Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(11): 1839-1855.e13, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267905

RESUMEN

Localized translation is vital to polarized cells and requires precise and robust distribution of different mRNAs and ribosomes across the cell. However, the underlying molecular mechanisms are poorly understood and important players are lacking. Here, we discovered a Rab5 effector, the five-subunit endosomal Rab5 and RNA/ribosome intermediary (FERRY) complex, that recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction. FERRY displays preferential binding to certain groups of transcripts, including mRNAs encoding mitochondrial proteins. Deletion of FERRY subunits reduces the endosomal localization of transcripts in cells and has a significant impact on mRNA levels. Clinical studies show that genetic disruption of FERRY causes severe brain damage. We found that, in neurons, FERRY co-localizes with mRNA on early endosomes, and mRNA loaded FERRY-positive endosomes are in close proximity of mitochondria. FERRY thus transforms endosomes into mRNA carriers and plays a key role in regulating mRNA distribution and transport.


Asunto(s)
Endosomas , Proteínas de Unión al GTP rab5 , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Endosomas/metabolismo , Transporte Biológico , Endocitosis/fisiología
2.
EMBO Rep ; 24(9): e57181, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37522754

RESUMEN

Hepatocytes form bile canaliculi that dynamically respond to the signalling activity of bile acids and bile flow. Little is known about their responses to intraluminal pressure. During embryonic development, hepatocytes assemble apical bulkheads that increase the canalicular resistance to intraluminal pressure. Here, we investigate whether they also protect bile canaliculi against elevated pressure upon impaired bile flow in adult liver. Apical bulkheads accumulate upon bile flow obstruction in mouse models and patients with primary sclerosing cholangitis (PSC). Their loss under these conditions leads to abnormally dilated canaliculi, resembling liver cell rosettes described in other hepatic diseases. 3D reconstruction reveals that these structures are sections of cysts and tubes formed by hepatocytes. Mathematical modelling establishes that they positively correlate with canalicular pressure and occur in early PSC stages. Using primary hepatocytes and 3D organoids, we demonstrate that excessive canalicular pressure causes the loss of apical bulkheads and formation of rosettes. Our results suggest that apical bulkheads are a protective mechanism of hepatocytes against impaired bile flow, highlighting the role of canalicular pressure in liver diseases.


Asunto(s)
Bilis , Hepatopatías , Ratones , Animales , Hígado , Canalículos Biliares , Hepatocitos
4.
Bioinformatics ; 38(Suppl_2): ii134-ii140, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36124805

RESUMEN

MOTIVATION: Access to unprecedented amounts of quantitative biological data allows us to build and test biochemically accurate reaction-diffusion models of intracellular processes. However, any increase in model complexity increases the number of unknown parameters and, thus, the computational cost of model analysis. To efficiently characterize the behavior and robustness of models with many unknown parameters remains, therefore, a key challenge in systems biology. RESULTS: We propose a novel computational framework for efficient high-dimensional parameter space characterization of reaction-diffusion models in systems biology. The method leverages the Lp-Adaptation algorithm, an adaptive-proposal statistical method for approximate design centering and robustness estimation. Our approach is based on an oracle function, which predicts for any given point in parameter space whether the model fulfills given specifications. We propose specific oracles to efficiently predict four characteristics of Turing-type reaction-diffusion models: bistability, instability, capability of spontaneous pattern formation and capability of pattern maintenance. We benchmark the method and demonstrate that it enables global exploration of a model's ability to undergo pattern-forming instabilities and to quantify robustness for model selection in polynomial time with dimensionality. We present an application of the framework to pattern formation on the endosomal membrane by the small GTPase Rab5 and its effectors, and we propose molecular mechanisms underlying this system. AVAILABILITY AND IMPLEMENTATION: Our code is implemented in MATLAB and is available as open source under https://git.mpi-cbg.de/mosaic/software/black-box-optimization/rd-parameter-space-screening. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Programas Informáticos , Algoritmos , Modelos Biológicos , Biología de Sistemas/métodos
5.
Nat Chem Biol ; 16(5): 577-586, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32094923

RESUMEN

Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease. Historically, therapeutics targeting RTKs have been identified using in vitro kinase assays. Due to frequent development of drug resistance, however, there is a need to identify more diverse compounds that inhibit mutated but not wild-type RTKs. Here, we describe MaMTH-DS (mammalian membrane two-hybrid drug screening), a live-cell platform for high-throughput identification of small molecules targeting functional protein-protein interactions of RTKs. We applied MaMTH-DS to an oncogenic epidermal growth factor receptor (EGFR) mutant resistant to the latest generation of clinically approved tyrosine kinase inhibitors (TKIs). We identified four mutant-specific compounds, including two that would not have been detected by conventional in vitro kinase assays. One of these targets mutant EGFR via a new mechanism of action, distinct from classical TKI inhibition. Our results demonstrate how MaMTH-DS is a powerful complement to traditional drug screening approaches.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Proteínas Quinasas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular , Línea Celular Tumoral , ADN Nucleotidiltransferasas/genética , Descubrimiento de Drogas , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Genes Reporteros , Humanos , Luciferasas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Fosforilación/efectos de los fármacos , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/farmacología , Estaurosporina/análogos & derivados , Estaurosporina/farmacología
7.
Nature ; 537(7618): 107-111, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27556945

RESUMEN

An early step in intracellular transport is the selective recognition of a vesicle by its appropriate target membrane, a process regulated by Rab GTPases via the recruitment of tethering effectors. Membrane tethering confers higher selectivity and efficiency to membrane fusion than the pairing of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) alone. Here we address the mechanism whereby a tethered vesicle comes closer towards its target membrane for fusion by reconstituting an endosomal asymmetric tethering machinery consisting of the dimeric coiled-coil protein EEA1 (refs 6, 7) recruited to phosphatidylinositol 3-phosphate membranes and binding vesicles harbouring Rab5. Surprisingly, structural analysis reveals that Rab5:GTP induces an allosteric conformational change in EEA1, from extended to flexible and collapsed. Through dynamic analysis by optical tweezers, we confirm that EEA1 captures a vesicle at a distance corresponding to its extended conformation, and directly measure its flexibility and the forces induced during the tethering reaction. Expression of engineered EEA1 variants defective in the conformational change induce prominent clusters of tethered vesicles in vivo. Our results suggest a new mechanism in which Rab5 induces a change in flexibility of EEA1, generating an entropic collapse force that pulls the captured vesicle towards the target membrane to initiate docking and fusion.


Asunto(s)
Endosomas/metabolismo , Entropía , Fusión de Membrana , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Regulación Alostérica , Guanosina Trifosfato/metabolismo , Humanos , Pinzas Ópticas , Fosfatos de Fosfatidilinositol/metabolismo , Docilidad , Unión Proteica , Conformación Proteica , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/genética
8.
Traffic ; 20(8): 601-617, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31206952

RESUMEN

Many cellular organelles, including endosomes, show compartmentalization into distinct functional domains, which, however, cannot be resolved by diffraction-limited light microscopy. Single molecule localization microscopy (SMLM) offers nanoscale resolution but data interpretation is often inconclusive when the ultrastructural context is missing. Correlative light electron microscopy (CLEM) combining SMLM with electron microscopy (EM) enables correlation of functional subdomains of organelles in relation to their underlying ultrastructure at nanometer resolution. However, the specific demands for EM sample preparation and the requirements for fluorescent single-molecule photo-switching are opposed. Here, we developed a novel superCLEM workflow that combines triple-color SMLM (dSTORM & PALM) and electron tomography using semi-thin Tokuyasu thawed cryosections. We applied the superCLEM approach to directly visualize nanoscale compartmentalization of endosomes in HeLa cells. Internalized, fluorescently labeled Transferrin and EGF were resolved into morphologically distinct domains within the same endosome. We found that the small GTPase Rab5 is organized in nanodomains on the globular part of early endosomes. The simultaneous visualization of several proteins in functionally distinct endosomal sub-compartments demonstrates the potential of superCLEM to link the ultrastructure of organelles with their molecular organization at nanoscale resolution.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Endosomas/ultraestructura , Imagen Individual de Molécula/métodos , Endosomas/metabolismo , Células HeLa , Humanos , Proteínas de Unión al GTP rab5/metabolismo
9.
Mol Syst Biol ; 16(2): e8985, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32090478

RESUMEN

The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase in F-actin and phospho-myosin, to compensate an overload of bile acids. These changes are sensed by the Hippo transcriptional co-activator YAP, which localizes to apical F-actin-rich regions and translocates to the nucleus in dependence of the integrity of the actin cytoskeleton. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical-biochemical model of bile pressure and Hippo signaling, we explained this behavior by the existence of a mechano-sensory mechanism that activates YAP in a switch-like manner. We propose that the apical surface of hepatocytes acts as a self-regulatory mechano-sensory system that responds to critical levels of bile acids as readout of tissue status.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ácidos y Sales Biliares/metabolismo , Canalículos Biliares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hepatocitos/citología , Actinas/metabolismo , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Hepatocitos/metabolismo , Regeneración Hepática , Masculino , Mecanotransducción Celular , Ratones , Miosinas/metabolismo , Tamaño de los Órganos , Transporte de Proteínas , Biología de Sistemas , Proteínas Señalizadoras YAP
10.
PLoS Comput Biol ; 16(6): e1007965, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32598356

RESUMEN

Can three-dimensional, microvasculature networks still ensure blood supply if individual links fail? We address this question in the sinusoidal network, a plexus-like microvasculature network, which transports nutrient-rich blood to every hepatocyte in liver tissue, by building on recent advances in high-resolution imaging and digital reconstruction of adult mice liver tissue. We find that the topology of the three-dimensional sinusoidal network reflects its two design requirements of a space-filling network that connects all hepatocytes, while using shortest transport routes: sinusoidal networks are sub-graphs of the Delaunay graph of their set of branching points, and also contain the corresponding minimum spanning tree, both to good approximation. To overcome the spatial limitations of experimental samples and generate arbitrarily-sized networks, we developed a network generation algorithm that reproduces the statistical features of 0.3-mm-sized samples of sinusoidal networks, using multi-objective optimization for node degree and edge length distribution. Nematic order in these simulated networks implies anisotropic transport properties, characterized by an empirical linear relation between a nematic order parameter and the anisotropy of the permeability tensor. Under the assumption that all sinusoid tubes have a constant and equal flow resistance, we predict that the distribution of currents in the network is very inhomogeneous, with a small number of edges carrying a substantial part of the flow-a feature known for hierarchical networks, but unexpected for plexus-like networks. We quantify network resilience in terms of a permeability-at-risk, i.e., permeability as function of the fraction of removed edges. We find that sinusoidal networks are resilient to random removal of edges, but vulnerable to the removal of high-current edges. Our findings suggest the existence of a mechanism counteracting flow inhomogeneity to balance metabolic load on the liver.


Asunto(s)
Hígado/anatomía & histología , Modelos Biológicos , Humanos , Hígado/irrigación sanguínea , Microvasos/anatomía & histología
11.
PLoS Comput Biol ; 16(12): e1008412, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33301446

RESUMEN

How epithelial cells coordinate their polarity to form functional tissues is an open question in cell biology. Here, we characterize a unique type of polarity found in liver tissue, nematic cell polarity, which is different from vectorial cell polarity in simple, sheet-like epithelia. We propose a conceptual and algorithmic framework to characterize complex patterns of polarity proteins on the surface of a cell in terms of a multipole expansion. To rigorously quantify previously observed tissue-level patterns of nematic cell polarity (Morales-Navarrete et al., eLife 2019), we introduce the concept of co-orientational order parameters, which generalize the known biaxial order parameters of the theory of liquid crystals. Applying these concepts to three-dimensional reconstructions of single cells from high-resolution imaging data of mouse liver tissue, we show that the axes of nematic cell polarity of hepatocytes exhibit local coordination and are aligned with the biaxially anisotropic sinusoidal network for blood transport. Our study characterizes liver tissue as a biological example of a biaxial liquid crystal. The general methodology developed here could be applied to other tissues and in-vitro organoids.


Asunto(s)
Polaridad Celular , Animales , Forma de la Célula , Hepatocitos/citología , Cristales Líquidos/química , Ratones , Modelos Teóricos
12.
J Cell Sci ; 130(3): 577-589, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27980069

RESUMEN

Platelet-derived growth factor receptor ß (PDGFRß) is a receptor tyrosine kinase which upon activation by PDGF-BB stimulates cell proliferation, migration and angiogenesis. Ligand binding induces intracellular signaling cascades but also internalization of the receptor, eventually resulting in its lysosomal degradation. However, endocytic trafficking of receptors often modulates their downstream signaling. We previously reported that internalization of PDGFRß occurs via dynamin-dependent and -independent pathways but their further molecular determinants remained unknown. Here we show that, in human fibroblasts expressing endogenous PDGFRß and stimulated with 50 ng/ml PDGF-BB, ligand-receptor uptake proceeds via the parallel routes of clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE). CME involves the canonical AP2 complex as a clathrin adaptor, while CIE requires RhoA-ROCK, Cdc42 and galectin-3, the latter indicating lectin-mediated internalization via clathrin-independent carriers (CLICs). Although different uptake routes appear to be partly interdependent, they cannot fully substitute for each other. Strikingly, inhibition of any internalization mechanism impaired activation of STAT3 but not of other downstream effectors of PDGFRß. Our data indicate that multiple routes of internalization of PDGFRß contribute to a transcriptional and mitogenic response of cells to PDGF.


Asunto(s)
Endocitosis/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Complejo 2 de Proteína Adaptadora/metabolismo , Clatrina/metabolismo , ADN/biosíntesis , Dinaminas/metabolismo , Endocitosis/genética , Galectina 3/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Receptores de Hialuranos/metabolismo , Masculino , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
13.
Exp Cell Res ; 350(1): 242-252, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27916608

RESUMEN

Exploring the cell biology of hepatocytes in vitro could be a powerful strategy to dissect the molecular mechanisms underlying the structure and function of the liver in vivo. However, this approach relies on appropriate in vitro cell culture systems that can recapitulate the cell biological and metabolic features of the hepatocytes in the liver whilst being accessible to experimental manipulations. Here, we adapted protocols for high-resolution fluorescence microscopy and quantitative image analysis to compare two primary hepatocyte culture systems, monolayer and collagen sandwich, with respect to the distribution of two distinct populations of early endosomes (APPL1 and EEA1-positive), endocytic capacity, metabolic and signaling activities. In addition to the re-acquisition of hepatocellular polarity, primary hepatocytes grown in collagen sandwich but not in monolayer culture recapitulated the apico-basal distribution of EEA1 endosomes observed in liver tissue. We found that such distribution correlated with the organization of the actin cytoskeleton in vitro and, surprisingly, was dependent on the nutritional state in vivo. Hepatocytes in collagen sandwich also exhibited faster kinetics of low-density lipoprotein (LDL) and epidermal growth factor (EGF) internalization, showed improved insulin sensitivity and preserved their ability for glucose production, compared to hepatocytes in monolayer cultures. Although no in vitro culture system can reproduce the exquisite structural features of liver tissue, our data nevertheless highlight the ability of the collagen sandwich system to recapitulate key structural and functional properties of the hepatocytes in the liver and, therefore, support the usage of this system to study aspects of hepatocellular biology in vitro.


Asunto(s)
Polaridad Celular/fisiología , Colágeno/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Lipoproteínas LDL/metabolismo , Masculino , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
14.
Nature ; 485(7399): 465-70, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22622570

RESUMEN

An outstanding question is how cells control the number and size of membrane organelles. The small GTPase Rab5 has been proposed to be a master regulator of endosome biogenesis. Here, to test this hypothesis, we developed a mathematical model of endosome dependency on Rab5 and validated it by titrating down all three Rab5 isoforms in adult mouse liver using state-of-the-art RNA interference technology. Unexpectedly, the endocytic system was resilient to depletion of Rab5 and collapsed only when Rab5 decreased to a critical level. Loss of Rab5 below this threshold caused a marked reduction in the number of early endosomes, late endosomes and lysosomes, associated with a block of low-density lipoprotein endocytosis. Loss of endosomes caused failure to deliver apical proteins to the bile canaliculi, suggesting a requirement for polarized cargo sorting. Our results demonstrate for the first time, to our knowledge, the role of Rab5 as an endosome organizer in vivo and reveal the resilience mechanisms of the endocytic system.


Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Polaridad Celular , Células Cultivadas , Endocitosis , Técnicas de Silenciamiento del Gen , Hepatocitos/citología , Hepatocitos/metabolismo , Isoenzimas/biosíntesis , Isoenzimas/deficiencia , Isoenzimas/genética , Isoenzimas/metabolismo , Lipoproteínas LDL/metabolismo , Hígado/citología , Hígado/enzimología , Hígado/metabolismo , Ratones , Cuerpos Multivesiculares/metabolismo , Especificidad de Órganos , Biosíntesis de Proteínas , Interferencia de ARN , ARN Mensajero/análisis , ARN Mensajero/genética , Factores de Tiempo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab5/biosíntesis , Proteínas de Unión al GTP rab5/deficiencia , Proteínas de Unión al GTP rab5/genética
15.
Proc Natl Acad Sci U S A ; 112(7): E667-76, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646459

RESUMEN

Insulin secretion is key for glucose homeostasis. Insulin secretory granules (SGs) exist in different functional pools, with young SGs being more mobile and preferentially secreted. However, the principles governing the mobility of age-distinct SGs remain undefined. Using the time-reporter insulin-SNAP to track age-distinct SGs we now show that their dynamics can be classified into three components: highly dynamic, restricted, and nearly immobile. Young SGs display all three components, whereas old SGs are either restricted or nearly immobile. Both glucose stimulation and F-actin depolymerization recruit a fraction of nearly immobile young, but not old, SGs for highly dynamic, microtubule-dependent transport. Moreover, F-actin marks multigranular bodies/lysosomes containing aged SGs. These data demonstrate that SGs lose their responsiveness to glucose stimulation and competence for microtubule-mediated transport over time while changing their relationship with F-actin.


Asunto(s)
Actinas/metabolismo , Insulina/fisiología , Microtúbulos/fisiología , Vesículas Secretoras/metabolismo , Animales , Línea Celular Tumoral , Senescencia Celular , Microscopía Confocal , Ratas
16.
Traffic ; 16(1): 68-84, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25367362

RESUMEN

Retromer, a peripheral membrane protein complex, plays an instrumental role in host of cellular processes by its ability to recycle receptors from endosomes to the trans-Golgi network. It consists of two distinct sub-complexes, a membrane recognizing, sorting nexins (SNX) complex and a cargo recognition, vacuolar protein sorting (Vps) complex. Small GTPase, Rab7 is known to recruit retromer on endosomal membrane via interactions with the Vps sub-complex. The molecular mechanism underlying the recruitment process including the role of individual Vps proteins is yet to be deciphered. In this study, we developed a FRET-based assay in HeLa cells that demonstrated the interaction of Rab7 with Vps35 and Vps26 in vivo. Furthermore, we showed that Rab7 recruits retromer to late endosomes via direct interactions with N-terminal conserved regions in Vps35. However, the single point mutation, which disrupts the interaction between Vps35 and Vps26, perturbed the Rab7-mediated recruitment of retromer in HeLa cells. Using biophysical measurements, we demonstrate that the association of Vps26 with Vps35 resulted in high affinity binding between the Vps sub-complex and the activated Rab7 suggesting for a possible allosteric role of Vps26. Thus, this study provides molecular insights into the essential role of Vps26 and Vps35 in Rab7-mediated recruitment of the core retromer complex.


Asunto(s)
Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Red trans-Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Unión a GTP rab7
17.
Traffic ; 16(8): 797-813, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25809669

RESUMEN

Insulin secretion from pancreatic ß-cells in response to sudden glucose stimulation is biphasic. Prolonged secretion in vivo requires synthesis, delivery to the plasma membrane (PM) and exocytosis of insulin secretory granules (SGs). Here, we provide the first agent-based space-resolved model for SG dynamics in pancreatic ß-cells. Using recent experimental data, we consider a single ß-cell with identical SGs moving on a phenomenologically represented cytoskeleton network. A single exocytotic machinery mediates SG exocytosis on the PM. This novel model reproduces the measured spatial organization of SGs and insulin secretion patterns under different stimulation protocols. It proposes that the insulin potentiation effect and the rising second-phase secretion are mainly due to the increasing number of docking sites on the PM. Furthermore, it shows that 6 min after glucose stimulation, the 'newcomer' SGs are recruited from a region within less than 600 nm from the PM.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Modelos Biológicos , Vesículas Secretoras/metabolismo , Animales , Exocitosis , Humanos
18.
Nat Methods ; 11(3): 281-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24441936

RESUMEN

Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Microscopía Fluorescente/métodos , Interpretación de Imagen Asistida por Computador/normas , Microscopía Fluorescente/normas
19.
Nucleic Acids Res ; 43(16): 7984-8001, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26220182

RESUMEN

Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2-5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types.


Asunto(s)
ARN Interferente Pequeño/administración & dosificación , Animales , Células Cultivadas , Colesterol , Endosomas/metabolismo , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Células HeLa , Hepatocitos/metabolismo , Humanos , Lípidos , Ratones , Nanopartículas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Bibliotecas de Moléculas Pequeñas
20.
Mol Cell Neurosci ; 72: 101-13, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26829712

RESUMEN

Mutations that result in the defective trafficking of γ2 subunit containing GABAA receptors (γ2-GABAARs) are known to reduce synaptic inhibition. Whether perturbed clustering of non-mutated GABAARs similarly reduces synaptic inhibition in vivo is less clear. In this study we provide evidence that the loss of postsynaptic γ2-GABAARs upon postnatal ablation of gephyrin, the major scaffolding protein of inhibitory postsynapses, from mature principal neurons within the forebrain results in reduced induction of long-term potentiation (LTP) and impaired network excitability within the hippocampal dentate gyrus. The preferential reduction in not only synaptic γ2-GABAAR cluster number at dendritic sites but also the decrease in γ2-GABAAR density within individual clusters at dendritic inhibitory synapses suggests that distal synapses are more sensitive to the loss of gephyrin expression than proximal synapses. The fact that these mice display behavioural features of anxiety and epilepsy emphasises the importance of postsynaptic γ2-GABAAR clustering for synaptic inhibition.


Asunto(s)
Proteínas Portadoras/genética , Potenciación a Largo Plazo , Proteínas de la Membrana/genética , Prosencéfalo/metabolismo , Receptores de GABA-A/metabolismo , Potenciales Sinápticos , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Giro Dentado/citología , Giro Dentado/metabolismo , Giro Dentado/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Prosencéfalo/citología , Prosencéfalo/fisiología , Receptores de GABA-A/genética , Sinapsis/metabolismo , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA