Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(16): 8663-8676, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37503841

RESUMEN

Deazaguanine DNA modifications are widespread in phages, particularly in those with pathogenic hosts. Pseudomonas phage iggy substitutes ∼16.5% of its genomic 2'-deoxyguanosine (G) with dPreQ0, and the iggy deazaguanine transglycosylase (DpdA) is unique in having a strict GA target motif, not observed previously. The iggy PreQ0 modification is shown to provide protection against both restriction endonucleases and Cas9 (when present in PAM), thus expanding our understanding of the deazaguanine modification system, its potential, and diversity. Phage iggy represents a new genus of Pseudomonas phages within the Queuovirinae subfamily; which have very little in common with other published phage genomes in terms of nucleotide similarity (<10%) and common proteins (<2%). Interestingly, shared similarity is concentrated in dpdA and preQ0 biosynthesis genes. TEM imaging confirmed a siphovirus morphology with a prolate icosahedral head and a non-contractile flexible tail with one long central tail spike. The observed protective effect of the deazaguanine modification on the iggy DNA may contribute to its broad within-species host range. Phage iggy was isolated on Pseudomonas aeruginosa PAO1, but also infects PDO300, PAK, PA14, as well as 10 of 27 tested environmental isolates and 13 of 20 tested clinical isolates of P. aeruginosa from patients with cystic fibrosis.


Asunto(s)
Bacteriófagos , ADN Viral , Desoxiguanosina , Fagos Pseudomonas , Humanos , Bacteriófagos/genética , Sistemas CRISPR-Cas , Fagos Pseudomonas/genética , Desoxiguanosina/análogos & derivados , ADN Viral/química
2.
Mol Ecol ; 32(6): 1236-1247, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36052951

RESUMEN

RNA and DNA modifications occur in eukaryotes and prokaryotes, as well as in their viruses, and serve a wide range of functions, from gene regulation to nucleic acid protection. Although the first nucleotide modification was discovered almost 100 years ago, new and unusual modifications are still being described. Nucleotide modifications have also received more attention lately because of their increased significance, but also because new sequencing approaches have eased their detection. Chiefly, third generation sequencing platforms PacBio and Nanopore offer direct detection of modified bases by measuring deviations of the signals. These unusual modifications are especially prevalent in bacteriophage genomes, the viruses of bacteria, where they mostly appear to protect DNA against degradation from host nucleases. In this Opinion article, we highlight and discuss current approaches to detect nucleotide modifications, including hardwares and softwares, and look onward to future applications, especially for studying unusual, rare, or complex genome modifications in bacteriophages. The ability to distinguish between several types of nucleotide modifications may even shed new light on metagenomic studies.


Asunto(s)
Bacteriófagos , Nucleótidos , Nucleótidos/metabolismo , Bacteriófagos/genética , Programas Informáticos , Metagenoma , Bacterias/genética , Bacterias/metabolismo , ADN/genética
3.
Arch Virol ; 168(2): 71, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36658443

RESUMEN

Despite the ecological significance of viral communities, phages remain insufficiently studied. Current genomic databases lack high-quality phage genome sequences linked to specific bacteria. Bacteria of the genus Erwinia are known to colonize the phyllosphere of plants, both as commensals and as pathogens. We isolated three Erwinia billingiae phages-Zoomie, Pecta, and Snitter-from organic household waste. Based on sequence similarity to their closest relatives, we propose that they represent three new genera: "Pectavirus" within the family Zobellviridae, "Snittervirus" in the subfamily Tempevirinae, family Drexlerviridae, and "Zoomievirus" within the family Autographiviridae, which, together with the genus Limelightvirus, may constitute a new subfamily.


Asunto(s)
Bacteriófagos , Erwinia , Bacteriófagos/genética , Genoma Viral , Erwinia/genética
4.
Arch Virol ; 168(3): 89, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36786922

RESUMEN

Despite Curtobacterium spp. often being associated with the plant phyllosphere, i.e., the areal region of different plant species, only one phage targeting a member of the genus Curtobacterium has been isolated so far. In this study, we isolated four novel plaque-forming Curtobacterium phages, Reje, Penoan, Parvaparticeps, and Pize, with two novel Curtobacterium strains as propagation hosts. Based on the low nucleotide intergenomic similarity (<32.4%) between these four phages and any phage with a genome sequence in the NCBI database, we propose the establishment of the four genera, "Rejevirus", "Pizevirus", "Penoanvirus", and "Parvaparticepsvirus", all in the class of Caudoviricetes.


Asunto(s)
Actinomycetales , Bacteriófagos , Bacteriófagos/genética , Actinomycetales/genética , Genoma Viral
5.
BMC Microbiol ; 22(1): 287, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456963

RESUMEN

BACKGROUND: Gut microbiota dysbiosis is associated with the development of non-alcoholic steatohepatitis (NASH) through modulation of gut barrier, inflammation, lipid metabolism, bile acid signaling and short-chain fatty acid production. The aim of this study was to describe the impact of a choline-deficient amino acid defined high fat diet (CDAHFD) on the gut microbiota in a male Göttingen Minipig model and on selected pathways implicated in the development of NASH. RESULTS: Eight weeks of CDAHFD resulted in a significantly altered colon microbiota mainly driven by the bacterial families Lachnospiraceae and Enterobacteriaceae, being decreased and increased in relative abundance, respectively. Metabolomics analysis revealed that CDAHFD decreased colon content of short-chain fatty acid and increased colonic pH. In addition, serum levels of the microbially produced metabolite imidazole propionate were significantly elevated as a consequence of CDAHFD feeding. Hepatic gene expression analysis showed upregulation of mechanistic target of rapamycin (mTOR) and Ras Homolog, MTORC1 binding in addition to downregulation of insulin receptor substrate 1, insulin receptor substrate 2 and the glucagon receptor in CDAHFD fed minipigs. Further, the consequences of CDAHFD feeding were associated with increased levels of circulating cholesterol, bile acids, and glucagon but not total amino acids. CONCLUSIONS: Our results indicate imidazole propionate as a new potentially relevant factor in relation to NASH and discuss the possible implication of gut microbiota dysbiosis in the development of NASH. In addition, the study emphasizes the need for considering the gut microbiota and its products when developing translational animal models for NASH.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Porcinos , Masculino , Disbiosis , Porcinos Enanos , Colina , Aminoácidos
6.
Arch Virol ; 167(10): 2049-2056, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35764845

RESUMEN

Some serovars of Salmonella can cause life-threatening diarrhoeal diseases and bacteriemia. The emergence of multidrug-resistant strains has led to a need for alternative treatments such as phage therapy, which requires available, well-described, diverse, and suitable phages. Phage akira was found to lyse 19 out of 32 Salmonella enterica serovars and farm isolates tested, although plaque formation was observed with only two S. Enteritidis and one S. Typhimurium strain. Phage akira encodes anti-defence genes against type 1 R-M systems, is distinct (<65% nucleotide sequence identity) from related phages and has siphovirus morphology. We propose that akira represents a new genus in the class Caudoviricetes.


Asunto(s)
Bacteriófagos , Fagos de Salmonella , Salmonella enterica , Siphoviridae , Bacteriófagos/genética , Fagos de Salmonella/genética , Salmonella enteritidis/genética , Salmonella typhimurium/genética
7.
Nucleic Acids Res ; 48(18): 10383-10396, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32941607

RESUMEN

In the constant evolutionary battle against mobile genetic elements (MGEs), bacteria have developed several defense mechanisms, some of which target the incoming, foreign nucleic acids e.g. restriction-modification (R-M) or CRISPR-Cas systems. Some of these MGEs, including bacteriophages, have in turn evolved different strategies to evade these hurdles. It was recently shown that the siphophage CAjan and 180 other viruses use 7-deazaguanine modifications in their DNA to evade bacterial R-M systems. Among others, phage CAjan genome contains a gene coding for a DNA-modifying homolog of a tRNA-deazapurine modification enzyme, together with four 7-cyano-7-deazaguanine synthesis genes. Using the CRISPR-Cas9 genome editing tool combined with the Nanopore Sequencing (ONT) we showed that the 7-deazaguanine modification in the CAjan genome is dependent on phage-encoded genes. The modification is also site-specific and is found mainly in two separate DNA sequence contexts: GA and GGC. Homology modeling of the modifying enzyme DpdA provides insight into its probable DNA binding surface and general mode of DNA recognition.


Asunto(s)
Bacteriófagos/genética , ADN/genética , Motivos de Nucleótidos/genética , Pirimidinonas/farmacología , Pirroles/farmacología , Bacteriófagos/efectos de los fármacos , Secuencia de Bases/efectos de los fármacos , Sistemas CRISPR-Cas/genética , ADN/efectos de los fármacos , Enzimas de Restricción-Modificación del ADN/efectos de los fármacos , Escherichia coli/virología , Edición Génica , Guanina/análogos & derivados , Guanina/farmacología , Humanos , Secuenciación de Nanoporos , Motivos de Nucleótidos/efectos de los fármacos , Siphoviridae/genética
8.
Am J Physiol Gastrointest Liver Physiol ; 321(1): G18-G28, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34009048

RESUMEN

Preterm infants are at high risks of sepsis and necrotizing enterocolitis (NEC). Some develop sepsis shortly after suspected or confirmed NEC, implying that NEC may predispose to sepsis but the underlying mechanisms are unknown. Using NEC-sensitive preterm pigs as models, we investigated the immune status in animals following development of subclinical NEC-like lesions with variable severities. Caesarean-delivered preterm pigs were reared until day 5 or day 9. Blood was analyzed for T-cell subsets, neutrophil phagocytosis, transcriptomics, and immune responses to in vitro LPS challenge. Gut tissues were used for histology and cytokine analyses. Pigs with/without macroscopic NEC lesions were scored as healthy, mild, or severe NEC. Overall NEC incidence was similar on day 5 and day 9 (61%-62%) but with lower severity on day 9, implying gradual mucosal repair following the early phase of NEC. Pigs with NEC showed decreased goblet cell density and increased MPO+ and CD3+ cell infiltration in the distal small intestine or colon. Mild or severe NEC lesions had limited effects on circulating parameters on day 5. On day 9, pigs with NEC lesions (especially severe lesions) showed systemic immune suppression, as indicated by elevated Treg frequency, impaired neutrophil phagocytosis, low expression of genes related to innate immunity and Th1 polarization, and diminished LPS-induced immune responses. In conclusion, we shows evidence for NEC-induced systemic immune suppression, even with mild and subclinical NEC lesions. The results help to explain that preterm infants suffering from NEC may show high sensitivity to later secondary infections and sepsis.NEW & NOTEWORTHY Necrotizing enterocolitis (NEC) and sepsis are common diseases in preterm infants. Many develop sepsis following an episode of suspected NEC, suggesting NEC as a predisposing factor for sepsis but mechanisms are unclear. Using preterm pigs as a model, now we show that subclinical NEC lesions, independent of clinical confounding factors, induces systemic immune suppression. The results may help to explain the increased risks of infection and sepsis in preterm infants with previous NEC diagnosis.


Asunto(s)
Citocinas/metabolismo , Enterocolitis Necrotizante/metabolismo , Neutrófilos/inmunología , Sepsis/inmunología , Animales , Animales Recién Nacidos , Femenino , Neutrófilos/metabolismo , Embarazo , Nacimiento Prematuro , Riesgo , Sepsis/complicaciones , Porcinos
9.
Plasmid ; 115: 102576, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33872684

RESUMEN

Mobile genetic elements (MGEs) are instrumental in natural prokaryotic genome editing, permitting genome plasticity and allowing microbes to accumulate genetic diversity. MGEs serve as a vast communal gene pool and include DNA elements such as plasmids and bacteriophages (phages) among others. These mobile DNA elements represent a human health risk as they can introduce new traits, such as antibiotic resistance or virulence, to a bacterial strain. Sequencing libraries targeting environmental circular MGEs, referred to as metamobilomes, may broaden our current understanding of the mechanisms behind the mobility, prevalence and content of these elements. However, metamobilomics is affected by a severe bias towards small circular elements, introduced by multiple displacement amplification (MDA). MDA is typically used to overcome limiting DNA quantities after the removal of non-circular DNA during library preparations. By examining the relationship between sequencing coverage and the size of circular MGEs in paired metamobilome datasets with and without MDA, we show that larger circular elements are lost when using MDA. This study is the first to systematically demonstrate that MDA is detrimental to detecting larger-sized plasmids if small plasmids are present. It is also the first to show that MDA can be omitted when using enzyme-based DNA fragmentation and PCR in library preparation kits such as Nextera XT® from Illumina.


Asunto(s)
Bacteriófagos , Secuenciación de Nucleótidos de Alto Rendimiento , Bacterias/genética , Bacteriófagos/genética , Humanos , Plásmidos/genética
10.
Arch Virol ; 166(2): 593-599, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33392817

RESUMEN

Enterococcus phage Nonaheksakonda was isolated from wastewater, using a vancomycin-resistant strain of the opportunistic pathogen Enterococcus faecalis (VRE) as a host. Nonaheksakonda is a lytic phage infecting E. faecalis V583 and clinical isolates with at least four different multi-locus sequence types (MLSTs). The genome is a 41.9-kb double-stranded DNA molecule (34.6% GC) with 74 coding sequences. Comparative analysis revealed only one close relative, Enterococcus phage heks. All other phages had low protein similarity and shared less than 54% nucleotide sequence identity with phage Nonaheksakonda. The most similar phages were all classified and unclassified efquatroviruses. We propose that the phages Nonaheksakonda and heks represent a novel genus within the family Siphoviridae, order Caudovirales, for which we propose the name "Nonaheksakondavirus".


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Enterococcus faecalis/virología , Siphoviridae/genética , Siphoviridae/aislamiento & purificación , ADN/genética , Genoma Viral/genética
11.
J Immunol ; 202(1): 142-150, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30487172

RESUMEN

Epidemiological studies have shown that children born by cesarean section (CS) are at higher risk of developing chronic inflammatory diseases, and it has been suggested that a skewed gut microbial colonization process early in life and altered priming of the immune system are causative. The aim of this study was to clarify whether impaired regulatory immunity in CS-delivered C57BL/6 mice is dependent on gut microbiota (GM) disturbances. The GM of conventionally bred mice born by CS differed clearly from mice born by vaginal delivery. The proportion of regulatory T cells was reduced in mice born by CS, whereas the invariant NKT (iNKT) cell subset was increased compared with vaginal delivery mice. In addition, regulatory markers (Foxp3, Il10, Ctla4) and macrophage markers (Cd11c, Egr2, Nos2) were downregulated, whereas iNKT markers (Il4, Il15) were upregulated in ileum of CS-delivered mice. The GM of CS-delivered mice was sufficient to transfer the shifts in immunity associated with delivery mode when inoculated into germ-free mice. Feeding a prebiotic diet reestablished gene expression of intestinal immune markers and iNKT cells in CS mice but was not sufficient to restore the level of regulatory T cells. The results support that CS delivery is associated with microbiota-mediated shifts in regulatory immunity and, therefore, provide a basis for future microbiota-directed therapeutics to infants born by CS.


Asunto(s)
Cesárea , Microbioma Gastrointestinal/inmunología , Inflamación/inmunología , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Células T Asesinas Naturales/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígeno CD11c/metabolismo , Cesárea/efectos adversos , Dieta , Factores de Transcripción Forkhead/metabolismo , Humanos , Inflamación/dietoterapia , Interleucina-4/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Prebióticos/administración & dosificación , Riesgo
12.
Gut ; 69(12): 2122-2130, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165408

RESUMEN

OBJECTIVE: Development of obesity and type 2 diabetes (T2D) are associated with gut microbiota (GM) changes. The gut viral community is predominated by bacteriophages (phages), which are viruses that attack bacteria in a host-specific manner. The antagonistic behaviour of phages has the potential to alter the GM. As a proof-of-concept, we demonstrate the efficacy of faecal virome transplantation (FVT) from lean donors for shifting the phenotype of obese mice into closer resemblance of lean mice. DESIGN: The FVT consisted of viromes with distinct profiles extracted from the caecal content of mice from different vendors that were fed a low-fat (LF) diet for 14 weeks. Male C57BL/6NTac mice were divided into five groups: LF (as diet control), high-fat (HF) diet, HF+ampicillin (Amp), HF+Amp+FVT and HF+FVT. At weeks 6 and 7 of the study, the HF+FVT and HF+Amp+FVT mice were treated with FVT by oral gavage. The Amp groups were treated with Amp 24 hours prior to first FVT treatment. RESULTS: Six weeks after first FVT, the HF+FVT mice showed a significant decrease in weight gain compared with the HF group. Further, glucose tolerance was comparable between the LF and HF+FVT mice, while the other HF groups all had impaired glucose tolerance. These observations were supported by significant shifts in GM composition, blood plasma metabolome and expression levels of genes associated with obesity and T2D development. CONCLUSIONS: Transfer of caecal viral communities from mice with a lean phenotype into mice with an obese phenotype led to reduced weight gain and normalised blood glucose parameters relative to lean mice. We hypothesise that this effect is mediated via FVT-induced GM changes.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Trasplante de Microbiota Fecal , Obesidad/terapia , Viroma , Animales , Glucemia/análisis , Diabetes Mellitus Experimental/terapia , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Expresión Génica , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas Klotho , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaboloma , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Prueba de Estudio Conceptual , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Aumento de Peso
13.
Diabetologia ; 62(9): 1689-1700, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31139852

RESUMEN

AIMS/HYPOTHESIS: Adopting a diet containing indigestible fibre compounds such as prebiotics to fuel advantageous bacteria has proven beneficial for alleviating inflammation. The effect of the microbial changes on autoimmunity, however, remains unknown. We studied the effects of prebiotic xylooligosaccharides (XOS) on pancreatic islet and salivary gland inflammation in NOD mice and tested whether these were mediated by the gut microbiota. METHODS: Mother and offspring mice were fed an XOS-supplemented diet until diabetes onset or weaning and were compared with a control-fed group. Diabetes incidence was monitored, insulitis and sialadenitis were scored in histological sections from adult mice, and several metabolic and immune variables were analysed in mice before the development of diabetes. Gut barrier function was assessed using an in vivo FITC-dextran permeability test. The importance of XOS-mediated gut microbial changes were evaluated in antibiotic-treated mice fed either XOS or control diet or given a faecal microbiota transplant from test animals. RESULTS: Diabetes onset was delayed in the XOS-fed mice, which also had fewer cellular infiltrations in their pancreatic islets and salivary glands. Interestingly, insulitis was most reduced in the XOS-fed groups when the mice were also treated with an antibiotic cocktail. There was no difference in sialadenitis between the dietary groups treated with antibiotics; the mice were protected by microbiota depletion regardless of diet. Faecal microbiota transplantation was not able to transfer protection. No major differences in glucose-insulin regulation, glucagon-like peptide-1, or short-chain fatty acid production were related to the XOS diet. The XOS diet did, however, reduce gut permeability markers in the small and large intestine. This was accompanied by a more anti-inflammatory environment locally and systemically, dominated by a shift from M1 to M2 macrophages, a higher abundance of activated regulatory T cells, and lower levels of induction of natural killer T cells and cytotoxic T cells. CONCLUSIONS/INTERPRETATION: Prebiotic XOS have microbiota-dependent effects on salivary gland inflammation and microbiota-independent effects on pancreatic islet pathology that are accompanied by an improved gut barrier that seems able to heighten control of intestinal diabetogenic antigens that have the potential to penetrate the mucosa to activate autoreactive immune responses.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Prebióticos , Animales , Autoinmunidad/fisiología , Suplementos Dietéticos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Glucuronatos/uso terapéutico , Ratones , Ratones Endogámicos NOD , Oligosacáridos/uso terapéutico
14.
Am J Physiol Gastrointest Liver Physiol ; 317(1): G67-G77, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31091150

RESUMEN

Prenatal inflammation may predispose to preterm birth and postnatal inflammatory disorders such as necrotizing enterocolitis (NEC). Bioactive milk ingredients may help to support gut maturation in such neonates, but mother's milk is often insufficient after preterm birth. We hypothesized that supplementation with bioactive ingredients from bovine milk [osteopontin (OPN), caseinoglycomacropeptide (CGMP), colostrum (COL)] supports gut, immunity, and NEC resistance in neonates born preterm after gram-negative infection before birth. Using preterm pigs as a model for preterm infants, fetal pigs were given intraamniotic injections of lipopolysaccharide (LPS; 1 mg/fetus) and delivered 3 days later (90% gestation). For 5 days, groups of LPS-exposed pigs were fed formula (FOR), bovine colostrum (COL), or formula enriched with OPN or CGMP. LPS induced intraamniotic inflammation and postnatal systemic inflammation but limited effects on postnatal gut parameters and NEC. Relative to FOR, COL feeding to LPS-exposed pigs showed less diarrhea, NEC severity, reduced gut IL-1ß and IL-8 levels, greater gut goblet cell density and digestive enzyme activities, and blood helper T-cell fraction. CGMP improved neonatal arousal and gut lactase activities and reduced LPS-induced IL-8 secretion in intestinal epithelial cells (IECs) in vitro. Finally, OPN tended to reduce diarrhea and stimulated IEC proliferation in vitro. No effects on villus morphology, circulating cytokines, or colonic microbiota were observed among groups. In conclusion, bioactive milk ingredients exerted only modest effects on gut and systemic immune parameters in preterm pigs exposed to prenatal inflammation. Short-term, prenatal exposure to inflammation may render the gut less sensitive to immune-modulatory milk effects. NEW & NOTEWORTHY Prenatal inflammation is a risk factor for preterm birth and postnatal complications including infections. However, from clinical studies, it is difficult to separate the effects of only prenatal inflammation from preterm birth. Using cesarean-delivered preterm pigs with prenatal inflammation, we documented some beneficial gut effects of bioactive milk diets relative to formula, but prenatal inflammation appeared to decrease the sensitivity of enteral feeding. Special treatments and diets may be required for this neonatal population.


Asunto(s)
Caseínas/administración & dosificación , Corioamnionitis/dietoterapia , Enterocolitis Necrotizante/prevención & control , Alimentos Fortificados , Inmunidad Mucosa , Fórmulas Infantiles , Intestinos/inmunología , Osteopontina/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Nacimiento Prematuro , Animales , Animales Recién Nacidos , Caseínas/inmunología , Línea Celular , Corioamnionitis/inducido químicamente , Corioamnionitis/inmunología , Corioamnionitis/metabolismo , Calostro/inmunología , Modelos Animales de Enfermedad , Enterocolitis Necrotizante/etiología , Enterocolitis Necrotizante/inmunología , Enterocolitis Necrotizante/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Femenino , Microbioma Gastrointestinal , Edad Gestacional , Humanos , Recién Nacido , Absorción Intestinal , Intestinos/microbiología , Intestinos/patología , Lipopolisacáridos , Valor Nutritivo , Osteopontina/inmunología , Fragmentos de Péptidos/inmunología , Permeabilidad , Embarazo , Sus scrofa
15.
BMC Microbiol ; 19(1): 277, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31823731

RESUMEN

BACKGROUND: Childhood malnutrition is a global health challenge associated with multiple adverse consequences, including delayed maturation of the gut microbiota (GM) which might induce long-term immune dysfunction and stunting. To understand GM dynamics during malnutrition and subsequent re-feeding, we used a piglet model with a malnutrition-induced phenotype similar to humans. Piglets were weaned at the age of 4 weeks, fed a nutritionally optimal diet for 1 week post-weaning before being fed a pure maize diet for 7 weeks to induce symptoms of malnutrition. After malnourishment, the piglets were re-fed using different regimes all based on general food aid products, namely Corn-Soy blend (CSB) fortified with phosphorus (CSB+), CSB fortified with phosphorus and skim milk powder (CSB++) and CSB fortified with phosphorus and added whey permeate (CSB + P). RESULTS: Malnourishment had profound impact on the GM of the piglets leading to a less diverse GM dominated especially by Akkermansia spp. as determined by 16S rRNA gene amplicon sequencing. All three re-feeding regimes partly restored GM, leading to a more diverse GM compositionally closer to that of well-nourished piglets. This effect was even more pronounced for CSB++ compared to CSB+ and CSB + P. CONCLUSION: The GM of piglets were profoundly disturbed by malnourishment resulting in significantly increased abundance of Akkermansia spp. CSB++ may have superior effect on recovering GM diversity compared to the two other food aid products used in this study.


Asunto(s)
Alimentación Animal/análisis , Disbiosis , Microbioma Gastrointestinal , Desnutrición/complicaciones , Factores de Edad , Animales , Bacterias/clasificación , Niño , Modelos Animales de Enfermedad , Femenino , Humanos , Desnutrición/microbiología , Leche , Fósforo/administración & dosificación , ARN Ribosómico 16S/genética , Glycine max , Porcinos , Destete , Proteína de Suero de Leche/administración & dosificación , Zea mays
16.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G855-G867, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118350

RESUMEN

Preterm infants have immature organ functions that predispose them to gut and immune disorders. Developmental delays at preterm birth may affect various organs differently at term-corrected age. We hypothesized that gut and immune maturation in moderately preterm neonates depends more on birth and postnatal factors than on advancing postconceptional age (PCA). Using preterm pigs as models, we investigated how gut and immune parameters develop until term-corrected age and how these differ from those in term counterparts. Preterm ( n = 43, 106 days of gestation) and term pigs ( n = 41, 116 days of gestation) were delivered by caesarean section and euthanized at birth ( day 1) or postnatal day 11 (term-corrected age for preterm pigs) using identical rearing conditions. Relative to term pigs, preterm pigs had lower blood oxygenation, glucose, and cortisol levels, lower gut lactase activity, villus height, and goblet cell density, and lower blood neutrophil, helper T, and cytotoxic T cell numbers at birth. Despite slower growth in preterm pigs, most intestinal and immune parameters increased markedly after birth in both groups. However, some parameters remained negatively affected by preterm birth until postnatal day 11 (goblet cells, gut permeability, and cytotoxic T cells). The colon microbiota showed limited differences between preterm and term pigs at this time. At the same PCA, preterm 11-day-old pigs had higher blood leukocyte numbers and gut enzyme activities but lower villus height and blood cytotoxic T cell numbers relative to newborn term pigs. Birth and postnatal factors, not advancing PCA, are key determinants of gut and immune maturation in moderately preterm neonates. NEW & NOTEWORTHY Postnatally, preterm infants are often considered to reach a physiological maturation similar to that in term infants when they reach term-corrected postconceptional age (PCA). Using preterm pigs as models, we show that PCA may be a poor measure of gut and immune maturation because environmental triggers (regardless of PCA at birth) are critical. Possibly, PCA is only relevant to evaluate physiological maturation of organs that develop relatively independent of the external environment (e.g., the brain).


Asunto(s)
Enterocolitis Necrotizante/etiología , Desarrollo Fetal , Sistema Inmunológico/crecimiento & desarrollo , Intestinos/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Glucemia/análisis , Femenino , Células Caliciformes/citología , Hidrocortisona/sangre , Sistema Inmunológico/embriología , Sistema Inmunológico/inmunología , Intestinos/embriología , Intestinos/inmunología , Embarazo , Porcinos , Linfocitos T/inmunología
17.
Diabetes Metab Res Rev ; 34(6): e3010, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29637693

RESUMEN

BACKGROUND: Oral insulin as a preventive strategy and/or treatment of type 1 diabetes has been the target of much research. Producing oral insulins is a complex and challenging task, with numerous pitfalls, due to physiological, physical, and biochemical barriers. Our aim was to determine the impact of oral insulin on the delicate gut microbiota composition. METHODS: Female nonobese diabetic mice were given oral porcine insulin 2 times a week from 5 weeks of age for 4 weeks, and then subsequently once a week for 21 weeks, or until euthanized. The mice were divided into groups on a gluten-reduced diet or a standard diet. Gut microbiota composition was analysed based on faecal samples, and the type 1 diabetes incidence of the mice was monitored. RESULTS: We observed no influence of the oral porcine insulin on the gut microbiota composition of mice on a gluten-reduced or a standard diet at 9 weeks of age. Also, the administration of oral insulin did not influence the incidence of type 1 diabetes at 30 weeks of age. CONCLUSIONS: Oral porcine insulin does not alter the gut microbiota composition of nonobese diabetic mice on either a gluten-reduced diet or standard diet. Also, the oral porcine insulin did not influence the incidence of type 1 diabetes in the groups.


Asunto(s)
Diabetes Mellitus Experimental/microbiología , Diabetes Mellitus Tipo 1/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Insulina Regular Porcina/administración & dosificación , Administración Oral , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/patología , Disbiosis/inmunología , Disbiosis/patología , Heces/microbiología , Femenino , Insulina Regular Porcina/efectos adversos , Ratones , Ratones Endogámicos NOD , Porcinos
18.
Appl Microbiol Biotechnol ; 102(20): 8827-8840, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30121748

RESUMEN

This study aimed to evaluate the effects of three treatments, i.e., Bifidobacterium longum BB-46 (T1), B. longum BB-46 combined with the pectin (T2), and harsh extracted pectin from lemon (T3) on obesity-related microbiota using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). The effects of the treatments were assessed by the analysis of the intestinal microbial composition (using 16S rRNA gene amplicon sequencing) and the levels of short-chain fatty acids (SCFAs) and ammonium ions (NH4+). Treatments T2 and T3 stimulated members of the Ruminococcaceae and Succinivibrionaceae families, which were positively correlated with an increase in butyric and acetic acids. Proteolytic bacteria were reduced by the two treatments, concurrently with a decrease in NH4+. Treatment T1 stimulated the production of butyric acid in the simulated transverse and descending colon, reduction of NH4+ as well as the growth of genera Lactobacillus, Megamonas, and members of Lachnospiracea. The results indicate that both B. longum BB-46 and pectin can modulate the obesity-related microbiota; however, when the pectin is combined with B. longum BB-46, the predominant effect of the pectin can be observed. This study showed that the citric pectin is able to stimulate butyrate-producing bacteria as well as genera related with anti-inflammatory effects. However, prospective clinical studies are necessary to evaluate the anti/pro-obesogenic and inflammatory effects of this pectin for future prevention of obesity.


Asunto(s)
Bacterias/aislamiento & purificación , Bifidobacterium longum/fisiología , Microbioma Gastrointestinal , Obesidad/microbiología , Pectinas/metabolismo , Probióticos/administración & dosificación , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Butiratos/metabolismo , Ácidos Grasos Volátiles , Heces/microbiología , Fermentación , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Filogenia
19.
Mol Microbiol ; 99(4): 719-28, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26514343

RESUMEN

A transcriptome study was performed on Sulfolobus islandicus REY15A actively undergoing CRISPR spacer acquisition from the crenarchaeal monocaudavirus STSV2 in rich and basal media over a 6 day period. Spacer acquisition preceded strong host growth retardation, altered transcriptional activity of four different CRISPR-Cas modules and changes in viral copy numbers, and with significant differences in the two media. Transcript levels of proteins involved in the cell cycle were reduced, whereas those of DNA replication, DNA repair, transcriptional regulation and some antitoxin-toxin pairs and transposases were unchanged or enhanced. Antisense RNAs were implicated in the transcriptional regulation of adaptation and interference modules of the type I-A CRISPR-Cas system, and evidence was found for the occurrence of functional co-ordination between the single CRISPR-Cas adaptation module and the functionally diverse interference modules.


Asunto(s)
Virus de Archaea/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sulfolobus/genética , Sulfolobus/virología , Transcriptoma , Replicación del ADN/genética , ADN Viral/genética , Regulación de la Expresión Génica Arqueal , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Sulfolobus/crecimiento & desarrollo , Activación Transcripcional , Replicación Viral/genética
20.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28039135

RESUMEN

Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed.IMPORTANCEStreptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations.


Asunto(s)
Recombinación Genética , Fagos de Streptococcus/clasificación , Fagos de Streptococcus/genética , Streptococcus thermophilus/virología , Fagos de Bacillus , Queso/microbiología , Queso/virología , Productos Lácteos Cultivados/microbiología , Productos Lácteos Cultivados/virología , Empaquetamiento del ADN , ADN Viral , Fermentación , Microbiología de Alimentos , Genoma Viral , Lactococcus lactis/virología , Microscopía Electrónica de Transmisión , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Fagos de Streptococcus/aislamiento & purificación , Fagos de Streptococcus/ultraestructura , Proteínas Estructurales Virales/aislamiento & purificación , Yogur/microbiología , Yogur/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA