopt can significantly enhance the life span of twitcher mice treated at PND10-11 and that BMT synergizes with this treatment to improve the survival further. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Trasplante de Médula Ósea/métodos , Galactosilceramidasa/uso terapéutico , Terapia Genética/métodos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Animales , Animales Recién Nacidos , Dependovirus/genética , Modelos Animales de Enfermedad , Galactosilceramidasa/biosíntesis , Galactosilceramidasa/genética , Vectores Genéticos/fisiología , Inyecciones Espinales , Leucodistrofia de Células Globoides/mortalidad , Ratones , Ratones Mutantes , ARN Mensajero , Análisis de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA