Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791119

RESUMEN

SARS-CoV-2 is the pathogen responsible for the most recent global pandemic, which has claimed hundreds of thousands of victims worldwide. Despite remarkable efforts to develop an effective vaccine, concerns have been raised about the actual protection against novel variants. Thus, researchers are eager to identify alternative strategies to fight against this pathogen. Like other opportunistic entities, a key step in the SARS-CoV-2 lifecycle is the maturation of the envelope glycoprotein at the RARR685↓ motif by the cellular enzyme Furin. Inhibition of this cleavage greatly affects viral propagation, thus representing an ideal drug target to contain infection. Importantly, no Furin-escape variants have ever been detected, suggesting that the pathogen cannot replace this protease by any means. Here, we designed a novel fluorogenic SARS-CoV-2-derived substrate to screen commercially available and custom-made libraries of small molecules for the identification of new Furin inhibitors. We found that a peptide substrate mimicking the cleavage site of the envelope glycoprotein of the Omicron variant (QTQTKSHRRAR-AMC) is a superior tool for screening Furin activity when compared to the commercially available Pyr-RTKR-AMC substrate. Using this setting, we identified promising novel compounds able to modulate Furin activity in vitro and suitable for interfering with SARS-CoV-2 maturation. In particular, we showed that 3-((5-((5-bromothiophen-2-yl)methylene)-4-oxo-4,5 dihydrothiazol-2-yl)(3-chloro-4-methylphenyl)amino)propanoic acid (P3, IC50 = 35 µM) may represent an attractive chemical scaffold for the development of more effective antiviral drugs via a mechanism of action that possibly implies the targeting of Furin secondary sites (exosites) rather than its canonical catalytic pocket. Overall, a SARS-CoV-2-derived peptide was investigated as a new substrate for in vitro high-throughput screening (HTS) of Furin inhibitors and allowed the identification of compound P3 as a promising hit with an innovative chemical scaffold. Given the key role of Furin in infection and the lack of any Food and Drug Administration (FDA)-approved Furin inhibitor, P3 represents an interesting antiviral candidate.


Asunto(s)
Furina , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas , Furina/antagonistas & inhibidores , Furina/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Humanos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Antivirales/farmacología , Antivirales/química , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Evaluación Preclínica de Medicamentos/métodos
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902222

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiological agent responsible for the worldwide pandemic and has now claimed millions of lives. The virus combines several unusual characteristics and an extraordinary ability to spread among humans. In particular, the dependence of the maturation of the envelope glycoprotein S from Furin enables the invasion and replication of the virus virtually within the entire body, since this cellular protease is ubiquitously expressed. Here, we analyzed the naturally occurring variation of the amino acids sequence around the cleavage site of S. We found that the virus grossly mutates preferentially at P positions, resulting in single residue replacements that associate with gain-of-function phenotypes in specific conditions. Interestingly, some combinations of amino acids are absent, despite the evidence supporting some cleavability of the respective synthetic surrogates. In any case, the polybasic signature is maintained and, as a consequence, Furin dependence is preserved. Thus, no escape variants to Furin are observed in the population. Overall, the SARS-CoV-2 system per se represents an outstanding example of the evolution of substrate-enzyme interaction, demonstrating a fast-tracked optimization of a protein stretch towards the Furin catalytic pocket. Ultimately, these data disclose important information for the development of drugs targeting Furin and Furin-dependent pathogens.


Asunto(s)
COVID-19 , Furina , Proteolisis , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Furina/metabolismo , Mutación , Péptido Hidrolasas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Catálisis , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
Emerg Infect Dis ; 27(2): 658-660, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33496646

RESUMEN

We report 3 cases of Puumala virus infection in a family in Switzerland in January 2019. Clinical manifestations of the infection ranged from mild influenza-like illness to fatal disease. This cluster illustrates the wide range of clinical manifestations of Old World hantavirus infections and the challenge of diagnosing travel-related hemorrhagic fevers.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Virus Puumala , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Humanos , Virus Puumala/genética , Suiza/epidemiología , Viaje , Enfermedad Relacionada con los Viajes
4.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30626681

RESUMEN

Arenaviruses are a large family of emerging enveloped negative-strand RNA viruses that include several causative agents of viral hemorrhagic fevers. For cell entry, human-pathogenic arenaviruses use different cellular receptors and endocytic pathways that converge at the level of acidified late endosomes, where the viral envelope glycoprotein mediates membrane fusion. Inhibitors of arenavirus entry hold promise for therapeutic antiviral intervention and the identification of "druggable" targets is of high priority. Using a recombinant vesicular stomatitis virus pseudotype platform, we identified the clotrimazole-derivative TRAM-34, a highly selective antagonist of the calcium-activated potassium channel KCa3.1, as a specific entry inhibitor for arenaviruses. TRAM-34 specifically blocked entry of most arenaviruses, including hemorrhagic fever viruses, but not Lassa virus and other enveloped viruses. Anti-arenaviral activity was likewise observed with the parental compound clotrimazole and the derivative senicapoc, whereas structurally unrelated KCa3.1 inhibitors showed no antiviral effect. Deletion of KCa3.1 by CRISPR/Cas9 technology did not affect the antiarenaviral effect of TRAM-34, indicating that the observed antiviral effect of clotrimazoles was independent of the known pharmacological target. The drug affected neither virus-cell attachment, nor endocytosis, suggesting an effect on later entry steps. Employing a quantitative cell-cell fusion assay that bypasses endocytosis, we demonstrate that TRAM-34 specifically inhibits arenavirus-mediated membrane fusion. In sum, we uncover a novel antiarenaviral action of clotrimazoles that currently undergo in vivo evaluation in the context of other human diseases. Their favorable in vivo toxicity profiles and stability opens the possibility to repurpose clotrimazole derivatives for therapeutic intervention against human-pathogenic arenaviruses.IMPORTANCE Emerging human-pathogenic arenaviruses are causative agents of severe hemorrhagic fevers with high mortality and represent serious public health problems. The current lack of a licensed vaccine and the limited treatment options makes the development of novel antiarenaviral therapeutics an urgent need. Using a recombinant pseudotype platform, we uncovered that clotrimazole drugs, in particular TRAM-34, specifically inhibit cell entry of a range of arenaviruses, including important emerging human pathogens, with the exception of Lassa virus. The antiviral effect was independent of the known pharmacological drug target and involved inhibition of the unusual membrane fusion mechanism of arenaviruses. TRAM-34 and its derivatives currently undergo evaluation against a number of human diseases and show favorable toxicity profiles and high stability in vivo Our study provides the basis for further evaluation of clotrimazole derivatives as antiviral drug candidates. Their advanced stage of drug development will facilitate repurposing for therapeutic intervention against human-pathogenic arenaviruses.


Asunto(s)
Antivirales/farmacología , Arenavirus/efectos de los fármacos , Clotrimazol/farmacología , Fusión de Membrana/efectos de los fármacos , Células A549 , Animales , Infecciones por Arenaviridae/tratamiento farmacológico , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Endocitosis/efectos de los fármacos , Células HEK293 , Células HeLa , Fiebres Hemorrágicas Virales/tratamiento farmacológico , Fiebres Hemorrágicas Virales/virología , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Virus Lassa/efectos de los fármacos , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
5.
J Virol ; 89(12): 6240-50, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25833049

RESUMEN

UNLABELLED: Arenaviruses are important emerging human pathogens maintained by noncytolytic persistent infection in their rodent reservoir hosts. Despite high levels of viral replication, persistently infected carrier hosts show only mildly elevated levels of type I interferon (IFN-I). Accordingly, the arenavirus nucleoprotein (NP) has been identified as a potent IFN-I antagonist capable of blocking activation of interferon regulatory factor 3 (IRF3) via the retinoic acid inducible gene (RIG)-I/mitochondrial antiviral signaling (MAVS) pathway. Another important mechanism of host innate antiviral defense is represented by virus-induced mitochondrial apoptosis via RIG-I/MAVS and IRF3. In the present study, we investigated the ability of the prototypic Old World arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with RIG-I/MAVS-dependent apoptosis. We found that LCMV does not induce apoptosis at any time during infection. While LCMV efficiently blocked induction of IFN-I via RIG-I/MAVS in response to superinfection with cytopathic RNA viruses, virus-induced mitochondrial apoptosis remained fully active in LCMV-infected cells. Notably, in LCMV-infected cells, RIG-I was dispensable for virus-induced apoptosis via MAVS. Our study reveals that LCMV infection efficiently suppresses induction of IFN-I but does not interfere with the cell's ability to undergo virus-induced mitochondrial apoptosis as a strategy of innate antiviral defense. The RIG-I independence of mitochondrial apoptosis in LCMV-infected cells provides the first evidence that arenaviruses can reshape apoptotic signaling according to their needs. IMPORTANCE: Arenaviruses are important emerging human pathogens that are maintained in their rodent hosts by persistent infection. Persistent virus is able to subvert the cellular interferon response, a powerful branch of the innate antiviral defense. Here, we investigated the ability of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with the induction of programmed cell death, or apoptosis, in response to superinfection with cytopathic RNA viruses. Upon viral challenge, persistent LCMV efficiently blocked induction of interferons, whereas virus-induced apoptosis remained fully active in LCMV-infected cells. Our studies reveal that the persistent virus is able to reshape innate apoptotic signaling in order to prevent interferon production while maintaining programmed cell death as a strategy for innate defense. The differential effect of persistent virus on the interferon response versus its effect on apoptosis appears as a subtle strategy to guarantee sufficiently high viral loads for efficient transmission while maintaining apoptosis as a mechanism of defense.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , ARN Helicasas DEAD-box/metabolismo , Interacciones Huésped-Patógeno , Tolerancia Inmunológica , Interferón Tipo I/metabolismo , Virus de la Coriomeningitis Linfocítica/inmunología , Animales , Línea Celular , Proteína 58 DEAD Box , Humanos , Evasión Inmune , Interferón Tipo I/antagonistas & inhibidores , Ratones , Receptores Inmunológicos
6.
Cell Microbiol ; 15(5): 689-700, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23279385

RESUMEN

The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.


Asunto(s)
Distroglicanos/metabolismo , Matriz Extracelular/virología , Fiebre de Lassa/genética , Virus Lassa/patogenicidad , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/virología , Matriz Extracelular/metabolismo , Humanos , Fiebre de Lassa/virología , Virus Lassa/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Tirosina/genética , Tirosina/metabolismo , Utrofina/genética , Utrofina/metabolismo
7.
J Virol ; 86(15): 7728-38, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22532683

RESUMEN

Arenaviruses perturb innate antiviral defense by blocking induction of type I interferon (IFN) production. Accordingly, the arenavirus nucleoprotein (NP) was shown to block activation and nuclear translocation of interferon regulatory factor 3 (IRF3) in response to virus infection. Here, we sought to identify cellular factors involved in innate antiviral signaling targeted by arenavirus NP. Consistent with previous studies, infection with the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) prevented phosphorylation of IRF3 in response to infection with Sendai virus, a strong inducer of the retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS) pathway of innate antiviral signaling. Using a combination of coimmunoprecipitation and confocal microscopy, we found that LCMV NP associates with the IκB kinase (IKK)-related kinase IKKε but that, rather unexpectedly, LCMV NP did not bind to the closely related TANK-binding kinase 1 (TBK-1). The NP-IKKε interaction was highly conserved among arenaviruses from different clades. In LCMV-infected cells, IKKε colocalized with NP but not with MAVS located on the outer membrane of mitochondria. LCMV NP bound the kinase domain (KD) of IKKε (IKBKE) and blocked its autocatalytic activity and its ability to phosphorylate IRF3, without undergoing phosphorylation. Together, our data identify IKKε as a novel target of arenavirus NP. Engagement of NP seems to sequester IKKε in an inactive complex. Considering the important functions of IKKε in innate antiviral immunity and other cellular processes, the NP-IKKε interaction likely plays a crucial role in arenavirus-host interaction.


Asunto(s)
Quinasa I-kappa B/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Coriomeningitis Linfocítica/metabolismo , Virus de la Coriomeningitis Linfocítica/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de la Nucleocápside/metabolismo , Línea Celular Tumoral , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/inmunología , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Membranas Mitocondriales/inmunología , Membranas Mitocondriales/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/inmunología , Fosforilación/genética , Fosforilación/inmunología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Inmunológicos , Virus Sendai/genética , Virus Sendai/inmunología , Virus Sendai/metabolismo
8.
Cell Microbiol ; 14(7): 1122-34, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22405130

RESUMEN

The arenavirus Lassa virus (LASV) causes a severe haemorrhagic fever with high mortality in man. The cellular receptor for LASV is dystroglycan (DG). DG is a ubiquitous receptor for extracellular matrix (ECM) proteins, which cooperates with ß1 integrins to control cell-matrix interactions. Here, we investigated whether LASV binding to DG triggers signal transduction, mimicking the natural ligands. Engagement of DG by LASV resulted in the recruitment of the adaptor protein Grb2 and the protein kinase MEK1 by the cytoplasmic domain of DG without activating the MEK/ERK pathway, indicating assembly of an inactive signalling complex. LASV binding to cells however affected the activation of the MEK/ERK pathway via α6ß1 integrins. The virus-induced perturbation of α6ß1 integrin signalling critically depended on high-affinity LASV binding to DG and DG's cytoplasmic domain, indicating that LASV-receptor binding perturbed signalling cross-talk between DG and ß1 integrins.


Asunto(s)
Distroglicanos/metabolismo , Matriz Extracelular/metabolismo , Virus Lassa/patogenicidad , Receptores Virales/metabolismo , Transducción de Señal , Acoplamiento Viral , Línea Celular , Humanos , Integrina beta1/metabolismo , Virus Lassa/fisiología , Modelos Biológicos
9.
Artículo en Inglés | MEDLINE | ID: mdl-36707198

RESUMEN

Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.


Asunto(s)
COVID-19 , Proproteína Convertasas , Humanos , Proproteína Convertasas/química , Proproteína Convertasas/metabolismo , Proproteína Convertasa 9/metabolismo , Furina/metabolismo , Pandemias , Vías Secretoras , SARS-CoV-2/metabolismo
10.
Viruses ; 15(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005942

RESUMEN

When infecting humans, Andes orthohantavirus (ANDV) may cause a severe disease called hantavirus cardiopulmonary syndrome (HCPS). Following non-specific symptoms, the infection may progress to a syndrome of hemorrhagic fever combined with hyper-acute cardiopulmonary failure. The case fatality rate ranges between 25-40%, depending on the outbreak. In this study, we present the follow-up of a male patient who recovered from HCPS six years ago. We demonstrate that the ANDV genome persists within the reproductive tract for at least 71 months. Genome sequence analysis early and late after infection reveals a low number of mutations (two single nucleotide variants and one deletion), suggesting limited replication activity. We can exclude the integration of the viral genome into the host genome, since the treatment of the specimen with RNAse led to a loss of signal. We demonstrate a long-lasting, strong neutralizing antibody response using pseudovirions expressing the ANDV glycoprotein. Taken together, our results show that ANDV has the potential for sexual transmission.


Asunto(s)
Infecciones por Hantavirus , Orthohantavirus , Humanos , Masculino , Orthohantavirus/genética , Semen , Anticuerpos Neutralizantes , ARN Viral/genética
11.
Clin Microbiol Infect ; 29(12): 1587-1594, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37661067

RESUMEN

OBJECTIVES: To report 5-year persistence and avidity of antibodies produced by the live-attenuated recombinant vesicular stomatitis virus (rVSV) expressing the Zaire Ebolavirus (ZEBOV) glycoprotein (GP), known as rVSV-ZEBOV (Ervebo®). METHODS: Healthy adults vaccinated with 300,000 or 10-50 million plaque-forming units of rVSV-ZEBOV in the WHO-coordinated trials of 2014-2015 were followed for up to 4 (Lambaréné, Gabon) and 5 (Geneva, Switzerland) years. We report seropositivity rates, geometric mean titres (GMTs), and population distribution of ZEBOV-GP ELISA IgG antibodies, neutralizing antibodies (pseudovirus and live-virus neutralization) and antibody avidity; the primary outcome was ZEBOV-GP ELISA IgG GMTs at 4 or 5 years compared with 1 year (Y1) after immunization. RESULTS: Among the 168 eligible vaccinees (Geneva: 97 and Lambaréné: 71) enrolled 1 year post-immunization, 146 (87%) remained enrolled at 4 years (Geneva: n = 88, Lambaréné: n = 58), and 84 (87%, Geneva) at 5 years post-vaccination. ZEBOV-GP ELISA IgG GMTs plateaued, with no declining trend from 1 year through the last time point assessed (1147.8 [95% CI 874.3-1507.0] at Y1 versus 1548.1 [95% CI 1136.6-2108.5] at Y5 in Geneva volunteers receiving ≥10 million plaque-forming units of rVSV-ZEBOV), their avidity matching that of ZEBOV convalescents. Live-virus neutralizing antibodies were detected for shorter periods and in fewer vaccinees (53/95 [56%] at Y1 versus 35/84 [42%] at Y5 in Geneva volunteers, all dose levels). DISCUSSION: Titres at Y1 emerged as a correlate of antibody persistence at Y5. The findings of persistent ZEBOV-GP ELISA IgG titres yet shorter-lasting, lower titres of live-virus neutralizing antibodies suggest the contribution of antibody-mediated protective mechanisms other than neutralization. Long-term clinical efficacy of rVSV-ZEBOV, however, requires further study.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Estomatitis Vesicular , Adulto , Animales , Humanos , Ebolavirus/genética , Formación de Anticuerpos , República Democrática del Congo , Anticuerpos Antivirales , Vacunación , Anticuerpos Neutralizantes , Inmunoglobulina G , Anticuerpos Bloqueadores
12.
Viruses ; 14(10)2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36298797

RESUMEN

Designed ankyrin repeat proteins (DARPins) are engineered proteins comprising consensus designed ankyrin repeats as scaffold. Tightly packed repeats form a continuous hydrophobic core and a large groove-like solvent-accessible surface that creates a binding surface. DARPin domains recognizing a target of interest with high specificity and affinity can be generated using a synthetic combinatorial library and in vitro selection methods. They can be linked together in a single molecule to build multispecific and multifunctional proteins without affecting expression or function. The modular architecture of DARPins offers unprecedented possibilities of design and opens avenues for innovative antiviral strategies.


Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , Inhibidores de Fusión de VIH , Internalización del Virus , Repetición de Anquirina , Proteínas , Solventes
13.
Nat Biotechnol ; 40(12): 1845-1854, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35864170

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19).


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , SARS-CoV-2/genética , Proteínas de Repetición de Anquirina Diseñadas , Microscopía por Crioelectrón , Anticuerpos Monoclonales/uso terapéutico , Terapéutica Combinada de Anticuerpos , Anticuerpos Neutralizantes
14.
Microorganisms ; 9(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203936

RESUMEN

Ecological changes, population movements and increasing urbanization promote the expansion of hantaviruses, placing humans at high risk of virus transmission and consequent diseases. The currently limited therapeutic options make the development of antiviral strategies an urgent need. Ribavirin is the only antiviral used currently to treat hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus (HTNV), even though severe side effects are associated with this drug. We therefore investigated the antiviral activity of favipiravir, a new antiviral agent against RNA viruses. Both ribavirin and favipiravir demonstrated similar potent antiviral activity on HTNV infection. When combined, the efficacy of ribavirin is enhanced through the addition of low dose favipiravir, highlighting the possibility to provide better treatment than is currently available.

15.
Viruses ; 13(4)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923413

RESUMEN

Hemorrhagic fever viruses, among them orthohantaviruses, arenaviruses and filoviruses, are responsible for some of the most severe human diseases and represent a serious challenge for public health. The current limited therapeutic options and available vaccines make the development of novel efficacious antiviral agents an urgent need. Inhibiting viral attachment and entry is a promising strategy for the development of new treatments and to prevent all subsequent steps in virus infection. Here, we developed a fluorescence-based screening assay for the identification of new antivirals against hemorrhagic fever virus entry. We screened a phytochemical library containing 320 natural compounds using a validated VSV pseudotype platform bearing the glycoprotein of the virus of interest and encoding enhanced green fluorescent protein (EGFP). EGFP expression allows the quantitative detection of infection and the identification of compounds affecting viral entry. We identified several hits against four pseudoviruses for the orthohantaviruses Hantaan (HTNV) and Andes (ANDV), the filovirus Ebola (EBOV) and the arenavirus Lassa (LASV). Two selected inhibitors, emetine dihydrochloride and tetrandrine, were validated with infectious pathogenic HTNV in a BSL-3 laboratory. This study provides potential therapeutics against emerging virus infection, and highlights the importance of drug repurposing.


Asunto(s)
Antivirales/uso terapéutico , Evaluación Preclínica de Medicamentos/métodos , Infecciones por Hantavirus/tratamiento farmacológico , Orthohantavirus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Humanos
16.
mBio ; 12(4): e0253120, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34225492

RESUMEN

Hantaviruses are a group of emerging pathogens capable of causing severe disease upon zoonotic transmission to humans. The mature hantavirus surface presents higher-order tetrameric assemblies of two glycoproteins, Gn and Gc, which are responsible for negotiating host cell entry and constitute key therapeutic targets. Here, we demonstrate that recombinantly derived Gn from Hantaan virus (HTNV) elicits a neutralizing antibody response (serum dilution that inhibits 50% infection [ID50], 1:200 to 1:850) in an animal model. Using antigen-specific B cell sorting, we isolated monoclonal antibodies (mAbs) exhibiting neutralizing and non-neutralizing activity, termed mAb HTN-Gn1 and mAb nnHTN-Gn2, respectively. Crystallographic analysis reveals that these mAbs target spatially distinct epitopes at disparate sites of the N-terminal region of the HTNV Gn ectodomain. Epitope mapping onto a model of the higher order (Gn-Gc)4 spike supports the immune accessibility of the mAb HTN-Gn1 epitope, a hypothesis confirmed by electron cryo-tomography of the antibody with virus-like particles. These data define natively exposed regions of the hantaviral Gn that can be targeted in immunogen design. IMPORTANCE The spillover of pathogenic hantaviruses from rodent reservoirs into the human population poses a continued threat to human health. Here, we show that a recombinant form of the Hantaan virus (HTNV) surface-displayed glycoprotein, Gn, elicits a neutralizing antibody response in rabbits. We isolated a neutralizing (HTN-Gn1) and a non-neutralizing (nnHTN-Gn2) monoclonal antibody and provide the first molecular-level insights into how the Gn glycoprotein may be targeted by the antibody-mediated immune response. These findings may guide rational vaccine design approaches focused on targeting the hantavirus glycoprotein envelope.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Virus Hantaan/genética , Virus Hantaan/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Mapeo Epitopo , Femenino , Células HEK293 , Infecciones por Hantavirus/inmunología , Humanos , Inmunización , Conejos
17.
Virology ; 543: 54-62, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32056847

RESUMEN

Hantaviruses are rodent-borne hemorrhagic fever viruses leading to serious diseases. Viral attachment and entry represent the first steps in virus transmission and are promising targets for antiviral therapeutic intervention. Here we investigated receptor use in human airway epithelium of the Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV). Using a biocontained recombinant vesicular stomatitis virus pseudotype platform, we provide first evidence for a role of the cellular phosphatidylserine (PS) receptors of the T-cell immunoglobulin and mucin (TIM) protein family in HTNV and ANDV infection. In line with previous studies, HTNV, but not ANDV, was able to use glycosaminoglycan heparan sulfate and αvß3 integrin as co-receptors. In sum, our studies demonstrate for the first time that hantaviruses make use of apoptotic mimicry for infection of human airway epithelium, which may explain why these viruses can easily break the species barrier.


Asunto(s)
Virus Hantaan/metabolismo , Glicoproteínas de Membrana/metabolismo , Orthohantavirus/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , Mucosa Respiratoria/virología , Proteínas del Envoltorio Viral/metabolismo , Animales , Bacteriocinas/farmacología , Línea Celular Tumoral , Células Epiteliales/metabolismo , Células Epiteliales/virología , Virus Hantaan/efectos de los fármacos , Virus Hantaan/patogenicidad , Virus Hantaan/fisiología , Orthohantavirus/fisiología , Haplorrinos , Heparitina Sulfato/farmacología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Integrinas/metabolismo , Proteínas de la Membrana/metabolismo , Imitación Molecular , Péptidos/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Mucosa Respiratoria/metabolismo , Vesiculovirus/metabolismo , Vesiculovirus/fisiología , Tirosina Quinasa del Receptor Axl
18.
Virology ; 531: 57-68, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30852272

RESUMEN

Hantaviruses are emerging rodent-borne negative-strand RNA viruses associated with severe human diseases. Zoonotic transmission occurs via aerosols of contaminated rodent excreta and cells of the human respiratory epithelium represent likely early targets. Here we investigated cellular factors involved in entry of the pathogenic Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV) into human respiratory epithelial cells. Screening of a kinase inhibitor library using a biocontained recombinant vesicular stomatitis virus pseudotype platform revealed differential requirement for host kinases for HTNV and ANDV entry and provided first hints for an involvement of macropinocytosis. Examination of a selected panel of well-defined inhibitors of endocytosis confirmed that both HTNV and ANDV enter human respiratory epithelial cells via a pathway that critically depends on sodium proton exchangers and actin, hallmarks of macropinocytosis. However, HTNV and ANDV differed in their individual requirements for regulatory factors of macropinocytosis, indicating virus-specific differences.


Asunto(s)
Endocitosis , Células Epiteliales/virología , Infecciones por Hantavirus/virología , Orthohantavirus/fisiología , Mucosa Respiratoria/virología , Internalización del Virus , Línea Celular , Células Epiteliales/enzimología , Orthohantavirus/genética , Infecciones por Hantavirus/enzimología , Infecciones por Hantavirus/genética , Infecciones por Hantavirus/fisiopatología , Interacciones Huésped-Patógeno , Humanos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Mucosa Respiratoria/metabolismo
19.
Viruses ; 8(5)2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27144576

RESUMEN

Hantaviruses are important emerging pathogens belonging to the Bunyaviridae family. Like other segmented negative strand RNA viruses, the RNA-dependent RNA polymerase (RdRp) also known as L protein of hantaviruses lacks an intrinsic "capping activity". Hantaviruses therefore employ a "cap snatching" strategy acquiring short 5' RNA sequences bearing 5'cap structures by endonucleolytic cleavage from host cell transcripts. The viral endonuclease activity implicated in cap snatching of hantaviruses has been mapped to the N-terminal domain of the L protein. Using a combination of molecular modeling and structure-function analysis we confirm and extend these findings providing evidence for high conservation of the L endonuclease between Old and New World hantaviruses. Recombinant hantavirus L endonuclease showed catalytic activity and a defined cation preference shared by other viral endonucleases. Based on the previously reported remarkably high activity of hantavirus L endonuclease, we established a cell-based assay for the hantavirus endonuclase function. The robustness of the assay and its high-throughput compatible format makes it suitable for small molecule drug screens to identify novel inhibitors of hantavirus endonuclease. Based on the high degree of similarity to RdRp endonucleases, some candidate inhibitors may be broadly active against hantaviruses and other emerging human pathogenic Bunyaviruses.


Asunto(s)
Endonucleasas/metabolismo , Orthohantavirus/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Cricetinae , Análisis Mutacional de ADN , Endonucleasas/genética , Orthohantavirus/genética , Modelos Moleculares , Dominios Proteicos , ARN Polimerasa Dependiente del ARN/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Proteínas Virales/genética
20.
Oncogene ; 22(36): 5614-8, 2003 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12944909

RESUMEN

The latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus functions as a constitutively activated receptor of the tumor necrosis factor receptor family. LMP1 is a short-lived protein that is ubiquitinated and degraded by the proteasome. We have previously shown that LMP1 recruits the adapter protein tumor necrosis factor receptor-associated factor 3 (TRAF3) to lipid rafts. To test if TRAFs are involved in LMP1's ubiquitination, we have mutated the LMP1 CTAR1 site that has been identified as a TRAF binding site. We show that the CTAR1 mutant (CTAR1(-)) is expressed after transfection at a similar level to wild-type LMP1, and behaves as wild-type LMP1 with respect to membrane localization. However, CTAR1(-) does not bind TRAF3. We demonstrate that ubiquitination of CTAR1(-) is significantly reduced when compared to wild-type LMP1. In addition, the expression of wild-type LMP1 induces the ubiquitination, an effect that is significantly reduced when the CTAR1(-) is expressed. Taken together, our results suggest that TRAF proteins are involved in the ubiquitination of LMP1, and that their binding to LMP1 may facilitate their own ubiquitination.


Asunto(s)
Proteínas/metabolismo , Ubiquitina/metabolismo , Proteínas de la Matriz Viral/metabolismo , Sitios de Unión , Activación Enzimática , Humanos , Quinasa I-kappa B , Proteínas Serina-Treonina Quinasas/metabolismo , Factor 3 Asociado a Receptor de TNF , Proteínas de la Matriz Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA