Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Pharm Dev Technol ; : 1-7, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38995216

RESUMEN

The appearance of an extrudate formulation was monitored during hot-melt extrusion (HME) continuous manufacturing over 3 days. The formulation matrix consisted of a polymeric component, copovidone, and a low molecular weight surfactant, polysorbate 80. Based on studies prior to the continuous manufacturing, the desired appearance of the target extrudate is translucent. Although process parameters such as feed rate and screw speed were fixed during the continuous manufacturing, the extrudate appearance changed over time from turbid to translucent. For root-cause investigation, the extrudates were analyzed offline by differential scanning calorimetry (DSC) and advanced polymer chromatography (APC™). Although the polysorbate 80 content of both turbid and translucent extrudates was within target, the glass transition temperature of the turbid extrudate was 2 °C above expected value. The observed turbidity was traced to lot-to-lot variability of the polysorbate 80 used in the continuous manufacturing, where APC™ analysis revealed that the relative content of the low molecular weight component varied from 23% to 27% in correlation with the evolution from turbid to translucent extrudates. This work stresses the importance of taking feeding material variability into account during continuous manufacturing.

2.
Mol Pharm ; 18(11): 3999-4014, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34570503

RESUMEN

Amorphous solid dispersions (ASDs) are commonly used to orally deliver small-molecule drugs that are poorly water-soluble. ASDs consist of drug molecules in the amorphous form which are dispersed in a hydrophilic polymer matrix. Producing a high-performance ASD is critical for effective drug delivery and depends on many factors such as solubility of the drug in the matrix and the rate of drug release in aqueous medium (dissolution), which is linked to bioperformance. Often, researchers perform a large number of design iterations to achieve this objective. A detailed molecular-level understanding of the mechanisms behind ASD dissolution behavior would aid in the screening, designing, and optimization of ASD formulations and would minimize the need for testing a wide variety of prototype formulations. Molecular dynamics and related types of simulations, which model the collective behavior of molecules in condensed phase systems, can provide unique insights into these mechanisms. To study the effectiveness of these simulation techniques in ASD formulation dissolution, we carried out dissipative particle dynamics simulations, which are particularly an efficient form of molecular dynamics calculations. We studied two stages of the dissolution process: the early-stage of the dissolution process, which focuses on the dissolution at the ASD/water interface, and the late-stage of the dissolution process, where significant drug release would have occurred and there would be a mixture of drug and polymer molecules in a predominantly aqueous environment. Experimentally, we used Fourier transform infrared spectroscopy to study the interactions between drugs, polymers, and water in the dry and wet states and the chromatographic technique to study the rate of drug and polymer release. Both experiments and simulations provided evidence of polymer microstructures and drug-polymer interactions as important factors for the dissolution behavior of the investigated ASDs, consistent with previous work by Pudlas et al. (Eur. J. Pharm. Sci.2015, 67, 21-31). As experimental and simulation results are consistent and complementary, it is clear that there is significant potential for combined experimental and computational research for a detailed understanding of ASD formulations and, hence, formulation optimization.


Asunto(s)
Composición de Medicamentos/métodos , Liberación de Fármacos , Excipientes/química , Polímeros/química , Disponibilidad Biológica , Química Farmacéutica , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
3.
Mol Pharm ; 17(7): 2721-2733, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32463685

RESUMEN

Understanding and prevention of unwanted changes of a pharmaceutical formulation during the production process is part of the critical requirements for the successful approval of a new drug product. Polymer-based formulations, so-called amorphous solid dispersions (ASDs), are often produced via solvent-based processes. In such processes, active pharmaceutical ingredients (APIs) and polymers are first dissolved in a solvent or solvent mixture, then the solvent is evaporated, for example, via spray drying or rotary evaporation. During the drying step, unwanted liquid-liquid phase separation may occur, leading to polymer-rich and API-rich regions with crystallization potential, and thus, heterogeneities and a two-phasic system in the final ASD. Phase separation in ASDs may impact their bioperformance because of the locally higher degree of API supersaturation. Although it is known that the choice of the solvent plays an important role in the formation of heterogeneities, solvent-impact on ASD drying and eventual product quality is often neglected in the process design. This study aims to investigate for the first time the phase behavior and drying process of API/polymer/solvents systems from a thermodynamic perspective. Unwanted phase changes during the drying process of the ASD containing hydroxypropyl methylcellulose acetate succinate and naproxen prepared from acetone/water or ethanol/water solvent mixtures were predicted using the thermodynamic model PC-SAFT. The predicted phase behavior and drying curves were successfully validated by confocal Raman spectroscopy.


Asunto(s)
Química Farmacéutica/métodos , Desecación/métodos , Composición de Medicamentos/métodos , Naproxeno/química , Polímeros/química , Solventes/química , Acetona/química , Cristalización , Etanol/química , Metilcelulosa/análogos & derivados , Metilcelulosa/química , Modelos Químicos , Transición de Fase , Solubilidad , Espectrometría Raman/instrumentación , Espectrometría Raman/métodos , Termodinámica , Agua/química
4.
Pharm Res ; 35(1): 25, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29305717

RESUMEN

PURPOSE: The oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs) can be improved by the preparation of amorphous solid dispersions (ASDs) where the API is dissolved in polymeric excipients. Desired properties of such ASDs like storage stability, dissolution behavior, and processability can be optimized by additional excipients. In this work, the influence of so-called low-molecular-weight excipients (LMWEs) on the phase behavior of ASDs was investigated. METHOD: Binary ASDs of an amorphous API, naproxen (NAP) or acetaminophen (APAP), embedded in poly-(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) were chosen as reference systems. Polyethylene glycol 1500 (PEG1500), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS1000), propylene glycol monocaprylate type II (Capryol™ 90), and propylene glycol monolaurate type I (Lauroglycol™ FCC) were used as LMWEs. The API solubility in the excipients and the glass-transition temperature of the ASDs were modeled using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) and the Kwei equation, respectively, and compared to corresponding experimental data. RESULTS: The API solubility curves in ternary systems with 90/10 wt%/wt% PVPVA64/LMWE ratios were very close to those in pure PVPVA64. However, the glass-transition temperatures of API/PVPVA64/LMWE ASDs were much lower than those of API/PVPVA64 ASDs. These effects were determined experimentally and agreed with the predictions using the PC-SAFT and Kwei models. CONCLUSION: The impact of the LMWEs on the thermodynamic stability of the ASDs is quite small while the kinetic stability is significantly decreased even by small LMWE amounts. PC-SAFT and the Kwei equation are suitable tools for predicting the influence of LMWEs on the ASD phase behavior.


Asunto(s)
Excipientes/química , Modelos Moleculares , Transición de Fase , Pirrolidinas/química , Compuestos de Vinilo/química , Acetaminofén/química , Administración Oral , Química Farmacéutica/métodos , Humanos , Peso Molecular , Naproxeno/química , Polietilenglicoles/química , Solubilidad , Termodinámica , Temperatura de Transición , alfa-Tocoferol/química
5.
AAPS PharmSciTech ; 19(4): 1592-1605, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29488197

RESUMEN

The aim of this work was to investigate the use of torasemide as a highly sensitive indicator substance and to develop a formulation thereof for establishing quantitative relationships between hot-melt extrusion process conditions and critical quality attributes (CQAs). Using solid-state characterization techniques and a 10 mm lab-scale co-rotating twin-screw extruder, we studied torasemide in a Soluplus® (SOL)-polyethylene glycol 1500 (PEG 1500) matrix, and developed and characterized a formulation which was used as a process indicator to study thermal- and hydrolysis-induced degradation, as well as residual crystallinity. We found that torasemide first dissolved into the matrix and then degraded. Based on this mechanism, extrudates with measurable levels of degradation and residual crystallinity were produced, depending strongly on the main barrel and die temperature and residence time applied. In addition, we found that 10% w/w PEG 1500 as plasticizer resulted in the widest operating space with the widest range of measurable residual crystallinity and degradant levels. Torasemide as an indicator substance behaves like a challenging-to-process API, only with higher sensitivity and more pronounced effects, e.g., degradation and residual crystallinity. Application of a model formulation containing torasemide will enhance the understanding of the dynamic environment inside an extruder and elucidate the cumulative thermal and hydrolysis effects of the extrusion process. The use of such a formulation will also facilitate rational process development and scaling by establishing clear links between process conditions and CQAs.


Asunto(s)
Antihipertensivos/farmacocinética , Química Farmacéutica/métodos , Calor , Sulfonamidas/química , Antihipertensivos/química , Polímeros , Sulfonamidas/farmacocinética , Torasemida , Difracción de Rayos X/métodos
6.
Mol Pharm ; 14(12): 4374-4386, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29050468

RESUMEN

The purpose of this work is to compare the long-term physical stability of amorphous solid dispersion (ASD) formulations based on three different commercially used excipients, namely, poly(vinylpyrrolidone) K25 (PVP), poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64), and hydroxypropyl methylcellulose acetate succinate 126G (HPMCAS), at standardized ICH storage conditions, 25 °C/0% relative humidity (RH), 25 °C/60% RH, and 40 °C/75% RH. Acetaminophen (APAP) and naproxen (NAP) were used as active pharmaceutical ingredients (APIs). 18 month long stability studies of these formulations were analyzed and compared with the API/polymer phase diagrams, which were modeled and predicted by applying the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) and the Gordon-Taylor or Kwei equation. The study showed that, at dry storage, the solubility of the APIs in the polymers and the kinetic stabilizing ability of the polymers increase in the following order: HPMCAS < PVPVA64 < PVP. RH significantly reduces the kinetic stabilization as well as NAP solubility in the polymers, while the impact on APAP solubility is small. The impact of RH on the stability increases with increasing hydrophilicity of the pure polymers (HPMCAS < PVPVA64 < PVP). The experimental stability results were in very good agreement with predictions confirming that PC-SAFT and the Kwei equation are suitable predictive tools for determining appropriate ASD compositions and storage conditions to ensure long-term physical stability.


Asunto(s)
Portadores de Fármacos/química , Composición de Medicamentos , Excipientes/química , Acetaminofén/administración & dosificación , Acetaminofén/química , Química Farmacéutica , Cristalización , Estabilidad de Medicamentos , Humedad , Cinética , Metilcelulosa/análogos & derivados , Metilcelulosa/química , Modelos Químicos , Naproxeno/administración & dosificación , Naproxeno/química , Povidona/química , Pirrolidinas/química , Solubilidad , Termodinámica , Compuestos de Vinilo/química
7.
Mol Pharm ; 14(1): 157-171, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28043133

RESUMEN

The preparation of amorphous solid dispersion (ASD) formulations is a promising strategy to improve the bioavailability of an active pharmaceutical ingredient (API). By dissolving the API in a polymer it is stabilized in its amorphous form, which usually shows higher water solubility than its crystalline counterpart. To prevent recrystallization, the long-term physical stability of ASD formulations is of big interest. In this work, the solubility of the APIs acetaminophen and naproxen in the excipient polymers poly(vinylpyrrolidone) (PVP K25) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) was calculated with three models: the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT), the Flory-Huggins model (FH), and an empirical model (Kyeremateng et al., J. Pharm. Sci, 2014, 103, 2847-2858). PC-SAFT and FH were further used to predict the influence of relative humidity (RH) on the API solubility in the polymers. The Gordon-Taylor equation was applied to model the glass-transition temperature of dry ASD and at humid conditions. The calculations were validated by 18 months-long stability studies at standardized storage conditions, 25 °C/0% RH, 25 °C/60% RH, and 40 °C/75% RH. The results of the three modeling approaches for the API solubility in polymers agreed with the experimental solubility data, which are only accessible at high temperatures in dry polymers. However, at room temperature FH resulted in a lower solubility of the APIs in the dry polymers than PC-SAFT and the empirical model. The impact of RH on the solubility of acetaminophen was predicted to be small, but naproxen solubility in the polymers was predicted to decrease with increasing RH with both, PC-SAFT and FH. At 25 °C/60% RH and 40 °C/75% RH, PC-SAFT is in agreement with all results of the long-term stability studies, while FH underestimates the acetaminophen solubility in PVP K25 and PVPVA64.


Asunto(s)
Polivinilos/química , Povidona/análogos & derivados , Pirrolidinas/química , Acetaminofén/química , Disponibilidad Biológica , Química Farmacéutica/métodos , Estabilidad de Medicamentos , Excipientes/química , Naproxeno/química , Povidona/química , Solubilidad , Termodinámica , Temperatura de Transición
8.
Mol Pharm ; 14(12): 4636-4647, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29111751

RESUMEN

Inhibition of recrystallization of the drug substance in kinetically stabilized amorphous solid dispersions (ASDs) within and beyond shelf life is still a matter of debate. Generally, these ASD systems are considered to be prone to recrystallization, but examples of their long-term stability are emerging in the literature. Since, in some cases, the formation of crystals may impact bioavailability, recrystallization may present a relevant risk for patients as it potentially lowers the effective dose of the formulation. This study shows that such metastable formulations may indeed remain amorphous even after 15 years of storage under ambient conditions. A formulation of fenofibrate stored for 15 years was compared to a freshly prepared batch. A complete physicochemical characterization regarding content, purity, water content and glass transition was conducted. The emphasis of this physicochemical characterization was on crystallinity as a critical quality attribute: polarized light microscopy (PLM) was used as the standard qualitative method and X-ray powder diffraction (XRPD) as the standard quantitative method. An investigation of the crystal growth kinetics by transmission Raman spectroscopy (TRS) was conducted to build a predictive model. The model was applied successfully to predict the observed physical state of the 15-year-old samples. The observations presented here demonstrate that kinetic stabilization alone is able to prevent crystallization in ASDs over prolonged storage periods, suggesting the need for a reassessment of the risk perception for this kind of ASD formulations.


Asunto(s)
Fenofibrato/química , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Cristalización , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Humedad , Cinética , Microscopía , Modelos Químicos , Polvos , Solubilidad , Espectrometría Raman , Factores de Tiempo , Difracción de Rayos X
9.
Mol Pharm ; 14(1): 183-192, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28043131

RESUMEN

Kinetically stabilized amorphous solid dispersions are inherently metastable systems. Therefore, such systems are generally considered prone to recrystallization. In some cases, the formation of crystals will impact the bioavailability of the active pharmaceutical ingredient in these formulations. Recrystallization therefore may present a significant risk for patients as it potentially lowers the effective dose of the pharmaceutical formulation. This study indicates that such metastable formulations may indeed remain fully amorphous even after more than two decades of storage under ambient conditions. Different formulations of nifedipine stored for 25 years were compared with freshly prepared samples. A thorough physicochemical characterization including polarized light microscopy, differential scanning calorimetry, X-ray powder diffraction, and transmission Raman spectroscopy was undertaken. This in-depth characterization indicates no signs of recrystallization in the stored samples. The observations presented here prove that long-term stability of amorphous solid dispersions much beyond the typical shelf life for pharmaceutical formulations is indeed possible by kinetic stabilization alone. These findings implicate a reevaluation of the propensity to recrystallize for kinetically stabilized amorphous solid dispersions.


Asunto(s)
Nifedipino/química , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Cristalización/métodos , Composición de Medicamentos/métodos , Estabilidad de Medicamentos , Cinética , Polvos/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos , Difracción de Rayos X/métodos
10.
Sci Rep ; 14(1): 15106, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956156

RESUMEN

We applied computing-as-a-service to the unattended system-agnostic miscibility prediction of the pharmaceutical surfactants, Vitamin E TPGS and Tween 80, with Copovidone VA64 polymer at temperature relevant for the pharmaceutical hot melt extrusion process. The computations were performed in lieu of running exhaustive hot melt extrusion experiments to identify surfactant-polymer miscibility limits. The computing scheme involved a massively parallelized architecture for molecular dynamics and free energy perturbation from which binodal, spinodal, and mechanical mixture critical points were detected on molar Gibbs free energy profiles at 180 °C. We established tight agreement between the computed stability (miscibility) limits of 9.0 and 10.0 wt% vs. the experimental 7 and 9 wt% for the Vitamin E TPGS and Tween 80 systems, respectively, and identified different destabilizing mechanisms applicable to each system. This paradigm supports that computational stability prediction may serve as a physically meaningful, resource-efficient, and operationally sensible digital twin to experimental screening tests of pharmaceutical systems. This approach is also relevant to amorphous solid dispersion drug delivery systems, as it can identify critical stability points of active pharmaceutical ingredient/excipient mixtures.


Asunto(s)
Excipientes , Polisorbatos , Excipientes/química , Polisorbatos/química , Vitamina E/química , Tensoactivos/química , Pirrolidinas/química , Simulación de Dinámica Molecular , Termodinámica , Tecnología de Extrusión de Fusión en Caliente/métodos , Compuestos de Vinilo
11.
Pharmaceutics ; 15(5)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37242637

RESUMEN

The poor bioavailability of an active pharmaceutical ingredient (API) can be enhanced by dissolving it in a polymeric matrix. This formulation strategy is commonly known as amorphous solid dispersion (ASD). API crystallization and/or amorphous phase separation can be detrimental to the bioavailability. Our previous work (Pharmaceutics 2022, 14(9), 1904) provided analysis of the thermodynamics underpinning the collapse of ritonavir (RIT) release from RIT/poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) ASDs due to water-induced amorphous phase separation. This work aimed for the first time to quantify the kinetics of water-induced amorphous phase separation in ASDs and the compositions of the two evolving amorphous phases. Investigations were performed via confocal Raman spectroscopy, and spectra were evaluated using so-called Indirect Hard Modeling. The kinetics of amorphous phase separation were quantified for 20 wt% and 25 wt% drug load (DL) RIT/PVPVA ASDs at 25 °C and 94% relative humidity (RH). The in situ measured compositions of the evolving phases showed excellent agreement with the ternary phase diagram of the RIT/PVPVA/water system predicted by PC-SAFT in our previous study (Pharmaceutics 2022, 14(9), 1904).

12.
Pharmaceutics ; 15(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242781

RESUMEN

During the dissolution of amorphous solid dispersion (ASD) formulations, the gel layer that forms at the ASD/water interface strongly dictates the release of the active pharmaceutical ingredient (API) and, hence, the dissolution performance. Several studies have demonstrated that the switch of the gel layer from eroding to non-eroding behavior is API-specific and drug-load (DL)-dependent. This study systematically classifies the ASD release mechanisms and relates them to the phenomenon of the loss of release (LoR). The latter is thermodynamically explained and predicted via a modeled ternary phase diagram of API, polymer, and water, and is then used to describe the ASD/water interfacial layers (below and above the glass transition). To this end, the ternary phase behavior of the APIs, naproxen, and venetoclax with the polymer poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) and water was modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The glass transition was modeled using the Gordon-Taylor equation. The DL-dependent LoR was found to be caused by API crystallization or liquid-liquid phase separation (LLPS) at the ASD/water interface. If crystallization occurs, it was found that API and polymer release was impeded above a threshold DL at which the APIs crystallized directly at the ASD interface. If LLPS occurs, an API-rich phase and a polymer-rich phase are formed. Above a threshold DL, the less mobile and hydrophobic API-rich phase accumulates at the interface which prevents API release. LLPS is further influenced by the composition and glass transition temperature of the evolving phases and was investigated at 37 °C and 50 °C regarding impact of temperature of. The modeling results and LoR predictions were experimentally validated by means of dissolution experiments, microscopy, Raman spectroscopy, and size exclusion chromatography. The experimental results were found to be in very good agreement with the predicted release mechanisms deduced from the phase diagrams. Thus, this thermodynamic modeling approach represents a powerful mechanistic tool that can be applied to classify and quantitatively predict the DL-dependent LoR release mechanism of PVPVA64-based ASDs in water.

13.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35267821

RESUMEN

Poly(butyl cyanoacrylate) (PBCA) is a biodegradable and biocompatible homopolymer which is used as a carrier matrix for drug delivery systems in the pharmaceutical industry. Typically, polymerization is carried out under aqueous conditions and results in molecular weights are mostly lower than 3000 g/mol due to the instability of the high molecular weight PBCA. However, the stability of polymer excipients is a major prerequisite for drug product development in the pharmaceutical industry. In this work, a reliable polymer synthesis strategy for PBCA was designed to control the molecular weight in a nonaqueous polymerization environment. The anionic polymerization process and the impact of key synthesis parameters were investigated. The results confirmed that the previously postulated depolymerization-repolymerization process (DPRP) in the literature can be used to tailor the molecular weight of PBCA. The amount of sodium methoxide present during the polymerization proved to be the key parameter to control the DPRP and the molecular weight as desired. In addition, it was discovered that end-capping the PBCA chain suppressed the DPRP and prevented monomer release by depriving the PBCA of its living character. Thus, neat PBCA polymer with varying molecular weights determined by Advanced Polymer Chromatography™ as well as end-capped PBCA were synthesized, and the improvement of the chemical and shelf-life stability were confirmed using NMR.

14.
Pharmaceutics ; 14(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36145652

RESUMEN

In amorphous solid dispersions (ASDs), an active pharmaceutical ingredient (API) is dissolved on a molecular level in a polymeric matrix. The API is expected to be released from the ASD upon dissolution in aqueous media. However, a series of earlier works observed a drastic collapse of the API release for ASDs with high drug loads (DLs) compared to those with low DLs. This work provides a thermodynamic analysis of the release mechanism of ASDs composed of ritonavir (RIT) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA). The observed release behavior is, for the first time, explained based on the quantitative thermodynamic phase diagram predicted by PC-SAFT. Both liquid-liquid phase separation in the dissolution medium, as well as amorphous phase separation in the ASD, could be linked back to the same thermodynamic origin, whereas they had been understood as different phenomena so far in the literature. Furthermore, it is illustrated that upon release, independent of DL, both phenomena occur simultaneously for the investigated system. It could be shown that the non-congruent release of the drug and polymer is observed when amorphous phase separation within the ASD has taken place to some degree prior to dissolution. Nanodroplet formation in the dissolution medium could be explained as the liquid-liquid phase separation, as predicted by PC-SAFT.

15.
Pharmaceutics ; 14(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35631630

RESUMEN

Several literature publications have described the potential application of active pharmaceutical ingredient (API)-polymer phase diagrams to identify appropriate temperature ranges for processing amorphous solid dispersion (ASD) formulations via the hot-melt extrusion (HME) technique. However, systematic investigations and reliable applications of the phase diagram as a risk assessment tool for HME are non-existent. Accordingly, within AbbVie, an HME risk classification system (HCS) based on API-polymer phase diagrams has been developed as a material-sparing tool for the early risk assessment of especially high melting temperature APIs, which are typically considered unsuitable for HME. The essence of the HCS is to provide an API risk categorization framework for the development of ASDs via the HME process. The proposed classification system is based on the recognition that the manufacture of crystal-free ASD using the HME process fundamentally depends on the ability of the melt temperature to reach the API's thermodynamic solubility temperature or above. Furthermore, we explored the API-polymer phase diagram as a simple tool for process design space selection pertaining to API or polymer thermal degradation regions and glass transition temperature-related dissolution kinetics limitations. Application of the HCS was demonstrated via HME experiments with two high melting temperature APIs, sulfamerazine and telmisartan, with the polymers Copovidone and Soluplus. Analysis of the resulting ASDs in terms of the residual crystallinity and degradation showed excellent agreement with the preassigned HCS class. Within AbbVie, the HCS concept has been successfully applied to more than 60 different APIs over the last 8 years as a robust validated risk assessment and quality-by-design (QbD) tool for the development of HME ASDs.

16.
Eur J Pharm Biopharm ; 158: 132-142, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33212185

RESUMEN

Understanding the long-term stability of amorphous solid dispersions (ASDs) is important for their successful approval for market. ASD stability does not only depend on the interplay between the active pharmaceutical ingredient (API) and the polymer in the final formulation but may already be disadvantageously influenced by process steps during the production (e.g. selection of inappropriate solvent for spray drying). Residual solvent can affect the API solubility in the polymer, molecular mobility (by influencing the glass-transition temperature) and induce liquid-liquid phase separation. Enhanced mobility in the ASD due to residual solvent can promote recrystallization in ASDs. The removal of residual solvent can be expensive, time-consuming, and usually requires secondary drying procedures to fulfil the regulatory requirements. The aim of this work is to predict the API solubility in polymer-solvent mixtures, solvent influence on the glass transition, and the occurrence of liquid-liquid phase separation of solvent-loaded ASDs using the thermodynamic model PC-SAFT and to experimentally validate these predictions. ASDs containing the APIs ritonavir or naproxen and the polymers poly(vinylpyrrolidone), poly (vinylpyrrolidone-co-vinyl acetate), or hydroxypropyl methylcellulose acetate succinate were spray-dried using the solvents acetone, ethanol, and dichloromethane. API solubility, sorption behavior, liquid-liquid phase separation and glass transition in the ternary API/polymer/solvent mixtures were predicted based on the binary phase behavior between API/solvent, API/polymer, and polymer/solvent and successfully validated experimentally using dynamic vapor sorption (DVS), and Raman spectroscopy. Thus, the presented methodology allows for an in-silico selection of appropriate solvent systems for solvent-based ASD preparation based on a limited amount of experimental data for binary systems only.


Asunto(s)
Composición de Medicamentos/métodos , Modelos Químicos , Polímeros/química , Solventes/química , Vitrificación , Química Farmacéutica/métodos , Simulación por Computador , Estabilidad de Medicamentos , Solubilidad , Espectrometría Raman , Secado por Pulverización , Temperatura de Transición
17.
Int J Pharm X ; 3: 100072, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33855291

RESUMEN

Amorphous solid dispersions (ASDs) are commonly manufactured using spray-drying processes. The product quality can be decisively influenced by the choice of process parameters. Following the quality-by-design approach, the identification of the spray-drying process design space is thus an integral task in drug product development. Aiming a solvent-free and homogeneous ASD, API crystallization and amorphous phase separation needs to be avoided during drying. This publication provides a predictive approach for determining spray-drying process conditions via considering thermodynamic driving forces for solvent drying as well as ASD-specific API/polymer/solvent interactions and glass transitions. The ternary API/polymer/solvent phase behavior was calculated using the Perturbed-Chain Statistical Associating Theory (PC-SAFT) and combined with mass and energy balances to find appropriate spray-drying conditions. A process design space was identified for the ASDs of ritonavir and naproxen with either poly(vinylpyrrolidone) or poly(vinylpyrrolidone-co-vinylacetate) spray dried from the solvents acetone, dichloromethane, or ethanol.

18.
Int J Pharm ; 577: 119065, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31988034

RESUMEN

In the pharmaceutical industry, polymers are used as excipients for formulating poorly water-soluble active pharmaceutical ingredients (APIs) in so-called "amorphous solid dispersions" (ASDs). ASDs can be produced via solvent-based processes, where API and polymer are both dissolved in a solvent, followed by a solvent evaporation step (e.g. spray drying). Aiming at a homogeneous API/polymer formulation, phase separation of the components (API, polymer, solvent) during solvent evaporation must be avoided. The latter is often determined by the phase behavior of polymer/solvent mixtures used for ASD processing. Therefore, this work investigates the polymer-solvent interactions in these mixtures. Suitable polymer/solvent combinations investigated in this work comprise the pharmaceutically relevant polymers poly(vinylpyrrolidone) (PVP), poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64), and hydroxyppropyl methylcellulose acetate succinate 126G (HPMCAS) as well as the solvents acetone, dichloromethane (DCM), ethanol, ethyl acetate, methanol, and water. Based on vapor-sorption experiments demixing of solvents and polymers were predicted using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). These were found to be correct for all investigated solvent/polymer mixtures. Acetone, DCM, ethanol, methanol, and water were found to be completely miscible with PVPVA64. DCM, ethanol, methanol, and water were found to be completely miscible with PVP K90, while none of the investigated solvents was appropriate for avoiding immiscibility with HPMCAS. In addition, the impact of temperature, polymer molecular weight, and solvent-mixture composition on miscibility was successfully predicted using PC-SAFT. Thus, the proposed methodology allows identifying suitable solvents or solvent mixtures relevant for solvent-based preparations of pharmaceutical ASD formulations with low experimental effort.


Asunto(s)
Química Farmacéutica , Excipientes/química , Polímeros/química , Solventes/química , Metilcelulosa/análogos & derivados , Metilcelulosa/química , Peso Molecular , Transición de Fase , Povidona/química , Pirrolidinas/química , Temperatura , Compuestos de Vinilo/química
19.
Eur J Pharm Biopharm ; 141: 149-160, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31132400

RESUMEN

The aim of this work was to investigate the relationship between formulation material properties, process parameters and process performance for the manufacturing of amorphous solid dispersions via hot-melt extrusion (HME) using experimentation coupled with process modeling. Specifically, we evaluated the impact of the matrix copovidone melt rheology with and without the addition of a plasticizing surfactant, polysorbate 80, while also varying the process parameters, barrel temperature and screw speed, and keeping fill volume constant. To correlate the process performance to a critical quality attribute, we used telmisartan as an indicator substance by processing at temperatures below its solubility temperature in the polymeric matrix. We observed a broader design space of HME processes for the plasticized formulation with respect to screw speed than for the copovidone-only matrix formulation. This observation was determined by the range of observed melt temperatures in the extruder, both measured and simulated. The reason was not primarily linked to a reduced shear-thinning behavior, characterized by the power law index, n, but instead more to an overall reduced melt viscosity during extrusion and zero-shear rate viscosity, η0, accordingly. We also found that the amount of residual crystallinity of telmisartan correlated with the simulated maximum melt temperature in the extruder barrel. This finding confirmed the applicability of the temperature-dependent API-matrix solubility phase diagram for HME to process development. Given the complex inter-dependent relationships between material properties, process and performance, process modeling combined with reduced laboratory experimentation was established as a holistic approach for the evaluation of Quality-by-Design-based HME process design spaces.


Asunto(s)
Polímeros/química , Povidona/química , Telmisartán/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Calor , Ciencia de los Materiales/métodos , Polisorbatos/química , Pirrolidinas/química , Reología , Solubilidad/efectos de los fármacos , Compuestos de Vinilo/química , Viscosidad/efectos de los fármacos
20.
Eur J Pharm Biopharm ; 124: 147-157, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29269154

RESUMEN

The preparation of amorphous solid dispersions (ASDs) is a well-established strategy for formulating active pharmaceutical ingredients by embedding them in excipients, usually amorphous polymers. Different polymers can be combined for designing ASDs with desired properties like an optimized dissolution behavior. One important criterion for the development of ASD compositions is the physical stability. In this work, the physical stability of API/polymer-blend ASDs was investigated by thermodynamic modeling and stability studies. Amorphous naproxen (NAP) and acetaminophen (APAP) were embedded in blends of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and either poly(vinylpyrrolidone) (PVP) or poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64). Parameters for modeling the API solubility in the blends and the glass-transition temperature curves of the water-free systems with Perturbed-Chain Statistical Associating Fluid Theory and Kwei equation, respectively, were correlated to experimental data. The phase behavior for standardized storage conditions (0%, 60% and 75% relative humidity (RH)) was predicted and compared to six months-long stability studies. According to modeling and experimental results, the physical stability was reduced with increasing HPMCAS content and increasing RH. This trend was observed for all investigated systems, with both APIs (NAP and APAP) and both polymer blends (PVP/HPMCAS and PVPVA64/HPMCAS). PC-SAFT and the Kwei equation turned out to be suitable tools for modeling and predicting the physical stability of the investigated API/polymer-blends ASDs.


Asunto(s)
Acetaminofén/química , Excipientes/química , Naproxeno/química , Polímeros/química , Formas de Dosificación , Composición de Medicamentos , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Humedad , Metilcelulosa/análogos & derivados , Metilcelulosa/química , Modelos Químicos , Modelos Estadísticos , Transición de Fase , Povidona/química , Pirrolidinas/química , Tecnología Farmacéutica/métodos , Termodinámica , Factores de Tiempo , Temperatura de Transición , Compuestos de Vinilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA