Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Hum Genet ; 105(5): 921-932, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31607426

RESUMEN

Meiotic nondisjunction and resulting aneuploidy can lead to severe health consequences in humans. Aneuploidy rescue can restore euploidy but may result in uniparental disomy (UPD), the inheritance of both homologs of a chromosome from one parent with no representative copy from the other. Current understanding of UPD is limited to ∼3,300 case subjects for which UPD was associated with clinical presentation due to imprinting disorders or recessive diseases. Thus, the prevalence of UPD and its phenotypic consequences in the general population are unknown. We searched for instances of UPD across 4,400,363 consented research participants from the personal genetics company 23andMe, Inc., and 431,094 UK Biobank participants. Using computationally detected DNA segments identical-by-descent (IBD) and runs of homozygosity (ROH), we identified 675 instances of UPD across both databases. We estimate that UPD is twice as common as previously thought, and we present a machine-learning framework to detect UPD using ROH. While we find a nominally significant association between UPD of chromosome 22 and autism risk, we do not find significant associations between UPD and deleterious traits in the 23andMe database.


Asunto(s)
Disomía Uniparental/genética , Aneuploidia , Femenino , Impresión Genómica/genética , Homocigoto , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Prevalencia
2.
Bioinformatics ; 32(18): 2817-23, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27283948

RESUMEN

MOTIVATION: A series of methods in population genetics use multilocus genotype data to assign individuals membership in latent clusters. These methods belong to a broad class of mixed-membership models, such as latent Dirichlet allocation used to analyze text corpora. Inference from mixed-membership models can produce different output matrices when repeatedly applied to the same inputs, and the number of latent clusters is a parameter that is often varied in the analysis pipeline. For these reasons, quantifying, visualizing, and annotating the output from mixed-membership models are bottlenecks for investigators across multiple disciplines from ecology to text data mining. RESULTS: We introduce pong, a network-graphical approach for analyzing and visualizing membership in latent clusters with a native interactive D3.js visualization. pong leverages efficient algorithms for solving the Assignment Problem to dramatically reduce runtime while increasing accuracy compared with other methods that process output from mixed-membership models. We apply pong to 225 705 unlinked genome-wide single-nucleotide variants from 2426 unrelated individuals in the 1000 Genomes Project, and identify previously overlooked aspects of global human population structure. We show that pong outpaces current solutions by more than an order of magnitude in runtime while providing a customizable and interactive visualization of population structure that is more accurate than those produced by current tools. AVAILABILITY AND IMPLEMENTATION: pong is freely available and can be installed using the Python package management system pip. pong's source code is available at https://github.com/abehr/pong CONTACT: aaron_behr@alumni.brown.edu or sramachandran@brown.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Minería de Datos , Grupos de Población , Programas Informáticos , Algoritmos , Análisis por Conglomerados , Gráficos por Computador , Genética de Población , Humanos , Lenguajes de Programación , Conformación Proteica
3.
BMC Bioinformatics ; 12: 477, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22172090

RESUMEN

BACKGROUND: Great strides have been made in the effective treatment of HIV-1 with the development of second-generation protease inhibitors (PIs) that are effective against historically multi-PI-resistant HIV-1 variants. Nevertheless, mutation patterns that confer decreasing susceptibility to available PIs continue to arise within the population. Understanding the phenotypic and genotypic patterns responsible for multi-PI resistance is necessary for developing PIs that are active against clinically-relevant PI-resistant HIV-1 variants. RESULTS: In this work, we use globally optimal integer programming-based clustering techniques to elucidate multi-PI phenotypic resistance patterns using a data set of 398 HIV-1 protease sequences that have each been phenotyped for susceptibility toward the nine clinically-approved HIV-1 PIs. We validate the information content of the clusters by evaluating their ability to predict the level of decreased susceptibility to each of the available PIs using a cross validation procedure. We demonstrate the finding that as a result of phenotypic cross resistance, the considered clinical HIV-1 protease isolates are confined to ~6% or less of the clinically-relevant phenotypic space. Clustering and feature selection methods are used to find representative sequences and mutations for major resistance phenotypes to elucidate their genotypic signatures. We show that phenotypic similarity does not imply genotypic similarity, that different PI-resistance mutation patterns can give rise to HIV-1 isolates with similar phenotypic profiles. CONCLUSION: Rather than characterizing HIV-1 susceptibility toward each PI individually, our study offers a unique perspective on the phenomenon of PI class resistance by uncovering major multidrug-resistant phenotypic patterns and their often diverse genotypic determinants, providing a methodology that can be applied to understand clinically-relevant phenotypic patterns to aid in the design of novel inhibitors that target other rapidly evolving molecular targets as well.


Asunto(s)
Análisis por Conglomerados , Resistencia a Múltiples Medicamentos , Farmacorresistencia Viral , Infecciones por VIH/virología , Inhibidores de la Proteasa del VIH/farmacología , Proteasa del VIH/genética , VIH-1/efectos de los fármacos , Fármacos Anti-VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/uso terapéutico , VIH-1/genética , Humanos , Mutación
4.
J Bone Miner Res ; 36(12): 2300-2308, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34346115

RESUMEN

Human adult height reflects the outcome of childhood skeletal growth. Growth plate (epiphyseal) chondrocytes are key determinants of height. As epiphyseal chondrocytes mature and proliferate, they pass through three developmental stages, which are organized into three distinct layers in the growth plate: (i) resting (round), (ii) proliferative (flat), and (iii) hypertrophic. Recent genomewide association studies (GWASs) of human height identified numerous associated loci, which are enriched for genes expressed in growth plate chondrocytes. However, it remains unclear which specific genes expressed in which layers of the growth plate regulate skeletal growth and human height. To connect the genetics of height and growth plate biology, we analyzed GWAS data through the lens of gene expression in the three dissected layers of murine newborn tibial growth plate. For each gene, we derived a specificity score for each growth plate layer and regressed these scores against gene-level p values from recent height GWAS data. We found that specificity for expression in the round cell layer, which contains chondrocytes early in maturation, is significantly associated with height GWAS p values (p = 8.5 × 10-9 ); this association remains after conditioning on specificity for the other cell layers. The association also remains after conditioning on membership in an "Online Mendelian Inheritance in Man (OMIM) gene set" (genes known to cause monogenic skeletal growth disorders, p < 9.7 × 10-6 ). We replicated the association in RNA-sequencing (RNA-seq) data from maturing chondrocytes sampled at early and late time points during differentiation in vitro: we found that expression early in differentiation is significantly associated with p values from height GWASs (p = 6.1 × 10-10 ) and that this association remains after conditioning on expression at 10 days in culture and on the OMIM gene set (p < 0.006). These findings newly implicate genes highlighted by GWASs of height and specifically expressed in the round cell layer as being potentially important regulators of skeletal biology. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Estudio de Asociación del Genoma Completo , Placa de Crecimiento , Animales , Estatura/genética , Diferenciación Celular/genética , Condrocitos , Humanos , Ratones
5.
Cancer Epidemiol Biomarkers Prev ; 26(10): 1531-1539, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28751478

RESUMEN

Background: Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, suggesting that germline variants influence ALL risk. Although multiple genome-wide association (GWA) studies have identified variants predisposing children to ALL, it remains unclear whether genetic heterogeneity affects ALL susceptibility and how interactions within and among genes containing ALL-associated variants influence ALL risk.Methods: Here, we jointly analyzed two published datasets of case-control GWA summary statistics along with germline data from ALL case-parent trios. We used the gene-level association method PEGASUS to identify genes with multiple variants associated with ALL. We then used PEGASUS gene scores as input to the network analysis algorithm HotNet2 to characterize the genomic architecture of ALL.Results: Using PEGASUS, we confirmed associations previously observed at genes such as ARID5B, IKZF1, CDKN2A/2B, and PIP4K2A, and we identified novel candidate gene associations. Using HotNet2, we uncovered significant gene subnetworks that may underlie inherited ALL risk: a subnetwork involved in B-cell differentiation containing the ALL-associated gene CEBPE, and a subnetwork of homeobox genes, including MEIS1Conclusions: Gene and network analysis uncovered loci associated with ALL that are missed by GWA studies, such as MEIS1 Furthermore, ALL-associated loci do not appear to interact directly with each other to influence ALL risk, and instead appear to influence leukemogenesis through multiple, complex pathways.Impact: We present a new pipeline for post hoc analysis of association studies that yields new insight into the etiology of ALL and can be applied in future studies to shed light on the genomic underpinnings of cancer. Cancer Epidemiol Biomarkers Prev; 26(10); 1531-9. ©2017 AACR.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/etnología , Estudios de Casos y Controles , Preescolar , Predisposición Genética a la Enfermedad , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
6.
Genetics ; 204(2): 783-798, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27489002

RESUMEN

Genome-wide association (GWA) studies typically lack power to detect genotypes significantly associated with complex diseases, where different causal mutations of small effect may be present across cases. A common, tractable approach for identifying genomic elements associated with complex traits is to evaluate combinations of variants in known pathways or gene sets with shared biological function. Such gene-set analyses require the computation of gene-level P-values or gene scores; these gene scores are also useful when generating hypotheses for experimental validation. However, commonly used methods for generating GWA gene scores are computationally inefficient, biased by gene length, imprecise, or have low true positive rate (TPR) at low false positive rates (FPR), leading to erroneous hypotheses for functional validation. Here we introduce a new method, PEGASUS, for analytically calculating gene scores. PEGASUS produces gene scores with as much as 10 orders of magnitude higher numerical precision than competing methods. In simulation, PEGASUS outperforms existing methods, achieving up to 30% higher TPR when the FPR is fixed at 1%. We use gene scores from PEGASUS as input to HotNet2 to identify networks of interacting genes associated with multiple complex diseases and traits; this is the first application of HotNet2 to common variation. In ulcerative colitis and waist-hip ratio, we discover networks that include genes previously associated with these phenotypes, as well as novel candidate genes. In contrast, existing methods fail to identify these networks. We also identify networks for attention-deficit/hyperactivity disorder, in which GWA studies have yet to identify any significant SNPs.


Asunto(s)
Epistasis Genética , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Interpretación Estadística de Datos , Genotipo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética
7.
PLoS One ; 9(6): e98618, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24915485

RESUMEN

Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states. Recently, other effects of crowding have been explored, including enthalpically-related crowder-protein interactions and changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic desolvation and solvent-screened interaction components of protein-protein binding. Our simple model enables us to focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase-barstar complex as a model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total available volume occupied by crowders), this effect generally increases as the radius of model crowders decreases, but the strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions. Results with explicit model crowders can be qualitatively similar to those using a lowered "effective" solvent dielectric to account for crowding, although the "best" effective dielectric constant will likely depend on multiple system properties. Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the effects of water depletion due to crowding on the electrostatic component of protein binding, and it provides an initial framework for future analyses.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sustancias Macromoleculares/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , Algoritmos , Simulación por Computador , Sustancias Macromoleculares/química , Modelos Moleculares , Conformación Molecular , Unión Proteica , Solventes , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA