Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Food Sci Technol ; 58(11): 4294-4302, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34538912

RESUMEN

The aim of this study was to characterize chicken skin gelatin/tapioca starch composite films with varying concentrations (0-5%) of zinc oxide nanoparticles using the casting technique. The incorporation of 5% zinc oxide nanoparticles increased the water vapor permeation (1.52-1.93 × 10-7 gmm/cm2hPa) and melting temperature of the films. The tensile strength (22.96-50.43 MPa) was increased, while elongation at break decreased with increasing concentrations of zinc oxide nanoparticles. The structures of the films were also investigated via Fourier transform infrared spectroscopy. The inhibitory zones for both the gram-positive (Staphylococcus aureus) (16-20 mm) and gram-negative (Escherichia coli) (15-20 mm) bacteria were larger in the film with 5% zinc oxide. Overall, chicken skin gelatin-tapioca starch composite films with 3% zinc oxide nanoparticles were found to have the optimal formulation, demonstrating good physical, mechanical and antibacterial properties. Gelatin-based composite films with nanoparticle incorporation show strong potential for use in biodegradable food packaging materials.

2.
J Food Sci Technol ; 58(9): 3338-3345, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34366451

RESUMEN

A bio-nanocomposite film is a polymer blend with nanofiller dispersed in a biopolymer matrix. The aim of this study is to investigate the functional, gas sensing and antimicrobial properties of bio-nanocomposite films incorporated with chicken skin gelatin/ tapioca starch/zinc oxide at different pH levels (pH 4, 6, 7 and 8). Bio-nanocomposite films were prepared using a casting technique followed by the characterization of their functional, gas sensing and antimicrobial properties. Film formulations with pH at different levels showed increased thickness, colour and water vapour permeability (WVP) (p < 0.05). In addition, the increase of pH in films in chicken skin gelatin bio-nanocomposite films increased the tensile strength (TS), while decreasing the elongation at break (EAB). The highest response for ammonia gas in chicken skin gelatin bio-nanocomposite films was obtained at pH 7, with quick response time (τres) within 10 s. The inhibition zone of Staphylococcus aureus in chicken skin gelatin bio-nanocomposite films increased with increasing pH levels. Overall, chicken skin gelatin bio-nanocomposite films with a pH level of 8 were found to have the optimal formulation, with the highest values in thickness, and TS, with the lowest values for WVP and EAB. In conclusion, bio-nanocomposite chicken skin gelatin films with an alkaline pH are a superior packaging material.

3.
J Food Sci Technol ; 55(11): 4608-4614, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30333657

RESUMEN

The aim of this study is to investigate the effect of pH levels on functional properties of various molecular weights of eel (Monopterus sp.) protein hydrolysate (EPH). The eel was enzymatically hydrolyzed and fractionated through membranes filter (10 kDa, 5 kDa and 3 kDa). The foaming capacity and stability, emulsifying capacity and stability index, water holding capacity and fat binding capacity between pH 2 and 10 were determined. The 5 kDa EPH was found to have the highest foaming capacity at pH 2, pH 4 and pH 6, and foaming stability and emulsifying activity index at all pH levels, except pH 8 and fat binding capacity at pH 2, as compared to 10 kDa and 3 kDa EPH fractions. The 10 kDa EPH had the highest emulsifying stability index and water holding capacity at all pH levels. This study shows that the EPH fractions at low pH level had high foaming and oil binding capacity, while at neutral pH, the fractions had high foaming stability and water holding capacity. These properties are important in making whipped cream, mousse and meringue. In contrast, EPH fractions demonstrated strong emulsifying properties at high pH levels and show potential as an emulsifier for breads, biscuits and frozen desserts.

4.
J Food Sci Technol ; 53(11): 3928-3938, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28035148

RESUMEN

The aim of this study is to investigate the functional and antioxidant properties of chicken skin gelatin hydrolysate (CSGH) as affected by the drying method used in the preparation of gelatin (freeze-dried and vacuum dried). CSGH obtained from freeze-dried gelatin showed better functional properties such as emulsifying activity index (EAI), water holding and oil binding capacity at different pH compared to CSGH produced from vacuum dried gelatin. Meanwhile, the CSGH of the vacuum dried gelatin exhibited a better emulsifying stability index (ESI), foaming capacity and stability. CSGH from freeze-dried gelatin showed better antioxidant, DPPH radical scavenging and metal chelating activity.

5.
J Food Sci Technol ; 52(8): 4773-84, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26243898

RESUMEN

This study aimed to determine the effects of 2-5 wash cycles and the addition of tetrasodium pyrophosphate (TSPP) (0 %, 0.05 Surimi% and 0.1 % w/w)-with or without the addition of 0.4 % calcium chloride (CaCl2)-on the physical properties such as texture, colour, expressible moisture and microstructure of Cobia (Rachycentron canadum) surimi gel. The highest breaking force (484.85 g) was obtained with the addition 0.1 % TSPP alone on the fifth wash. However, a combination of 0.1 and 0.4 % CaCl2 in surimi gels at wash cycle 5 resulted in the highest degree of whiteness (86.8 %), as well as total expressible moisture (2.785 %) and deformation (17.11 mm). The highest surimi gel strength (6,923 g.mm) was obtained after three wash cycles with the addition of 0.1 % TSPP +0.4 % CaCl2. The physical properties of Cobia fish surimi gels were affected by the number of wash cycles and treatments with TSPP and CaCl2.

6.
J Food Sci Technol ; 52(7): 4266-75, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26139891

RESUMEN

The aim of this study is to report the yield of extraction, as well as the physicochemical and antioxidant properties of extracted chitosan from mud crabs (S.olivacea) as compared to commercial chitosan. The yield obtained for extracted chitosan was 44.57 ± 3.44 % with a moisture and ash content of 9.48 ± 0.59 % and 5.97 ± 0.90 %, respectively. Commercial chitosan demonstrated a higher degree of deacetylation (58.42 ± 2.67 %), water (250 ± 9.90 %) and fat (329 ± 7.07 %) binding capacity, solubility (73.85 %), viscosity (463.25 ± 13.10 %) and also the whiteness value (77.8 ± 0.47) compared to the extracted chitosan, which were only 53.42 ± 0.88 %, 180 ± 0.00 %, 260 ± 0.00 %, 53.38 %, 383.9 ± 28.43 % and 62.1 ± 7.52 %, respectively. The structure of extracted and commercial chitosan was also investigated using Fourier Transform Infrared Spectroscopy (FTIR). In conclusion, the extracted chitosan possessed potential properties similar to the commercial chitosan with high reducing power but low in the scavenging activity on the DPPH and hydroxyl radicals compared to the commercial chitosan.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA