Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(5): e1011230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713708

RESUMEN

Fuchs endothelial corneal dystrophy (FECD) is an age-related cause of vision loss, and the most common repeat expansion-mediated disease in humans characterised to date. Up to 80% of European FECD cases have been attributed to expansion of a non-coding CTG repeat element (termed CTG18.1) located within the ubiquitously expressed transcription factor encoding gene, TCF4. The non-coding nature of the repeat and the transcriptomic complexity of TCF4 have made it extremely challenging to experimentally decipher the molecular mechanisms underlying this disease. Here we comprehensively describe CTG18.1 expansion-driven molecular components of disease within primary patient-derived corneal endothelial cells (CECs), generated from a large cohort of individuals with CTG18.1-expanded (Exp+) and CTG 18.1-independent (Exp-) FECD. We employ long-read, short-read, and spatial transcriptomic techniques to interrogate expansion-specific transcriptomic biomarkers. Interrogation of long-read sequencing and alternative splicing analysis of short-read transcriptomic data together reveals the global extent of altered splicing occurring within Exp+ FECD, and unique transcripts associated with CTG18.1-expansions. Similarly, differential gene expression analysis highlights the total transcriptomic consequences of Exp+ FECD within CECs. Furthermore, differential exon usage, pathway enrichment and spatial transcriptomics reveal TCF4 isoform ratio skewing solely in Exp+ FECD with potential downstream functional consequences. Lastly, exome data from 134 Exp- FECD cases identified rare (minor allele frequency <0.005) and potentially deleterious (CADD>15) TCF4 variants in 7/134 FECD Exp- cases, suggesting that TCF4 variants independent of CTG18.1 may increase FECD risk. In summary, our study supports the hypothesis that at least two distinct pathogenic mechanisms, RNA toxicity and TCF4 isoform-specific dysregulation, both underpin the pathophysiology of FECD. We anticipate these data will inform and guide the development of translational interventions for this common triplet-repeat mediated disease.


Asunto(s)
Distrofia Endotelial de Fuchs , Factor de Transcripción 4 , Expansión de Repetición de Trinucleótido , Humanos , Masculino , Empalme Alternativo/genética , Células Endoteliales/metabolismo , Endotelio Corneal/metabolismo , Endotelio Corneal/patología , Distrofia Endotelial de Fuchs/genética , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Transcriptoma/genética , Expansión de Repetición de Trinucleótido/genética , Femenino
2.
Trends Genet ; 38(12): 1271-1283, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35934592

RESUMEN

A molecular diagnosis from the analysis of sequencing data in rare Mendelian diseases has a huge impact on the management of patients and their families. Numerous patient phenotype-aware variant prioritisation (VP) tools have been developed to help automate this process, and shorten the diagnostic odyssey, but performance statistics on real patient data are limited. Here we identify, assess, and compare the performance of all up-to-date, freely available, and programmatically accessible tools using a whole-exome, retinal disease dataset from 134 individuals with a molecular diagnosis. All tools were able to identify around two-thirds of the genetic diagnoses as the top-ranked candidate, with LIRICAL performing best overall. Finally, we discuss the challenges to overcome most cases remaining undiagnosed after current, state-of-the-art practices.


Asunto(s)
Exoma , Enfermedades Raras , Humanos , Fenotipo , Secuenciación del Exoma , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética
3.
Am J Hum Genet ; 109(8): 1472-1483, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931051

RESUMEN

Dyskeratosis congenita (DC) is an inherited bone-marrow-failure disorder characterized by a triad of mucocutaneous features that include abnormal skin pigmentation, nail dystrophy, and oral leucoplakia. Despite the identification of several genetic variants that cause DC, a significant proportion of probands remain without a molecular diagnosis. In a cohort of eight independent DC-affected families, we have identified a remarkable series of heterozygous germline variants in the gene encoding thymidylate synthase (TYMS). Although the inheritance appeared to be autosomal recessive, one parent in each family had a wild-type TYMS coding sequence. Targeted genomic sequencing identified a specific haplotype and rare variants in the naturally occurring TYMS antisense regulator ENOSF1 (enolase super family 1) inherited from the other parent. Lymphoblastoid cells from affected probands have severe TYMS deficiency, altered cellular deoxyribonucleotide triphosphate pools, and hypersensitivity to the TYMS-specific inhibitor 5-fluorouracil. These defects in the nucleotide metabolism pathway resulted in genotoxic stress, defective transcription, and abnormal telomere maintenance. Gene-rescue studies in cells from affected probands revealed that post-transcriptional epistatic silencing of TYMS is occurring via elevated ENOSF1. These cell and molecular abnormalities generated by the combination of germline digenic variants at the TYMS-ENOSF1 locus represent a unique pathogenetic pathway for DC causation in these affected individuals, whereas the parents who are carriers of either of these variants in a singular fashion remain unaffected.


Asunto(s)
Disqueratosis Congénita , Timidilato Sintasa , Disqueratosis Congénita/genética , Células Germinativas , Heterocigoto , Humanos , Nucleótidos , Timidilato Sintasa/deficiencia , Timidilato Sintasa/genética
4.
Proc Natl Acad Sci U S A ; 119(21): e2119675119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35594404

RESUMEN

Myopia is the commonest visual impairment. Several genetic loci confer risk, but mechanisms by which they do this are unknown. Retinal signals drive eye growth, and myopia usually results from an excessively long eye. The common variant most strongly associated with myopia is near the GJD2 gene, encoding connexin-36, which forms retinal gap junctions. Light-evoked responses of retinal neurons can be recorded noninvasively as the electroretinogram (ERG). We analyzed these responses from 186 adult twin volunteers who had been genotyped at this locus. Participants underwent detailed ERG recordings incorporating international standard stimuli as well as experimental protocols aiming to separate dark-adapted rod- and cone-driven responses. A mixed linear model was used to explore association between allelic dosage at the locus and international standard ERG parameters after adjustment for age, sex, and family structure. Significant associations were found for parameters of light-adapted, but not dark-adapted, responses. Further investigation of isolated rod- and cone-driven ERGs confirmed associations with cone-driven, but not rod-driven, a-wave amplitudes. Comparison with responses to similar experimental stimuli from a patient with a prior central retinal artery occlusion, and from two patients with selective loss of ON-bipolar cell signals, was consistent with the associated parameters being derived from signals from cone-driven OFF-bipolar cells. Analysis of single-cell transcriptome data revealed strongest GJD2 expression in cone photoreceptors; bipolar cell expression appeared strongest in OFF-bipolar cells and weakest in rod-driven ON-bipolar cells. Our findings support a potential role for altered signaling in cone-driven OFF pathways in myopia development.


Asunto(s)
Miopía , Células Fotorreceptoras Retinianas Conos , Electrorretinografía/métodos , Estudio de Asociación del Genoma Completo , Humanos , Miopía/genética , Miopía/metabolismo , Polimorfismo Genético , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo
5.
Am J Hum Genet ; 107(5): 802-814, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33022222

RESUMEN

The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases.


Asunto(s)
Cromosomas Humanos Par 17/química , Proteínas Nucleares/genética , Hidrolasas Diéster Fosfóricas/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Retinitis Pigmentosa/genética , Factores de Transcripción/genética , Adulto , Secuencia de Aminoácidos , Diferenciación Celular , Reprogramación Celular , Niño , Mapeo Cromosómico , Estudios de Cohortes , Elementos de Facilitación Genéticos , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Genes Dominantes , Genoma Humano , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Proteínas Nucleares/metabolismo , Organoides/metabolismo , Organoides/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Polimorfismo Genético , Cultivo Primario de Células , Células Fotorreceptoras Retinianas Conos/patología , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Factores de Transcripción/metabolismo , Secuenciación Completa del Genoma
6.
Ophthalmology ; 130(4): 413-422, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36423731

RESUMEN

PURPOSE: To review and describe in detail the clinical course, functional and anatomic characteristics of RP2-associated retinal degeneration. DESIGN: Retrospective case series. PARTICIPANTS: Male participants with disease-causing variants in the RP2 gene. METHODS: Review of all case notes and results of molecular genetic testing, retinal imaging (fundus autofluorescence [FAF] imaging, OCT), and electrophysiology assessment. MAIN OUTCOME MEASURES: Molecular genetic testing, clinical findings including best-corrected visual acuity (BCVA), qualitative and quantitative retinal imaging analysis, and electrophysiology parameters. RESULTS: Fifty-four molecularly confirmed patients were identified from 38 pedigrees. Twenty-eight disease-causing variants were identified, with 20 not previously clinically characterized. Fifty-three patients (98.1%) presented with retinitis pigmentosa. The mean age of onset (range ± standard deviation [SD]) was 9.6 years (1-57 ± 9.2 years). Forty-four patients (91.7%) had childhood-onset disease, with mean age of onset of 7.6 years. The most common first symptom was night blindness (68.8%). Mean BCVA (range ± SD) was 0.91 logarithm of the minimum angle of resolution (logMAR) (0-2.7 ± 0.80) and 0.94 logMAR (0-2.7 ± 0.78) for right and left eyes, respectively. On the basis of the World Health Organization visual impairment criteria, 18 patients (34%) had low vision. The majority (17/22) showed electroretinogram (ERG) evidence of a rod-cone dystrophy. Pattern ERG P50 was undetectable in all but 2 patients. A range of FAF findings was observed, from normal to advanced atrophy. There were no statistically significant differences between right and left eyes for ellipsoid zone width (EZW) and outer nuclear layer (ONL) thickness. The mean annual rate of EZW loss was 219 µm/year, and the mean annual decrease in ONL thickness was 4.93 µm/year. No patient with childhood-onset disease had an identifiable ellipsoid zone (EZ) after the age of 26 years at baseline or follow-up. Four patients had adulthood-onset disease and a less severe phenotype. CONCLUSIONS: This study details the clinical phenotype of RP2 retinopathy in a large cohort. The majority presented with early-onset severe retinal degeneration, with early macular involvement and complete loss of the foveal photoreceptor layer by the third decade of life. Full-field ERGs revealed rod-cone dystrophy in the vast majority, but with generalized (peripheral) cone system involvement of widely varying severity in the first 2 decades of life. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Asunto(s)
Distrofias de Conos y Bastones , Degeneración Retiniana , Humanos , Masculino , Distrofias de Conos y Bastones/diagnóstico , Distrofias de Conos y Bastones/genética , Electrorretinografía , Proteínas de Unión al GTP , Proteínas de la Membrana , Biología Molecular , Retina , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/genética , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad
7.
Nicotine Tob Res ; 25(7): 1330-1339, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-36971111

RESUMEN

INTRODUCTION: Smoking lapses after the quit date often lead to full relapse. To inform the development of real time, tailored lapse prevention support, we used observational data from a popular smoking cessation app to develop supervised machine learning algorithms to distinguish lapse from non-lapse reports. AIMS AND METHODS: We used data from app users with ≥20 unprompted data entries, which included information about craving severity, mood, activity, social context, and lapse incidence. A series of group-level supervised machine learning algorithms (eg, Random Forest, XGBoost) were trained and tested. Their ability to classify lapses for out-of-sample (1) observations and (2) individuals were evaluated. Next, a series of individual-level and hybrid algorithms were trained and tested. RESULTS: Participants (N = 791) provided 37 002 data entries (7.6% lapses). The best-performing group-level algorithm had an area under the receiver operating characteristic curve (AUC) of 0.969 (95% confidence interval [CI] = 0.961 to 0.978). Its ability to classify lapses for out-of-sample individuals ranged from poor to excellent (AUC = 0.482-1.000). Individual-level algorithms could be constructed for 39/791 participants with sufficient data, with a median AUC of 0.938 (range: 0.518-1.000). Hybrid algorithms could be constructed for 184/791 participants and had a median AUC of 0.825 (range: 0.375-1.000). CONCLUSIONS: Using unprompted app data appeared feasible for constructing a high-performing group-level lapse classification algorithm but its performance was variable when applied to unseen individuals. Algorithms trained on each individual's dataset, in addition to hybrid algorithms trained on the group plus a proportion of each individual's data, had improved performance but could only be constructed for a minority of participants. IMPLICATIONS: This study used routinely collected data from a popular smartphone app to train and test a series of supervised machine learning algorithms to distinguish lapse from non-lapse events. Although a high-performing group-level algorithm was developed, it had variable performance when applied to new, unseen individuals. Individual-level and hybrid algorithms had somewhat greater performance but could not be constructed for all participants because of the lack of variability in the outcome measure. Triangulation of results with those from a prompted study design is recommended prior to intervention development, with real-world lapse prediction likely requiring a balance between unprompted and prompted app data.


Asunto(s)
Aplicaciones Móviles , Cese del Hábito de Fumar , Humanos , Cese del Hábito de Fumar/métodos , Fumadores , Fumar , Aprendizaje Automático Supervisado , Teléfono Inteligente
8.
Graefes Arch Clin Exp Ophthalmol ; 261(11): 3283-3297, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37160501

RESUMEN

Retinal diseases are a leading cause of blindness in developed countries, accounting for the largest share of visually impaired children, working-age adults (inherited retinal disease), and elderly individuals (age-related macular degeneration). These conditions need specialised clinicians to interpret multimodal retinal imaging, with diagnosis and intervention potentially delayed. With an increasing and ageing population, this is becoming a global health priority. One solution is the development of artificial intelligence (AI) software to facilitate rapid data processing. Herein, we review research offering decision support for the diagnosis, classification, monitoring, and treatment of retinal disease using AI. We have prioritised diabetic retinopathy, age-related macular degeneration, inherited retinal disease, and retinopathy of prematurity. There is cautious optimism that these algorithms will be integrated into routine clinical practice to facilitate access to vision-saving treatments, improve efficiency of healthcare systems, and assist clinicians in processing the ever-increasing volume of multimodal data, thereby also liberating time for doctor-patient interaction and co-development of personalised management plans.


Asunto(s)
Retinopatía Diabética , Degeneración Macular , Enfermedades de la Retina , Niño , Recién Nacido , Humanos , Anciano , Inteligencia Artificial , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/terapia , Algoritmos , Retina , Retinopatía Diabética/diagnóstico , Degeneración Macular/diagnóstico
9.
Proc Natl Acad Sci U S A ; 117(29): 17151-17155, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636268

RESUMEN

Inherited bone marrow failure (BMF) syndromes are a heterogeneous group of diseases characterized by defective hematopoiesis and often predisposing to myelodysplastic syndrome (MDS) and acute myelogenous leukemia. We have studied a large family consisting of several affected individuals with hematologic abnormalities, including one family member who died of acute leukemia. By whole-exome sequencing, we identified a novel frameshift variant in the ubiquitously expressed transcription factor specificity protein 1 (SP1). This heterozygous variant (c.1995delA) truncates the canonical Sp1 molecule in the highly conserved C-terminal DNA-binding zinc finger domains. Transcriptomic analysis and gene promoter characterization in patients' blood revealed a hypermorphic effect of this Sp1 variant, triggering superactivation of Sp1-mediated transcription and driving significant up-regulation of Sp1 target genes. This familial genetic study indicates a central role for Sp1 in causing autosomal dominant transmission of BMF, thereby confirming its critical role in hematopoiesis in humans.


Asunto(s)
Trastornos de Fallo de la Médula Ósea/genética , Mutación del Sistema de Lectura/genética , Factor de Transcripción Sp1/genética , Transcripción Genética/genética , Femenino , Humanos , Masculino , Linaje , Transcriptoma/genética , Regulación hacia Arriba/genética , Dedos de Zinc/genética
12.
Am J Hum Genet ; 102(3): 447-459, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499165

RESUMEN

In a large family of Czech origin, we mapped a locus for an autosomal-dominant corneal endothelial dystrophy, posterior polymorphous corneal dystrophy 4 (PPCD4), to 8q22.3-q24.12. Whole-genome sequencing identified a unique variant (c.20+544G>T) in this locus, within an intronic regulatory region of GRHL2. Targeted sequencing identified the same variant in three additional previously unsolved PPCD-affected families, including a de novo occurrence that suggests this is a recurrent mutation. Two further unique variants were identified in intron 1 of GRHL2 (c.20+257delT and c.20+133delA) in unrelated PPCD-affected families. GRHL2 is a transcription factor that suppresses epithelial-to-mesenchymal transition (EMT) and is a direct transcriptional repressor of ZEB1. ZEB1 mutations leading to haploinsufficiency cause PPCD3. We previously identified promoter mutations in OVOL2, a gene not normally expressed in the corneal endothelium, as the cause of PPCD1. OVOL2 drives mesenchymal-to-epithelial transition (MET) by directly inhibiting EMT-inducing transcription factors, such as ZEB1. Here, we demonstrate that the GRHL2 regulatory variants identified in PPCD4-affected individuals induce increased transcriptional activity in vitro. Furthermore, although GRHL2 is not expressed in corneal endothelial cells in control tissue, we detected GRHL2 in the corneal "endothelium" in PPCD4 tissue. These cells were also positive for epithelial markers E-Cadherin and Cytokeratin 7, indicating they have transitioned to an epithelial-like cell type. We suggest that mutations inducing MET within the corneal endothelium are a convergent pathogenic mechanism leading to dysfunction of the endothelial barrier and disease.


Asunto(s)
Distrofias Hereditarias de la Córnea/genética , Proteínas de Unión al ADN/genética , Mutación/genética , Factores de Transcripción/genética , Secuencia de Bases , ADN Intergénico/genética , Endotelio Corneal/patología , Familia , Femenino , Sitios Genéticos , Células HEK293 , Humanos , Intrones/genética , Masculino , Modelos Genéticos , Linaje , Regiones Promotoras Genéticas/genética , Transcripción Genética , Secuenciación Completa del Genoma
13.
Bioinformatics ; 36(5): 1517-1521, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31764991

RESUMEN

MOTIVATION: During the past decade, genome-wide association studies (GWAS) have been used to map quantitative trait loci (QTLs) underlying complex traits. However, most GWAS focus on additive genetic effects while ignoring non-additive effects, on the assumption that most QTL act additively. Consequently, QTLs driven by dominance and other non-additive effects could be overlooked. RESULTS: We developed ADDO, a highly efficient tool to detect, classify and visualize QTLs with additive and non-additive effects. ADDO implements a mixed-model transformation to control for population structure and unequal relatedness that accounts for both additive and dominant genetic covariance among individuals, and decomposes single-nucleotide polymorphism effects as either additive, partial dominant, dominant or over-dominant. A matrix multiplication approach is used to accelerate the computation: a genome scan on 13 million markers from 900 individuals takes about 5 h with 10 CPUs. Analysis of simulated data confirms ADDO's performance on traits with different additive and dominance genetic variance components. We showed two real examples in outbred rat where ADDO identified significant dominant QTL that were not detectable by an additive model. ADDO provides a systematic pipeline to characterize additive and non-additive QTL in whole genome sequence data, which complements current mainstream GWAS software for additive genetic effects. AVAILABILITY AND IMPLEMENTATION: ADDO is customizable and convenient to install and provides extensive analytics and visualizations. The package is freely available online at https://github.com/LeileiCui/ADDO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Herencia Multifactorial , Fenotipo , Polimorfismo de Nucleótido Simple , Ratas
14.
Ophthalmology ; 128(5): 706-718, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33039401

RESUMEN

PURPOSE: To investigate the clinical course, genetic findings, and phenotypic spectrum of autosomal recessive bestrophinopathy (ARB) in a large cohort of children and adults. DESIGN: Retrospective case series. PARTICIPANTS: Patients with a detailed clinical phenotype consistent with ARB, biallelic likely disease-causing sequence variants in the BEST1 gene, or both identified at a single tertiary referral center. METHODS: Review of case notes, retinal imaging (color fundus photography, fundus autofluorescence, OCT), electrophysiologic assessment, and molecular genetic testing. MAIN OUTCOME MEASURES: Visual acuity (VA), retinal imaging, and electrophysiologic changes over time. RESULTS: Fifty-six eyes of 28 unrelated patients were included. Compound heterozygous variants were detected in most patients (19/27), with 6 alleles recurring in apparently unrelated individuals, the most common of which was c.422G→A, p.(Arg141His; n = 4 patients). Mean presenting VA was 0.52 ± 0.36 logarithm of the minimum angle of resolution (logMAR), and final VA was 0.81 ± 0.75 logMAR (P = 0.06). The mean rate of change in VA was 0.05 ± 0.13 logMAR/year. A significant change in VA was detected in patients with a follow-up of 5 years or more (n = 18) compared with patients with a follow-up of 5 years or less (n = 10; P = 0.001). Presence of subretinal fluid and vitelliform material were early findings in most patients, and this did not change substantially over time. A reduction in central retinal thickness was detected in most eyes (80.4%) over the course of follow-up. Many patients (10/26) showed evidence of generalized rod and cone system dysfunction. These patients were older (P < 0.001) and had worse VA (P = 0.02) than those with normal full-field electroretinography results. CONCLUSIONS: Although patients with ARB are presumed to have no functioning bestrophin channels, significant phenotypic heterogeneity is evident. The clinical course is characterized by a progressive loss of vision with a slow rate of decline, providing a wide therapeutic window for anticipated future treatment strategies.


Asunto(s)
Bestrofinas/genética , Enfermedades Hereditarias del Ojo/diagnóstico , Enfermedades Hereditarias del Ojo/genética , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/genética , Adolescente , Adulto , Niño , Preescolar , Ensayos Clínicos como Asunto , Distrofias de Conos y Bastones/fisiopatología , Electrofisiología , Enfermedades Hereditarias del Ojo/fisiopatología , Femenino , Genes Recesivos , Humanos , Masculino , Persona de Mediana Edad , Biología Molecular , Imagen Óptica , Fenotipo , Enfermedades de la Retina/fisiopatología , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología
15.
Proc Natl Acad Sci U S A ; 115(30): 7777-7782, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987015

RESUMEN

Biallelic variants in the ERCC excision repair 6 like 2 gene (ERCC6L2) are known to cause bone marrow failure (BMF) due to defects in DNA repair and mitochondrial function. Here, we report on eight cases of BMF from five families harboring biallelic variants in ERCC6L2, two of whom present with myelodysplasia. We confirm that ERCC6L2 patients' lymphoblastoid cell lines (LCLs) are hypersensitive to DNA-damaging agents that specifically activate the transcription coupled nucleotide excision repair (TCNER) pathway. Interestingly, patients' LCLs are also hypersensitive to transcription inhibitors that interfere with RNA polymerase II (RNA Pol II) and display an abnormal delay in transcription recovery. Using affinity-based mass spectrometry we found that ERCC6L2 interacts with DNA-dependent protein kinase (DNA-PK), a regulatory component of the RNA Pol II transcription complex. Chromatin immunoprecipitation PCR studies revealed ERCC6L2 occupancy on gene bodies along with RNA Pol II and DNA-PK. Patients' LCLs fail to terminate transcript elongation accurately upon DNA damage and display a significant increase in nuclear DNA-RNA hybrids (R loops). Collectively, we conclude that ERCC6L2 is involved in regulating RNA Pol II-mediated transcription via its interaction with DNA-PK to resolve R loops and minimize transcription-associated genome instability. The inherited BMF syndrome caused by biallelic variants in ERCC6L2 can be considered as a primary transcription deficiency rather than a DNA repair defect.


Asunto(s)
Alelos , Enfermedades de la Médula Ósea/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN , Enfermedades Genéticas Congénitas/metabolismo , Inestabilidad Genómica , Transcripción Genética , Células A549 , Enfermedades de la Médula Ósea/genética , Enfermedades de la Médula Ósea/patología , ADN Helicasas/genética , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Células HeLa , Humanos , Masculino , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Síndrome
16.
PLoS Genet ; 14(5): e1007329, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795570

RESUMEN

As part of a broader collaborative network of exome sequencing studies, we developed a jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a resource of site and allele frequencies, which should serve as a reference for medical genetics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gnomAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles present in the Ashkenazi Jewish population at frequencies greater than 0.2% are significantly more frequent (mean 15-fold) than their maximum frequency observed in other reference populations. Arising via a well-described founder effect approximately 30 generations ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall prevalence of diseases between populations. As validation we document 148 AJ enriched protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those that account for 10-100 fold differences in prevalence between AJ and non-AJ populations of some rare diseases, especially recessive conditions, including Gaucher disease (GBA, p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p.Glu285Ala, 12-fold enrichment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5, 12-fold enrichment). We next sought to use this catalog, of well-established relevance to Mendelian disease, to explore Crohn's disease, a common disease with an estimated two to four-fold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the same founder-effect, contribute excess genetic risk to Crohn's disease in AJ, and find that ten rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p < 0.005), including several novel contributing alleles, show evidence of association to CD. Independently, we find that genomewide common variant risk defined by GWAS shows a strong difference between AJ and non-AJ European control population samples (0.97 s.d. higher, p<10-16). Taken together, the results suggest coordinated selection in AJ population for higher CD risk alleles in general. The results and approach illustrate the value of exome sequencing data in case-control studies along with reference data sets like ExAC (sites VCF available via FTP at ftp.broadinstitute.org/pub/ExAC_release/release0.3/) to pinpoint genetic variation that contributes to variable disease predisposition across populations.


Asunto(s)
Enfermedad de Crohn/genética , Predisposición Genética a la Enfermedad/genética , Judíos/genética , Enfermedades Raras/genética , Algoritmos , Enfermedad de Crohn/epidemiología , Genética de Población , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Modelos Genéticos , Epidemiología Molecular , Polimorfismo de Nucleótido Simple , Enfermedades Raras/epidemiología
17.
Am J Med Genet C Semin Med Genet ; 184(3): 656-674, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32820593

RESUMEN

Variants in the PROM1 gene are associated with cone (-rod) dystrophy, macular dystrophy, and other phenotypes. We describe the clinical and genetic characteristics of 10 patients from eight Japanese families with PROM1-associated retinal disorder (PROM1-RD) in a nationwide cohort. A literature review of PROM1-RD in the Japanese population was also performed. The median age at onset/examination of 10 patients was 31.0 (range, 10-45)/44.5 (22-73) years. All 10 patients showed atrophic macular changes. Seven patients (70.0%) had spared fovea to various degrees, approximately half of whom had maintained visual acuity. Generalized cone (-rod) dysfunction was demonstrated in all nine subjects with available electrophysiological data. Three PROM1 variants were identified in this study: one recurrent disease-causing variant (p.Arg373Cys), one novel putative disease-causing variant (p.Cys112Arg), and one novel variant of uncertain significance (VUS; p.Gly53Asp). Characteristic features of macular atrophy with generalized cone-dominated retinal dysfunction were shared among all 10 subjects with PROM1-RD, and the presence of foveal sparing was crucial in maintaining visual acuity. Together with the three previously reported variants [p.R373C, c.1551+1G>A (pathogenic), p.Asn580His (likely benign)] in the literature of Japanese patients, one prevalent missense variant (p.Arg373Cys, 6/9 families, 66.7%) detected in multiple studies was determined in the Japanese population, which was also frequently detected in the European population.


Asunto(s)
Antígeno AC133/genética , Genética de Población , Retina/patología , Enfermedades de la Retina/genética , Adulto , Anciano , Femenino , Humanos , Japón/epidemiología , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Retina/diagnóstico por imagen , Enfermedades de la Retina/diagnóstico por imagen , Enfermedades de la Retina/epidemiología , Enfermedades de la Retina/patología , Agudeza Visual/genética , Adulto Joven
18.
Am J Med Genet C Semin Med Genet ; 184(3): 675-693, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32875684

RESUMEN

The retinitis pigmentosa 2 (RP2) gene is one of the causative genes for X-linked inherited retinal disorder. We characterized the clinical/genetic features of four patients with RP2-associated retinal disorder (RP2-RD) from four Japanese families in a nationwide cohort. A systematic review of RP2-RD in the Japanese population was also performed. All four patients were clinically diagnosed with retinitis pigmentosa (RP). The mean age at examination was 36.5 (10-47) years, and the mean visual acuity in the right/left eye was 1.40 (0.52-2.0)/1.10 (0.52-1.7) in the logarithm of the minimum angle of resolution unit, respectively. Three patients showed extensive retinal atrophy with macular involvement, and one had central retinal atrophy. Four RP2 variants were identified, including two novel missense (p.Ser6Phe, p.Leu189Pro) and two previously reported truncating variants (p.Arg120Ter, p.Glu269CysfsTer3). The phenotypes of two patients with truncating variants were more severe than the phenotypes of two patients with missense variants. A systematic review revealed additional 11 variants, including three missense and eight deleterious (null) variants, and a statistically significant association between phenotype severity and genotype severity was revealed. The clinical and genetic spectrum of RP2-RD was illustrated in the Japanese population, identifying the characteristic features of a severe form of RP with early macular involvement.


Asunto(s)
Proteínas de Unión al GTP/genética , Proteínas de la Membrana/genética , Retina/patología , Enfermedades de la Retina/genética , Agudeza Visual/genética , Adolescente , Adulto , Niño , Femenino , Estudios de Asociación Genética , Humanos , Japón/epidemiología , Masculino , Persona de Mediana Edad , Retina/diagnóstico por imagen , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/epidemiología , Enfermedades de la Retina/patología , Adulto Joven
19.
Am J Hum Genet ; 100(4): 592-604, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28285769

RESUMEN

Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both temporally and spatially. Genetic defects in several spliceosome components have been linked to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here we report that defects in spliceosome-associated protein CWC27 are associated with a spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms. By whole-exome sequencing, recessive protein-truncating mutations in CWC27 were found in seven unrelated families that show a range of clinical phenotypes, including retinal degeneration, brachydactyly, craniofacial abnormalities, short stature, and neurological defects. Remarkably, variable expressivity of the human phenotype can be recapitulated in Cwc27 mutant mouse models, with significant embryonic lethality and severe phenotypes in the complete knockout mice while mice with a partial loss-of-function allele mimic the isolated retinal degeneration phenotype. Our study describes a retinal dystrophy-related phenotype spectrum as well as its genetic etiology and highlights the complexity of the spliceosomal gene network.


Asunto(s)
Anomalías Múltiples/genética , Ciclofilinas/genética , Mutación , Isomerasa de Peptidilprolil/genética , Degeneración Retiniana/genética , Adolescente , Animales , Niño , Preescolar , Ciclofilinas/metabolismo , Femenino , Humanos , Masculino , Ratones , Linaje , Isomerasa de Peptidilprolil/metabolismo , Adulto Joven
20.
Ophthalmology ; 127(10): 1384-1394, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32423767

RESUMEN

PURPOSE: In a large cohort of molecularly characterized inherited retinal disease (IRD) families, we investigated proportions with disease attributable to causative variants in each gene. DESIGN: Retrospective study of electronic patient records. PARTICIPANTS: Patients and relatives managed in the Genetics Service of Moorfields Eye Hospital in whom a molecular diagnosis had been identified. METHODS: Genetic screening used a combination of single-gene testing, gene panel testing, whole exome sequencing, and more recently, whole genome sequencing. For this study, genes listed in the Retinal Information Network online resource (https://sph.uth.edu/retnet/) were included. Transcript length was extracted for each gene (Ensembl, release 94). MAIN OUTCOME MEASURES: We calculated proportions of families with IRD attributable to variants in each gene in the entire cohort, a cohort younger than 18 years, and a current cohort (at least 1 patient encounter between January 1, 2017, and August 2, 2019). Additionally, we explored correlation between numbers of families and gene transcript length. RESULTS: We identified 3195 families with a molecular diagnosis (variants in 135 genes), including 4236 affected individuals. The pediatric cohort comprised 452 individuals from 411 families (66 genes). The current cohort comprised 2614 families (131 genes; 3130 affected individuals). The 20 most frequently implicated genes overall (with prevalence rates per families) were as follows: ABCA4 (20.8%), USH2A (9.1%), RPGR (5.1%), PRPH2 (4.6%), BEST1 (3.9%), RS1 (3.5%), RP1 (3.3%), RHO (3.3%), CHM (2.7%), CRB1 (2.1%), PRPF31 (1.8%), MY07A (1.7%), OPA1 (1.6%), CNGB3 (1.4%), RPE65 (1.2%), EYS (1.2%), GUCY2D (1.2%), PROM1 (1.2%), CNGA3 (1.1%), and RDH12 (1.1%). These accounted for 71.8% of all molecularly diagnosed families. Spearman coefficients for correlation between numbers of families and transcript length were 0.20 (P = 0.025) overall and 0.27 (P = 0.017), -0.17 (P = 0.46), and 0.71 (P = 0.047) for genes in which variants exclusively cause recessive, dominant, or X-linked disease, respectively. CONCLUSIONS: Our findings help to quantify the burden of IRD attributable to each gene. More than 70% of families showed pathogenic variants in 1 of 20 genes. Transcript length (relevant to gene delivery strategies) correlated significantly with numbers of affected families (but not for dominant disease).


Asunto(s)
ADN/genética , Proteínas del Ojo/genética , Mutación , Retina/patología , Enfermedades de la Retina/genética , Análisis Mutacional de ADN , Proteínas del Ojo/metabolismo , Femenino , Pruebas Genéticas , Humanos , Masculino , Linaje , Enfermedades de la Retina/congénito , Enfermedades de la Retina/diagnóstico , Estudios Retrospectivos , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA