Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Semin Cell Dev Biol ; 156: 167-175, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36464613

RESUMEN

Stress Granules (SGs) and Processing-bodies (P-bodies) are biomolecular condensates formed in the cell with the highly conserved purpose of maintaining balance between storage, translation, and degradation of mRNA. This balance is particularly important when cells are exposed to different environmental conditions and adjustments have to be made in order for plants to respond to and tolerate stressful conditions. While P-bodies are constitutively present in the cell, SG formation is a stress-induced event. Typically thought of as protein-RNA aggregates, SGs and P-bodies are formed by a process called liquid-liquid phase separation (LLPS), and both their function and composition are very dynamic. Both foci are known to contain proteins involved in translation, protein folding, and ATPase activity, alluding to their roles in regulating mRNA and protein expression levels. From an RNA perspective, SGs and P-bodies primarily consist of mRNAs, though long non-coding RNAs (lncRNAs) have also been observed, and more focus is now being placed on the specific RNAs associated with these aggregates. Recently, metabolites such as nucleotides and amino acids have been reported in purified plant SGs with implications for the energetic dynamics of these condensates. Thus, even though the field of plant SGs and P-bodies is relatively nascent, significant progress has been made in understanding their composition and biological role in stress responses. In this review, we discuss the most recent discoveries centered around SG and P-body function and composition in plants.


Asunto(s)
Cuerpos de Procesamiento , Gránulos de Estrés , ARN Mensajero/genética , ARN Mensajero/metabolismo , Gránulos Citoplasmáticos , Estrés Fisiológico
2.
Plant Cell ; 35(6): 1762-1786, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36738093

RESUMEN

Long noncoding RNAs (lncRNAs) are a large and diverse class of genes in eukaryotic genomes that contribute to a variety of regulatory processes. Functionally characterized lncRNAs play critical roles in plants, ranging from regulating flowering to controlling lateral root formation. However, findings from the past decade have revealed that thousands of lncRNAs are present in plant transcriptomes, and characterization has lagged far behind identification. In this setting, distinguishing function from noise is challenging. However, the plant community has been at the forefront of discovery in lncRNA biology, providing many functional and mechanistic insights that have increased our understanding of this gene class. In this review, we examine the key discoveries and insights made in plant lncRNA biology over the past two and a half decades. We describe how discoveries made in the pregenomics era have informed efforts to identify and functionally characterize lncRNAs in the subsequent decades. We provide an overview of the functional archetypes into which characterized plant lncRNAs fit and speculate on new avenues of research that may uncover yet more archetypes. Finally, this review discusses the challenges facing the field and some exciting new molecular and computational approaches that may help inform lncRNA comparative and functional analyses.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN de Planta/genética , Transcriptoma , Plantas/genética
3.
Plant Physiol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696768

RESUMEN

Nondestructive plant phenotyping forms a key technique for unraveling molecular processes underlying plant development and response to the environment. While the emergence of high-throughput phenotyping facilities can further our understanding of plant development and stress responses, their high costs greatly hinder scientific progress. To democratize high-throughput plant phenotyping, we developed sets of low-cost image- and weight-based devices to monitor plant shoot growth and evapotranspiration. We paired these devices to a suite of computational pipelines for integrated and straightforward data analysis. The developed tools were validated for their suitability for large genetic screens by evaluating a cowpea (Vigna unguiculata) diversity panel for responses to drought stress. The observed natural variation was used as an input for a genome-wide association study, from which we identified nine genetic loci that might contribute to cowpea drought resilience during early vegetative development. The homologs of the candidate genes were identified in Arabidopsis (Arabidopsis thaliana) and subsequently evaluated for their involvement in drought stress by using available T-DNA insertion mutant lines. These results demonstrate the varied applicability of this low-cost phenotyping system. In the future, we foresee these setups facilitating the identification of genetic components of growth, plant architecture, and stress tolerance across a wide variety of plant species.

4.
Plant Cell ; 34(9): 3233-3260, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35666179

RESUMEN

Long intergenic noncoding RNAs (lincRNAs) are a large yet enigmatic class of eukaryotic transcripts that can have critical biological functions. The wealth of RNA-sequencing (RNA-seq) data available for plants provides the opportunity to implement a harmonized identification and annotation effort for lincRNAs that enables cross-species functional and genomic comparisons as well as prioritization of functional candidates. In this study, we processed >24 Tera base pairs of RNA-seq data from >16,000 experiments to identify ∼130,000 lincRNAs in four Brassicaceae: Arabidopsis thaliana, Camelina sativa, Brassica rapa, and Eutrema salsugineum. We used nanopore RNA-seq, transcriptome-wide structural information, peptide data, and epigenomic data to characterize these lincRNAs and identify conserved motifs. We then used comparative genomic and transcriptomic approaches to highlight lincRNAs in our data set with sequence or transcriptional conservation. Finally, we used guilt-by-association analyses to assign putative functions to lincRNAs within our data set. We tested this approach on a subset of lincRNAs associated with germination and seed development, observing germination defects for Arabidopsis lines harboring T-DNA insertions at these loci. LincRNAs with Brassicaceae-conserved putative miRNA binding motifs, small open reading frames, or abiotic-stress modulated expression are a few of the annotations that will guide functional analyses into this cryptic portion of the transcriptome.


Asunto(s)
Arabidopsis , Brassicaceae , ARN Largo no Codificante , Genómica , Análisis de Secuencia de ARN , Transcriptoma
5.
Nucleic Acids Res ; 51(1): 420-433, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36546771

RESUMEN

In contrast to the catalytic subunit of telomerase, its RNA subunit (TR) is highly divergent in size, sequence and biogenesis pathways across eukaryotes. Current views on TR evolution assume a common origin of TRs transcribed with RNA polymerase II in Opisthokonta (the supergroup including Animalia and Fungi) and Trypanosomida on one hand, and TRs transcribed with RNA polymerase III under the control of type 3 promoter, found in TSAR and Archaeplastida supergroups (including e.g. ciliates and Viridiplantae taxa, respectively). Here, we focus on unknown TRs in one of the largest Animalia order - Hymenoptera (Arthropoda) with more than 300 available representative genomes. Using a combination of bioinformatic and experimental approaches, we identify their TRs. In contrast to the presumed type of TRs (H/ACA box snoRNAs transcribed with RNA Polymerase II) corresponding to their phylogenetic position, we find here short TRs of the snRNA type, likely transcribed with RNA polymerase III under the control of the type 3 promoter. The newly described insect TRs thus question the hitherto assumed monophyletic origin of TRs across Animalia and point to an evolutionary switch in TR type and biogenesis that was associated with the divergence of Arthropods.


Asunto(s)
Himenópteros , Telomerasa , Animales , Telomerasa/genética , Telomerasa/metabolismo , Himenópteros/genética , Filogenia , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Conformación de Ácido Nucleico , ARN/genética , Plantas/genética , Eucariontes/genética
6.
New Phytol ; 243(3): 981-996, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38415863

RESUMEN

Water scarcity, resulting from climate change, poses a significant threat to ecosystems. Syntrichia ruralis, a dryland desiccation-tolerant moss, provides valuable insights into survival of water-limited conditions. We sequenced the genome of S. ruralis, conducted transcriptomic analyses, and performed comparative genomic and transcriptomic analyses with existing genomes and transcriptomes, including with the close relative S. caninervis. We took a genetic approach to characterize the role of an S. ruralis transcription factor, identified in transcriptomic analyses, in Arabidopsis thaliana. The genome was assembled into 12 chromosomes encompassing 21 169 protein-coding genes. Comparative analysis revealed copy number and transcript abundance differences in known desiccation-associated gene families, and highlighted genome-level variation among species that may reflect adaptation to different habitats. A significant number of abscisic acid (ABA)-responsive genes were found to be negatively regulated by a MYB transcription factor (MYB55) that was upstream of the S. ruralis ortholog of ABA-insensitive 3 (ABI3). We determined that this conserved MYB transcription factor, uncharacterized in Arabidopsis, acts as a negative regulator of an ABA-dependent stress response in Arabidopsis. The new genomic resources from this emerging model moss offer novel insights into how plants regulate their responses to water deprivation.


Asunto(s)
Arabidopsis , Desecación , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Filogenia , Secuencia Conservada/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Bryopsida/genética , Bryopsida/fisiología , Genes de Plantas , Estrés Fisiológico/genética , Modelos Biológicos , Transcriptoma/genética
7.
Plant Physiol ; 188(4): 1966-1978, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35043968

RESUMEN

The role of the RNA degradation product 2',3'-cyclic adenosine monophosphate (2',3'-cAMP) is poorly understood. Recent studies have identified 2',3'-cAMP in plant material and determined its role in stress signaling. The level of 2',3'-cAMP increases upon wounding, in the dark, and under heat, and 2',3'-cAMP binding to an RNA-binding protein, Rbp47b, promotes stress granule (SG) assembly. To gain further mechanistic insights into the function of 2',3'-cAMP, we used a multi-omics approach by combining transcriptomics, metabolomics, and proteomics to dissect the response of Arabidopsis (Arabidopsis thaliana) to 2',3'-cAMP treatment. We demonstrated that 2',3'-cAMP is metabolized into adenosine, suggesting that the well-known cyclic nucleotide-adenosine pathway of human cells might also exist in plants. Transcriptomics analysis revealed only minor overlap between 2',3'-cAMP- and adenosine-treated plants, suggesting that these molecules act through independent mechanisms. Treatment with 2',3'-cAMP changed the levels of hundreds of transcripts, proteins, and metabolites, many previously associated with plant stress responses, including protein and RNA degradation products, glucosinolates, chaperones, and SG components. Finally, we demonstrated that 2',3'-cAMP treatment influences the movement of processing bodies, confirming the role of 2',3'-cAMP in the formation and motility of membraneless organelles.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , AMP Cíclico/metabolismo , Perfilación de la Expresión Génica , Glucosinolatos/metabolismo , Humanos
8.
Plant Physiol ; 190(4): 2539-2556, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36156105

RESUMEN

A signaling complex comprising members of the LORELEI (LRE)-LIKE GPI-anchored protein (LLG) and Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) families perceive RAPID ALKALINIZATION FACTOR (RALF) peptides and regulate growth, reproduction, immunity, and stress responses in Arabidopsis (Arabidopsis thaliana). Genes encoding these proteins are members of multigene families in most angiosperms and could generate thousands of signaling complex variants. However, the links between expansion of these gene families and the functional diversification of this critical signaling complex as well as the evolutionary factors underlying the maintenance of gene duplicates remain unknown. Here, we investigated LLG gene family evolution by sampling land plant genomes and explored the function and expression of angiosperm LLGs. We found that LLG diversity within major land plant lineages is primarily due to lineage-specific duplication events, and that these duplications occurred both early in the history of these lineages and more recently. Our complementation and expression analyses showed that expression divergence (i.e. regulatory subfunctionalization), rather than functional divergence, explains the retention of LLG paralogs. Interestingly, all but one monocot and all eudicot species examined had an LLG copy with preferential expression in male reproductive tissues, while the other duplicate copies showed highest levels of expression in female or vegetative tissues. The single LLG copy in Amborella trichopoda is expressed vastly higher in male compared to in female reproductive or vegetative tissues. We propose that expression divergence plays an important role in retention of LLG duplicates in angiosperms.


Asunto(s)
Arabidopsis , Embryophyta , Magnoliopsida , Arabidopsis/metabolismo , Familia de Multigenes , Fosfotransferasas/genética , Semillas/metabolismo , Embryophyta/genética , Magnoliopsida/genética , Magnoliopsida/metabolismo , Proteínas/genética , Duplicación de Gen , Evolución Molecular , Filogenia
9.
Mol Cell ; 57(2): 376-88, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25557549

RESUMEN

Posttranscriptional regulation in eukaryotes requires cis- and trans-acting features and factors including RNA secondary structure and RNA-binding proteins (RBPs). However, a comprehensive view of the structural and RBP interaction landscape of nuclear RNAs has yet to be compiled for any organism. Here, we use our ribonuclease-mediated structure and RBP-binding site mapping approaches to globally profile these features in Arabidopsis seedling nuclei in vivo. We reveal anticorrelated patterns of secondary structure and RBP binding throughout nuclear mRNAs that demarcate sites of alternative splicing and polyadenylation. We also uncover a collection of protein-bound sequence motifs, and identify their structural contexts, co-occurrences in transcripts encoding functionally related proteins, and interactions with putative RBPs. Finally, using these motifs, we find that the chloroplast RBP CP29A also interacts with nuclear mRNAs. In total, we provide a simultaneous view of the RNA secondary structure and RBP interaction landscapes in a eukaryotic nucleus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Ribonucleoproteínas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Secuencia de Bases , Sitios de Unión , Secuencia de Consenso , Regulación de la Expresión Génica de las Plantas , Conformación de Ácido Nucleico , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/genética , ARN de Planta/genética , Plantones/citología , Plantones/genética , Plantones/metabolismo , Transcriptoma
10.
Nucleic Acids Res ; 49(13): 7680-7694, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34181710

RESUMEN

The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomere repeats.


Asunto(s)
Evolución Molecular , ARN de Planta/química , ARN de Planta/genética , ARN/química , ARN/genética , Telomerasa/química , Telomerasa/genética , Mutación , Conformación de Ácido Nucleico , ARN/biosíntesis , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , ARN de Planta/biosíntesis , Alineación de Secuencia , Telomerasa/biosíntesis , Telómero/química , Transcripción Genética , Transcriptoma , Viridiplantae/genética
11.
New Phytol ; 231(4): 1431-1448, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33993494

RESUMEN

Reactive oxygen species (ROS) produced in chloroplasts cause oxidative damage, but also signal to initiate chloroplast quality control pathways, cell death, and gene expression. The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant produces the ROS singlet oxygen in chloroplasts that activates such signaling pathways, but the mechanisms are largely unknown. Here we characterize one fc2 suppressor mutation and map it to CYTIDINE TRIPHOSPHATE SYNTHASE TWO (CTPS2), which encodes one of five enzymes in Arabidopsis necessary for de novo cytoplasmic CTP (and dCTP) synthesis. The ctps2 mutation reduces chloroplast transcripts and DNA content without similarly affecting mitochondria. Chloroplast nucleic acid content and singlet oxygen signaling are restored by exogenous feeding of the dCTP precursor deoxycytidine, suggesting ctps2 blocks signaling by limiting nucleotides for chloroplast genome maintenance. An investigation of CTPS orthologs in Brassicaceae showed CTPS2 is a member of an ancient lineage distinct from CTPS3. Complementation studies confirmed this analysis; CTPS3 was unable to compensate for CTPS2 function in providing nucleotides for chloroplast DNA and signaling. Our studies link cytoplasmic nucleotide metabolism with chloroplast quality control pathways. Such a connection is achieved by a conserved clade of CTPS enzymes that provide nucleotides for chloroplast function, thereby allowing stress signaling to occur.


Asunto(s)
Proteínas de Arabidopsis , Regulación de la Expresión Génica de las Plantas , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Citidina Trifosfato , ADN de Cloroplastos/genética , Mutación , Nucleótidos/genética
12.
Genes Dev ; 26(15): 1648-52, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22855827

RESUMEN

Telomeres ensure the complete replication of genetic material while simultaneously distinguishing the chromosome terminus from a double-strand break. A prevailing theme in telomere biology is that the two chromosome ends are symmetrical. Both terminate in a single-strand 3' extension, and the 3' extension is crucial for telomere end protection. In this issue of Genes & Development, Kazda and colleagues (pp. 1703-1713) challenge this paradigm using a series of elegant biochemical and genetic assays to demonstrate that half of the chromosomes in flowering plants are blunt-ended. This discovery reveals unanticipated complexity in telomeric DNA processing and a novel mode of chromosome end protection.


Asunto(s)
Arabidopsis/metabolismo , Cromosomas de las Plantas/metabolismo , Telómero/metabolismo
13.
Genes Dev ; 26(22): 2512-23, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23109676

RESUMEN

Telomerase replenishes telomere tracts by reiteratively copying its RNA template, TER. Unlike other model organisms, Arabidopsis thaliana harbors two divergent TER genes. However, only TER1 is required for telomere maintenance. Here we examine the function of TER2. We show that TER2 is spliced and its 3' end is truncated in vivo to generate a third TER isoform, TER2(S). TERT preferentially associates with TER2 > TER1 > TER2(S). Moreover, TER2 and TER2(S) assemble with Ku and POT1b (protection of telomeres), forming RNP (ribonucleoprotein) complexes distinct from TER1 RNP. Plants null for TER2 display increased telomerase enzyme activity, while TER2 overexpression inhibits telomere synthesis from TER1 and leads to telomere shortening. These findings argue that TER2 negatively regulates telomerase by sequestering TERT in a nonproductive RNP complex. Introduction of DNA double-strand breaks by zeocin leads to an immediate and specific spike in TER2 and a concomitant decrease in telomerase enzyme activity. This response is not triggered by replication stress or telomere dysfunction and is abrogated in ter2 mutants. We conclude that Arabidopsis telomerase is modulated by TER2, a novel DNA damage-induced noncoding RNA that works in concert with the canonical TER to promote genome integrity.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Daño del ADN/genética , ARN/genética , ARN/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Activación Enzimática , Regulación de la Expresión Génica de las Plantas/genética , Procesamiento de Término de ARN 3' , Empalme del ARN , Ribonucleoproteínas/metabolismo , Telómero/genética
14.
BMC Plant Biol ; 19(1): 494, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31722667

RESUMEN

BACKGROUND: Guayule (Parthenium argentatum Gray) is a drought tolerant, rubber producing perennial shrub native to northern Mexico and the US Southwest. Hevea brasiliensis, currently the world's only source of natural rubber, is grown as a monoculture, leaving it vulnerable to both biotic and abiotic stressors. Isolation of rubber from guayule occurs by mechanical harvesting of the entire plant. It has been reported that environmental conditions leading up to harvest have a profound impact on rubber yield. The link between rubber biosynthesis and drought, a common environmental condition in guayule's native habitat, is currently unclear. RESULTS: We took a transcriptomic and comparative genomic approach to determine how drought impacts rubber biosynthesis in guayule. We compared transcriptional profiles of stem tissue, the location of guayule rubber biosynthesis, collected from field-grown plants subjected to water-deficit (drought) and well-watered (control) conditions. Plants subjected to the imposed drought conditions displayed an increase in production of transcripts associated with defense responses and water homeostasis, and a decrease in transcripts associated with rubber biosynthesis. An evolutionary and comparative analysis of stress-response transcripts suggests that more anciently duplicated transcripts shared among the Asteraceae, rather than recently derived duplicates, are contributing to the drought response observed in guayule. In addition, we identified several deeply conserved long non-coding RNAs (lncRNAs) containing microRNA binding motifs. One lncRNA in particular, with origins at the base of Asteraceae, may be regulating the vegetative to reproductive transition observed in water-stressed guayule by acting as a miRNA sponge for miR166. CONCLUSIONS: These data represent the first genomic analyses of how guayule responds to drought like conditions in agricultural production settings. We identified an inverse relationship between stress-responsive transcripts and those associated with precursor pathways to rubber biosynthesis suggesting a physiological trade-off between maintaining homeostasis and plant productivity. We also identify a number of regulators of abiotic responses, including transcription factors and lncRNAs, that are strong candidates for future projects aimed at modulating rubber biosynthesis under water-limiting conditions common to guayules' native production environment.


Asunto(s)
Asteraceae/fisiología , Sequías , Goma/metabolismo , Adaptación Fisiológica , Asteraceae/genética , Evolución Biológica , Transcriptoma , Agua
15.
Bioinformatics ; 34(15): 2651-2653, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29474529

RESUMEN

Summary: The EPIC-CoGe browser is a web-based genome visualization utility that integrates the GMOD JBrowse genome browser with the extensive CoGe genome database (currently containing over 30 000 genomes). In addition, the EPIC-CoGe browser boasts many additional features over basic JBrowse, including enhanced search capability and on-the-fly analyses for comparisons and analyses between all types of functional and diversity genomics data. There is no installation required and data (genome, annotation, functional genomic and diversity data) can be loaded by following a simple point and click wizard, or using a REST API, making the browser widely accessible and easy to use by researchers of all computational skill levels. In addition, EPIC-CoGe and data tracks are easily embedded in other websites and JBrowse instances. Availability and implementation: EPIC-CoGe Browser is freely available for use online through CoGe (https://genomevolution.org). Source code (MIT open source) is available: https://github.com/LyonsLab/coge. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Visualización de Datos , Genoma , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Genómica/métodos
16.
Plant Cell Rep ; 38(9): 1081-1097, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31134349

RESUMEN

KEY MESSAGE: Duplicate POT1 genes must rapidly diverge or be inactivated. Protection of telomeres 1 (POT1) encodes a conserved telomere binding protein implicated in both chromosome end protection and telomere length maintenance. Most organisms harbor a single POT1 gene, but in the few lineages where the POT1 family has expanded, the duplicate genes have diversified. Arabidopsis thaliana bears three POT1-like loci, POT1a, POT1b and POT1c. POT1a retains the ancestral function of telomerase regulation, while POT1b is implicated in chromosome end protection. Here we examine the function and evolution of the third POT1 paralog, POT1c. POT1c is a new gene, unique to A. thaliana, and was derived from a duplication event involving the POT1a locus and a neighboring gene encoding ribosomal protein S17. The duplicate S17 locus (dS17) is highly conserved across A. thaliana accessions, while POT1c is highly divergent, harboring multiple deletions within the gene body and two transposable elements within the promoter. The POT1c locus is transcribed at very low to non-detectable levels under standard growth conditions. In addition, no discernable molecular or developmental defects are associated with plants bearing a CRISPR mutation in the POT1c locus. However, forced expression of POT1c leads to decreased telomerase enzyme activity and shortened telomeres. Evolutionary reconstruction indicates that transposons invaded the POT1c promoter soon after the locus was formed, permanently silencing the gene. Altogether, these findings argue that POT1 dosage is critically important for viability and duplicate gene copies are retained only upon functional divergence.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Dosificación de Gen , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Arabidopsis/enzimología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Duplicación de Gen , Mutación , Regiones Promotoras Genéticas/genética , Complejo Shelterina , Telomerasa/genética , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/genética
17.
PLoS Genet ; 11(6): e1005281, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26075395

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as critical factors in many biological processes, but little is known about how their regulatory functions evolved. One of the best-studied lncRNAs is TER, the essential RNA template for telomerase reverse transcriptase. We previously showed that Arabidopsis thaliana harbors three TER isoforms: TER1, TER2 and TER2S. TER1 serves as a canonical telomere template, while TER2 is a novel negative regulator of telomerase activity, induced in response to double-strand breaks (DSBs). TER2 contains a 529 nt intervening sequence that is removed along with 36 nt at the RNA 3' terminus to generate TER2S, an RNA of unknown function. Here we investigate how A. thaliana TER2 acquired its regulatory function. Using data from the 1,001 Arabidopsis genomes project, we report that the intervening sequence within TER2 is derived from a transposable element termed DSB responsive element (DRE). DRE is found in the TER2 loci of most but not all A. thaliana accessions. By analyzing accessions with (TER2) and without DRE (TER2Δ) we demonstrate that this element is responsible for many of the unique properties of TER2, including its enhanced binding to TERT and telomerase inhibitory function. We show that DRE destabilizes TER2, and further that TER2 induction by DNA damage reflects increased RNA stability and not increased transcription. DRE-mediated changes in TER2 stability thus provide a rapid and sensitive switch to fine-tune telomerase enzyme activity. Altogether, our data shows that invasion of the TER2 locus by a small transposon converted this lncRNA into a DNA damage sensor that modulates telomerase enzyme activity in response to genome assault.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Daño del ADN , Elementos Transponibles de ADN , Telomerasa/genética , Proteínas de Arabidopsis/metabolismo , Estabilidad de Enzimas , ARN Largo no Codificante/genética , Elementos de Respuesta , Telomerasa/metabolismo
18.
Biotechnol Lett ; 38(5): 847-54, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26857607

RESUMEN

OBJECTIVES: To biochemically characterize synthetic peptides to control harmful algal blooms (HABs) that cause red tides in marine water ecosystems. RESULTS: We present an analysis of several short synthetic peptides and their efficacy as algicidal agents. By altering the amino acid composition of the peptides we addressed the mode of algicidal action and determine the optimal balance of cationic and hydrophobic content for killing. In a controlled setting, these synthetic peptides disrupted both plasma and chloroplast membranes of several species known to result in HABs. This disruption was a direct result of the hydrophobic and cationic content of the peptide. Furthermore, by using an anti-HAB bioassay in scallops, we determined that these peptides were algicidal without being cytotoxic to other marine organisms. CONCLUSIONS: These synthetic peptides may prove promising for general marine ecosystem remediation where HABs have become widespread and resulted in serious economic loss.


Asunto(s)
Antiinfecciosos/farmacología , Dinoflagelados/efectos de los fármacos , Floraciones de Algas Nocivas/efectos de los fármacos , Péptidos/farmacología , Estramenopilos/efectos de los fármacos , Animales , Antiinfecciosos/química , Bioensayo , Cationes/análisis , Membrana Celular/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Dinoflagelados/fisiología , Interacciones Hidrofóbicas e Hidrofílicas , Pectinidae/microbiología , Péptidos/química , Péptidos/genética , Estramenopilos/fisiología
19.
Chromosome Res ; 22(2): 153-66, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24846723

RESUMEN

Telomeres are repetitive TG-rich DNA elements essential for maintaining the stability of genomes and replicative capacity of cells in almost all eukaryotes. Most of what is known about telomeres in plants comes from the angiosperm Arabidopsis thaliana, which has become an important comparative model for telomere biology. Arabidopsis tolerates numerous insults to its genome, many of which are catastrophic or lethal in other eukaryotic systems such as yeast and vertebrates. Despite the importance of Arabidopsis in establishing a model for the structure and regulation of plant telomeres, only a handful of studies have used this information to assay components of telomeres from across land plants, or even among the closest relatives of Arabidopsis in the plant family Brassicaceae. Here, we determined how well Arabidopsis represents Brassicaceae by comparing multiple aspects of telomere biology in species that represent major clades in the family tree. Specifically, we determined the telomeric repeat sequence, measured bulk telomere length, and analyzed variation in telomere length on syntenic chromosome arms. In addition, we used a phylogenetic approach to infer the evolutionary history of putative telomere-binding proteins, CTC1, STN1, TEN1 (CST), telomere repeat-binding factor like (TRFL), and single Myb histone (SMH). Our analyses revealed conservation of the telomeric DNA repeat sequence, but considerable variation in telomere length among the sampled species, even in comparisons of syntenic chromosome arms. We also found that the single-stranded and double-stranded telomeric DNA-binding complexes CST and TRFL, respectively, differ in their pattern of gene duplication and loss. The TRFL and SMH gene families have undergone numerous duplication events, and these duplicate copies are often retained in the genome. In contrast, CST components occur as single-copy genes in all sampled genomes, even in species that experienced recent whole genome duplication events. Taken together, our results place the Arabidopsis model in the context of other species in Brassicaceae, making the family the best characterized plant group in regard to telomere architecture.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Telómero/genética , Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN de Plantas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
20.
Methods Mol Biol ; 2512: 45-60, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35817998

RESUMEN

Comparative genomic and transcriptomic analyses can help prioritize and facilitate the functional analysis of long noncoding RNAs (lncRNAs). Evolinc-II is a bioinformatic pipeline that automates comparative analyses, searching for sequence and structural conservation for thousands of lncRNAs at once. In addition, Evolinc-II takes a phylogenetic approach to infer key evolutionary events that may have occurred during the emergence of each query lncRNA. Here, we describe how to use command line or GUI (CyVerse's Discovery Environment) versions of Evolinc-II to identify lncRNA homologs and prioritize them for functional analysis.


Asunto(s)
ARN Largo no Codificante , Biología Computacional , Evolución Molecular , Genómica , Filogenia , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA