Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur Respir J ; 63(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302155

RESUMEN

BACKGROUND: Prognosis and disease severity in cystic fibrosis (CF) are linked to declining lung function. To characterise lung function by the number of adults in countries with different levels of Gross National Income (GNI), data from the European Cystic Fibrosis Society Patient Registry were utilised. METHODS: Annual data including age, forced expiratory volume in 1 s (FEV1), anthropometry, genotype, respiratory cultures and CF-related diabetes (CFRD) were retrieved between 2011 and 2021. All countries were stratified into GNI per capita to reflect differences within Europe. RESULTS: A consistent improvement in FEV1 % pred and survival was observed among the 47 621 people with CF (pwCF), including subjects with chronic Pseudomonas aeruginosa infection, CFRD and/or undernutrition. Mean values of FEV1 % pred changed from 85% to 94.2% for children and from 63.6% to 74.7% for adults. FEV1 % pred further increased among those carrying the F508del mutation in 2021, when elexacaftor/tezacaftor/ivacaftor was available. The number of adult pwCF increased from 13 312 in 2011 to 21 168 in 2021, showing a 60% increase. PwCF living in European lower income countries did not demonstrate a significant annual increase in FEV1 % pred or in the number of adults. CONCLUSION: This pan-European analysis demonstrates a consistent improvement in FEV1 % pred, number of adult pwCF and survival over the last decade only in European higher and middle income countries. Urgent action is needed in the lower income countries where such improvement was not observed. The notable improvement observed in pwCF carrying the F508del mutation emphasises the need to develop treatments for all CF mutations.


Asunto(s)
Fibrosis Quística , Niño , Adulto , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Longevidad , Europa (Continente) , Mutación , Pulmón
2.
Respir Res ; 25(1): 190, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685088

RESUMEN

BACKGROUND: Children with advanced pulmonary disease due to cystic fibrosis (CF) are at risk of acute respiratory failure due to pulmonary exacerbations leading to their admission to pediatric intensive care units (PICU). The objectives of this study were to determine short and medium-term outcomes of children with CF admitted to PICU for acute respiratory failure due to pulmonary exacerbation and to identify prognosis factors. METHODS: This retrospective monocentric study included patients less than 18 years old admitted to the PICU of a French university hospital between 2000 and 2020. Cox proportional hazard regression methods were used to determine prognosis factors of mortality or lung transplant. RESULTS: Prior to PICU admission, the 29 patients included (median age 13.5 years) had a severe lung disease (median Forced Expiratory Volume in 1 s percentage predicted at 29%). Mortality rates were respectively 17%, 31%, 34%, 41% at discharge and at 3, 12 and 36 months post-discharge. Survival rates free of lung transplant were 34%, 32%, 24% and 17% respectively. Risk factors associated with mortality or lung transplant using the univariate analysis were female sex and higher pCO2 and chloride levels at PICU admission, and following pre admission characteristics: home respiratory and nutritional support, registration on lung transplant list and Stenotrophomonas Maltophilia bronchial colonization. CONCLUSION: Children with CF admitted to PICU for acute respiratory failure secondary to pulmonary exacerbations are at high risk of death, both in the short and medium terms. Lung transplant is their main chance of survival and should be considered early.


Asunto(s)
Fibrosis Quística , Unidades de Cuidado Intensivo Pediátrico , Insuficiencia Respiratoria , Humanos , Fibrosis Quística/mortalidad , Fibrosis Quística/complicaciones , Fibrosis Quística/diagnóstico , Femenino , Masculino , Estudios Retrospectivos , Niño , Adolescente , Insuficiencia Respiratoria/mortalidad , Insuficiencia Respiratoria/diagnóstico , Insuficiencia Respiratoria/etiología , Unidades de Cuidado Intensivo Pediátrico/estadística & datos numéricos , Factores de Riesgo , Progresión de la Enfermedad , Francia/epidemiología , Preescolar , Resultado del Tratamiento
3.
Eur Respir J ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36796836

RESUMEN

BACKGROUND: The European Medicines Agency has approved the cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination elexacaftor-tezacaftor-ivacaftor (ETI) for people with cystic fibrosis (pwCF) carrying at least one F508del variant. The United States Food and Drug Administration (FDA) also approved ETI for pwCF carrying one of 177 rare variants. METHODS: An observational study was conducted to evaluate the effectiveness of ETI in pwCF with advanced lung disease that were not eligible to ETI in Europe. All patients with no F508del variant and advanced lung disease (defined as having a percent predicted forced expiratory volume (ppFEV1)<40 and/or being under evaluation for lung transplantation) and enrolled in the French Compassionate Program initiated ETI at recommended doses. Effectiveness was evaluated by a centralized adjudication committee at 4-6 weeks in terms of clinical manifestations, sweat chloride concentration and ppFEV1. RESULTS: Among the first 84 pwCF included in the program, ETI was effective in 45 (54%) and 39 (46%) were considered to be non-responders. Among the responders 22/45 (49%) carried a CFTR variant that is not currently approved by FDA for ETI eligibility. Important clinical benefits, including suspending the indication for lung transplantation, a significant decrease in sweat chloride concentration by a median [IQR] -30 [-14;-43]mmol·l-1 (n=42; p<0.0001) and an improvement in ppFEV1 by+10.0 [6.0; 20.5] (n=44, p<0.0001), were observed in those for whom treatment was effective. CONCLUSION: Clinical benefits were observed in a large subset of pwCF with advanced lung disease and CFTR variants not currently approved for ETI.

4.
Eur Respir J ; 62(4)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696564

RESUMEN

BACKGROUND: Around 20% of people with cystic fibrosis (pwCF) do not have access to the triple combination elexacaftor/tezacaftor/ivacaftor (ETI) in Europe because they do not carry the F508del allele on the CF transmembrane conductance regulator (CFTR) gene. Considering that pwCF carrying rare variants may benefit from ETI, including variants already validated by the US Food and Drug Administration (FDA), a compassionate use programme was launched in France. PwCF were invited to undergo a nasal brushing to investigate whether the pharmacological rescue of CFTR activity by ETI in human nasal epithelial cell (HNEC) cultures was predictive of the clinical response. METHODS: CFTR activity correction was studied by short-circuit current in HNEC cultures at basal state (dimethyl sulfoxide (DMSO)) and after ETI incubation and expressed as percentage of normal (wild-type (WT)) CFTR activity after sequential addition of forskolin and Inh-172 (ΔI ETI/DMSO%WT). RESULTS: 11 pwCF carried variants eligible for ETI according to the FDA label and 28 carried variants not listed by the FDA. ETI significantly increased CFTR activity of FDA-approved CFTR variants (I601F, G85E, S492F, M1101K, R347P, R74W;V201M;D1270N and H1085R). We point out ETI correction of non-FDA-approved variants, including N1303K, R334W, R1066C, Q552P and terminal splicing variants (4374+1G>A and 4096-3C>G). ΔI ETI/DMSO%WT was significantly correlated to change in percentage predicted forced expiratory volume in 1 s and sweat chloride concentration (p<0.0001 for both). G85E, R74W;V201M;D1270N, Q552P and M1101K were rescued more efficiently by other CFTR modulator combinations than ETI. CONCLUSIONS: Primary nasal epithelial cells hold promise for expanding the prescription of CFTR modulators in pwCF carrying rare mutants. Additional variants should be discussed for ETI indication.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Dimetilsulfóxido , Mutación
5.
Analyst ; 148(3): 618-627, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36597770

RESUMEN

Early detection of lung infection is critical to clinical diagnosis, treatment, and monitoring. Measuring volatile organic compounds (VOCs) in exhaled breath has shown promise as a rapid and accurate method of evaluating disease metabolism and phenotype. However, further investigations of the role and function of VOCs in bacterial-host-stress response is required and this can only be realised through representative in vitro models. In this study we sampled VOCs from the headspace of A549 cells at an air-liquid interface (ALI). We hypothesised VOC sampling from ALI cultures could be used to profile potential biomarkers of S. aureus lung infection. VOCs were collected using thin film microextraction (TFME) and were analysed by thermal desorption-gas chromatography-mass spectrometry. After optimising ALI cultures, we observed seven VOCs changed between A549 and media control samples. After infecting cells with S. aureus, supervised principal component-discriminant function analysis revealed 22 VOCs were found to be significantly changed in infected cells compared to uninfected cells (p < 0.05), five of which were also found in parallel axenic S. aureus cultures. We have demonstrated VOCs that could be used to identify S. aureus in ALI cultures, supporting further investigation of VOC analysis as a highly sensitive and specific test for S. aureus lung infection.


Asunto(s)
Staphylococcus aureus , Compuestos Orgánicos Volátiles , Staphylococcus aureus/metabolismo , Compuestos Orgánicos Volátiles/análisis , Bacterias/metabolismo , Análisis Discriminante , Biomarcadores/análisis , Pruebas Respiratorias/métodos
6.
Cell Mol Life Sci ; 79(10): 530, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167862

RESUMEN

The endoplasmic reticulum exit of some polytopic plasma membrane proteins (PMPs) is controlled by arginin-based retention motifs. PRAF2, a gatekeeper which recognizes these motifs, was shown to retain the GABAB-receptor GB1 subunit in the ER. We report that PRAF2 can interact on a stoichiometric basis with both wild type and mutant F508del Cystic Fibrosis (CF) Transmembrane Conductance Regulator (CFTR), preventing the access of newly synthesized cargo to ER exit sites. Because of its lower abundance, compared to wild-type CFTR, CFTR-F508del recruitment into COPII vesicles is suppressed by the ER-resident PRAF2. We also demonstrate that some pharmacological chaperones that efficiently rescue CFTR-F508del loss of function in CF patients target CFTR-F508del retention by PRAF2 operating with various mechanisms. Our findings open new therapeutic perspectives for diseases caused by the impaired cell surface trafficking of mutant PMPs, which contain RXR-based retention motifs that might be recognized by PRAF2.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Mutación , Ácido gamma-Aminobutírico/metabolismo
7.
Cell Mol Life Sci ; 79(9): 503, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36045259

RESUMEN

Early recognition and enhanced degradation of misfolded proteins by the endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) cause defective protein secretion and membrane targeting, as exemplified for Z-alpha-1-antitrypsin (Z-A1AT), responsible for alpha-1-antitrypsin deficiency (A1ATD) and F508del-CFTR (cystic fibrosis transmembrane conductance regulator) responsible for cystic fibrosis (CF). Prompted by our previous observation that decreasing Keratin 8 (K8) expression increased trafficking of F508del-CFTR to the plasma membrane, we investigated whether K8 impacts trafficking of soluble misfolded Z-A1AT protein. The subsequent goal of this study was to elucidate the mechanism underlying the K8-dependent regulation of protein trafficking, focusing on the ERAD pathway. The results show that diminishing K8 concentration in HeLa cells enhances secretion of both Z-A1AT and wild-type (WT) A1AT with a 13-fold and fourfold increase, respectively. K8 down-regulation triggers ER failure and cellular apoptosis when ER stress is jointly elicited by conditional expression of the µs heavy chains, as previously shown for Hrd1 knock-out. Simultaneous K8 silencing and Hrd1 knock-out did not show any synergistic effect, consistent with K8 acting in the Hrd1-governed ERAD step. Fractionation and co-immunoprecipitation experiments reveal that K8 is recruited to ERAD complexes containing Derlin2, Sel1 and Hrd1 proteins upon expression of Z/WT-A1AT and F508del-CFTR. Treatment of the cells with c407, a small molecule inhibiting K8 interaction, decreases K8 and Derlin2 recruitment to high-order ERAD complexes. This was associated with increased Z-A1AT secretion in both HeLa and Z-homozygous A1ATD patients' respiratory cells. Overall, we provide evidence that K8 acts as an ERAD modulator. It may play a scaffolding protein role for early-stage ERAD complexes, regulating Hrd1-governed retrotranslocation initiation/ubiquitination processes. Targeting K8-containing ERAD complexes is an attractive strategy for the pharmacotherapy of A1ATD.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Degradación Asociada con el Retículo Endoplásmico , Queratina-8/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células HeLa , Humanos , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
8.
J Infect Dis ; 226(7): 1276-1285, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35524969

RESUMEN

BACKGROUND: Staphylococcus aureus dominates the lung microbiota of children with cystic fibrosis (CF) and persistent clones are able to establish chronic infection for years, having a direct deleterious impact on lung function. However, in this context, the exact contribution of S. aureus to the decline in respiratory function in children with CF is not elucidated. METHODS: To investigate the contribution of persistent S. aureus clones in CF disease, we undertook the analysis of sequential isogenic isolates recovered from 15 young CF patients. RESULTS: Using an air-liquid infection model, we observed a strong correlation between S. aureus adaption in the lung (late isolates), low toxicity, and proinflammatory cytokine secretion. Conversely, early isolates appeared to be highly cytotoxic but did not promote cytokine secretion. We found that cytokine secretion was dependent on staphylococcal protein A (Spa), which was selectively expressed in late compared to early isolates as a consequence of dysfunctional agr quorum-sensing system. Finally, we demonstrated the involvement of TNF-α receptor 1 signaling in the inflammatory response of airway epithelial cells to these lung-adapted S. aureus isolates. CONCLUSIONS: Our results suggest an unexpected direct role of bacterial lung adaptation in the progression of chronic lung disease by promoting a proinflammatory response through acquired agr dysfunction.


Asunto(s)
Fibrosis Quística , Infecciones Estafilocócicas , Niño , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Humanos , Pulmón/metabolismo , Infecciones Estafilocócicas/microbiología , Proteína Estafilocócica A , Staphylococcus aureus/fisiología , Factor de Necrosis Tumoral alfa
9.
J Physiol ; 600(6): 1515-1531, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34761808

RESUMEN

Dysfunction of the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes a wide spectrum of disease, including cystic fibrosis (CF) and CFTR-related diseases (CFTR-RDs). Here, we investigate genotype-phenotype-CFTR function relationships using human nasal epithelial (hNE) cells from a small cohort of non-CF subjects and individuals with CF and CFTR-RDs and genotypes associated with either residual or minimal CFTR function using electrophysiological techniques. Collected hNE cells were either studied directly with the whole-cell patch-clamp technique or grown as primary cultures at an air-liquid interface after conditional reprogramming. The properties of cAMP-activated whole-cell Cl- currents in freshly isolated hNE cells identified them as CFTR-mediated. Their magnitude varied between hNE cells from individuals within the same genotype and decreased in the rank order: non-CF > CFTR residual function > CFTR minimal function. CFTR-mediated whole-cell Cl- currents in hNE cells isolated from fully differentiated primary cultures were identical to those in freshly isolated hNE cells in both magnitude and behaviour, demonstrating that conditional reprogramming culture is without effect on CFTR expression and function. For the cohort of subjects studied, CFTR-mediated whole-cell Cl- currents in hNE cells correlated well with CFTR-mediated transepithelial Cl- currents measured in vitro with the Ussing chamber technique, but not with those determined in vivo with the nasal potential difference assay. Nevertheless, they did correlate with the sweat Cl- concentration of study subjects. Thus, this study highlights the complexity of genotype-phenotype-CFTR function relationships, but emphasises the value of conditionally reprogrammed hNE cells in CFTR research and therapeutic testing. KEY POINTS: The genetic disease cystic fibrosis is caused by pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR), an ion channel, which controls anion flow across epithelia lining ducts and tubes in the body. This study investigated CFTR function in nasal epithelial cells from people with cystic fibrosis and CFTR variants with a range of disease severity. CFTR function varied widely in nasal epithelial cells depending on the identity of CFTR variants, but was unaffected by conditional reprogramming culture, a cell culture technique used to grow large numbers of patient-derived cells. Assessment of CFTR function in vitro in nasal epithelial cells and epithelia, and in vivo in the nasal epithelium and sweat gland highlights the complexity of genotype-phenotype-CFTR function relationships.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Cloruros/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Genotipo , Humanos , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Fenotipo
10.
Environ Microbiol ; 24(10): 4725-4737, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36065993

RESUMEN

SARS-CoV-2 diagnosis is a cornerstone for the management of coronavirus disease 2019 (COVID-19). Numerous studies have assessed saliva performance over nasopharyngeal sampling (NPS), but data in young children are still rare. We explored saliva performance for SARS-CoV-2 detection by RT-PCR according to the time interval from initial symptoms or patient serological status. We collected 509 NPS and saliva paired samples at initial diagnosis from 166 children under 12 years of age (including 57 children under 6), 106 between 12 and 17, and 237 adults. In children under 12, overall detection rate for SARS-CoV-2 was comparable in saliva and NPS, with an overall agreement of 89.8%. Saliva sensitivity was significantly lower than that of NPS (77.1% compared to 95.8%) in pre-school and school-age children but regained 96% when considering seronegative children only. This pattern was also observed to a lesser degree in adolescents but not in adults. Sensitivity of saliva was independent of symptoms, in contrary to NPS, whose sensitivity decreased significantly in asymptomatic subjects. Performance of saliva is excellent in children under 12 at early stages of infection. This reinforces saliva as a collection method for early and unbiased SARS-CoV-2 detection and a less invasive alternative for young children.


Asunto(s)
Prueba de COVID-19 , COVID-19 , SARS-CoV-2 , Saliva , Adolescente , Adulto , Niño , Preescolar , Humanos , Técnicas de Laboratorio Clínico/métodos , COVID-19/diagnóstico , COVID-19/virología , Prueba de COVID-19/métodos , Nasofaringe/virología , Saliva/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación
11.
Expert Opin Emerg Drugs ; 27(3): 229-239, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35731915

RESUMEN

INTRODUCTION: Cystic fibrosis (CF) is a severe autosomal recessive disorder featuring exocrine pancreatic insufficiency and bronchiectasis. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) encoding the CFTR protein, which is an anion channel. CF treatment has long been based only on intensive symptomatic treatment. During the last 10 years, new drugs called CFTR modulators aiming at restoring the CFTR protein function have become available, and they will benefit around 80% of patients with CF. However, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon. AREAS COVERED: The development of CFTR modulators and their effectiveness in patients with CF will be reviewed. Then, the different strategies to treat patients bearing mutations non-responsive to CFTR modulators will be covered. They comprise DNA- and RNA-based therapies, readthrough agents for nonsense mutations, and cell-based therapies. EXPERT OPINION: CF disease has changed tremendously since the advent of CFTR modulators. For mutations that are not amenable to CFTR modulators, new approaches that are being developed benefit from advances in molecular therapy, but many challenges will have to be solved before they can be safely translated to patients.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Mutación , Transducción de Señal
12.
Cell Mol Life Sci ; 78(23): 7813-7829, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34714360

RESUMEN

Protein misfolding is involved in a large number of diseases, among which cystic fibrosis. Complex intra- and inter-domain folding defects associated with mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, among which p.Phe508del (F508del), have recently become a therapeutical target. Clinically approved correctors such as VX-809, VX-661, and VX-445, rescue mutant protein. However, their binding sites and mechanisms of action are still incompletely understood. Blind docking onto the 3D structures of both the first membrane-spanning domain (MSD1) and the first nucleotide-binding domain (NBD1), followed by molecular dynamics simulations, revealed the presence of two potential VX-809 corrector binding sites which, when mutated, abrogated rescue. Network of amino acids in the lasso helix 2 and the intracellular loops ICL1 and ICL4 allosterically coupled MSD1 and NBD1. Corrector VX-445 also occupied two potential binding sites on MSD1 and NBD1, the latter being shared with VX-809. Binding of both correctors on MSD1 enhanced the allostery between MSD1 and NBD1, hence the increased efficacy of the corrector combination. These correctors improve both intra-domain folding by stabilizing fragile protein-lipid interfaces and inter-domain assembly via distant allosteric couplings. These results provide novel mechanistic insights into the rescue of misfolded proteins by small molecules.


Asunto(s)
Aminopiridinas/farmacología , Benzodioxoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Fibrosis Quística/tratamiento farmacológico , Mutación , Pliegue de Proteína/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Pirrolidinas/farmacología , Sitios de Unión , Agonistas de los Canales de Cloruro/farmacología , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Quimioterapia Combinada , Células HEK293 , Humanos , Dominios Proteicos , Estructura Terciaria de Proteína
13.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36555865

RESUMEN

ABC transporters are large membrane proteins sharing a complex architecture, which comprises two nucleotide-binding domains (NBDs) and two membrane-spanning domains (MSDs). These domains are susceptible to mutations affecting their folding and assembly. In the CFTR (ABCC7) protein, a groove has been highlighted in the MSD1 at the level of the membrane inner leaflet, containing both multiple mutations affecting folding and a binding site for pharmaco-chaperones that stabilize this region. This groove is also present in ABCB proteins, however it is covered by a short elbow helix, while in ABCC proteins it remains unprotected, due to a lower position of the elbow helix in the presence of the ABCC-specific lasso motif. Here, we identified a MSD1 second-site mutation located in the vicinity of the CFTR MSD1 groove that partially rescued the folding defect of cystic fibrosis causing mutations located within MSD1, while having no effect on the most frequent mutation, F508del, located within NBD1. A model of the mutated protein 3D structure suggests additional interaction between MSD1 and MSD2, strengthening the assembly at the level of the MSD intracellular loops. Altogether, these results provide insightful information in understanding key features of the folding and function of the CFTR protein in particular, and more generally, of type IV ABC transporters.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Estructura Terciaria de Proteína , Fibrosis Quística/genética , Mutación , Membranas/metabolismo
14.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012204

RESUMEN

Proteins interacting with CFTR and its mutants have been intensively studied using different experimental approaches. These studies provided information on the cellular processes leading to proper protein folding, routing to the plasma membrane, recycling, activation and degradation. Recently, new approaches have been developed based on the proximity labeling of protein partners or proteins in close vicinity and their subsequent identification by mass spectrometry. In this study, we evaluated TurboID- and APEX2-based proximity labeling of WT CFTR and compared the obtained data to those reported in databases. The CFTR-WT interactome was then compared to that of two CFTR (G551D and W1282X) mutants and the structurally unrelated potassium channel KCNK3. The two proximity labeling approaches identified both known and additional CFTR protein partners, including multiple SLC transporters. Proximity labeling approaches provided a more comprehensive picture of the CFTR interactome and improved our knowledge of the CFTR environment.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Pliegue de Proteína , Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Espectrometría de Masas , Mutación
15.
Am J Transplant ; 21(5): 1937-1943, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33346946

RESUMEN

Graft artery stenosis can have a significant short- and long-term negative impact on renal graft function. From the beginning of the COVID-19 pandemic, we noticed an unusual number of graft arterial anomalies following kidney transplant (KTx) in children. Nine children received a KTx at our center between February and July 2020, eight boys and one girl, of median age of 10 years. Seven presented Doppler features suggesting arterial stenosis, with an unusual extensive pattern. For comparison, over the previous 5-year period, persistent spectral Doppler arterial anomalies (focal anastomotic stenoses) following KTx were seen in 5% of children at our center. We retrospectively evidenced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in five of seven children with arterial stenosis. The remaining two patients had received a graft from a deceased adolescent donor with a positive serology at D0. These data led us to suspect immune postviral graft vasculitis, triggered by SARS-CoV-2. Because the diagnosis of COVID-19 is challenging in children, we recommend pretransplant monitoring of graft recipients and their parents by monthly RT-PCR and serology. We suggest balancing the risk of postviral graft vasculitis against the risk of prolonged dialysis when considering transplantation in a child during the pandemic.


Asunto(s)
Arterias/patología , COVID-19/complicaciones , Trasplante de Riñón , Riñón/irrigación sanguínea , Pandemias , Adolescente , Niño , Constricción Patológica/patología , Femenino , Humanos , Masculino , Estudios Retrospectivos
16.
Eur Respir J ; 58(5)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33926975

RESUMEN

INTRODUCTION: A reduction in pulmonary artery relaxation is a key event in the pathogenesis of pulmonary arterial hypertension (PAH). Cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in airway epithelial cells plays a central role in cystic fibrosis; CFTR is also expressed in pulmonary arteries and has been shown to control endothelium-independent relaxation. AIM AND OBJECTIVES: We aimed to delineate the role of CFTR in PAH pathogenesis through observational and interventional experiments in human tissues and animal models. METHODS AND RESULTS: Reverse-transcriptase quantitative PCR, confocal imaging and electron microscopy showed that CFTR expression was reduced in pulmonary arteries from patients with idiopathic PAH (iPAH) and in rats with monocrotaline-induced pulmonary hypertension (PH). Moreover, using myography on human, pig and rat pulmonary arteries, we demonstrated that CFTR activation induces pulmonary artery relaxation. CFTR-mediated pulmonary artery relaxation was reduced in pulmonary arteries from iPAH patients and rats with monocrotaline- or chronic hypoxia-induced PH. Long-term in vivo CFTR inhibition in rats significantly increased right ventricular systolic pressure, which was related to exaggerated pulmonary vascular cell proliferation in situ and vessel neomuscularisation. Pathologic assessment of lungs from patients with severe cystic fibrosis (F508del-CFTR) revealed severe pulmonary artery remodelling with intimal fibrosis and medial hypertrophy. Lungs from homozygous F508delCftr rats exhibited pulmonary vessel neomuscularisation. The elevations in right ventricular systolic pressure and end diastolic pressure in monocrotaline-exposed rats with chronic CFTR inhibition were more prominent than those in vehicle-exposed rats. CONCLUSIONS: CFTR expression is strongly decreased in pulmonary artery smooth muscle and endothelial cells in human and animal models of PH. CFTR inhibition increases vascular cell proliferation and strongly reduces pulmonary artery relaxation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Hipertensión Arterial Pulmonar , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Endoteliales , Humanos , Monocrotalina , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Ratas , Porcinos
17.
Curr Opin Pulm Med ; 27(6): 567-574, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494979

RESUMEN

PURPOSE OF REVIEW: Cystic fibrosis is a severe autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) encoding the CFTR protein, a chloride channel expressed in many epithelial cells. New drugs called CFTR modulators aim at restoring the CFTR protein function and they will benefit most of the patients with cystic fibrosis in the near future. However, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon, and the purpose of this review is to provide an overview of different approaches pursued to treat patients bearing mutations nonresponsive to CFTR modulators. RECENT FINDINGS: These different approaches constitute readthrough agents for nonsense mutations, nucleic acid-based therapies, RNA-based or DNA-based, and cell-based therapies. Some approaches using mRNA or cDNA combined with a delivery vehicle are mutation-agnostic therapies. Other approaches, such as the use of tRNA, antisense oligonucleotides, gene editing or cell-based therapies are mutation-specific therapies. SUMMARY: Most of these approaches are in preclinical development or for some of them, early clinical phases. Many hurdles and challenges will have to be solved before they can be safely translated to patients.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Edición Génica , Terapia Genética , Humanos , Mutación/genética
18.
Am J Respir Crit Care Med ; 201(2): 188-197, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31601120

RESUMEN

Rationale: Lumacaftor-ivacaftor is a CFTR (cystic fibrosis transmembrane conductance regulator) modulator combination recently approved for patients with cystic fibrosis (CF) homozygous for the Phe508del mutation.Objectives: To evaluate the safety and effectiveness of lumacaftor-ivacaftor in adolescents (≥12 yr) and adults (≥18 yr) in a real-life postapproval setting.Methods: The study was conducted in the 47 CF reference centers in France. All patients who initiated lumacaftor-ivacaftor from January 1 to December 31, 2016, were eligible. Patients were evaluated for lumacaftor-ivacaftor safety and effectiveness over the first year of treatment following the French CF Learning Society's recommendations.Measurements and Main Results: Among the 845 patients (292 adolescents and 553 adults) who initiated lumacaftor-ivacaftor, 18.2% (154 patients) discontinued treatment, often owing to respiratory (48.1%, 74 patients) or nonrespiratory (27.9%, 43 patients) adverse events. In multivariable logistic regression, factors associated with increased rates of discontinuation included adult age group, percent predicted FEV1 (ppFEV1) less than 40%, and numbers of intravenous antibiotic courses during the year before lumacaftor-ivacaftor initiation. Patients with continuous exposure to lumacaftor-ivacaftor showed an absolute increase in ppFEV1 (+3.67%), an increase in body mass index (+0.73 kg/m2), and a decrease in intravenous antibiotic courses by 35%. Patients who discontinued treatment had significant decrease in ppFEV1, without improvement in body mass index or decrease in intravenous antibiotic courses.Conclusions: Lumacaftor-ivacaftor was associated with improvement in lung disease and nutritional status in patients who tolerated treatment. Adults who discontinued lumacaftor-ivacaftor, often owing to adverse events, were found at high risk of clinical deterioration.


Asunto(s)
Aminofenoles/uso terapéutico , Aminopiridinas/uso terapéutico , Antibacterianos/uso terapéutico , Benzodioxoles/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Estado Nutricional , Quinolonas/uso terapéutico , Administración Intravenosa , Adolescente , Adulto , Índice de Masa Corporal , Espasmo Bronquial/inducido químicamente , Tos/inducido químicamente , Fibrosis Quística/fisiopatología , Deprescripciones , Combinación de Medicamentos , Disnea/inducido químicamente , Fatiga/inducido químicamente , Femenino , Volumen Espiratorio Forzado , Francia , Enfermedades Gastrointestinales/inducido químicamente , Cefalea/inducido químicamente , Humanos , Modelos Logísticos , Masculino , Metrorragia/inducido químicamente , Análisis Multivariante , Mialgia/inducido químicamente , Vigilancia de Productos Comercializados , Resultado del Tratamiento , Adulto Joven
19.
Euro Surveill ; 26(13)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33797390

RESUMEN

BackgroundChildren have a low rate of COVID-19 and secondary severe multisystem inflammatory syndrome (MIS) but present a high prevalence of symptomatic seasonal coronavirus infections.AimWe tested if prior infections by seasonal coronaviruses (HCoV) NL63, HKU1, 229E or OC43 as assessed by serology, provide cross-protective immunity against SARS-CoV-2 infection.MethodsWe set a cross-sectional observational multicentric study in pauci- or asymptomatic children hospitalised in Paris during the first wave for reasons other than COVID (hospitalised children (HOS), n = 739) plus children presenting with MIS (n = 36). SARS-CoV-2 antibodies directed against the nucleoprotein (N) and S1 and S2 domains of the spike (S) proteins were monitored by an in-house luciferase immunoprecipitation system assay. We randomly selected 69 SARS-CoV-2-seropositive patients (including 15 with MIS) and 115 matched SARS-CoV-2-seronegative patients (controls (CTL)). We measured antibodies against SARS-CoV-2 and HCoV as evidence for prior corresponding infections and assessed if SARS-CoV-2 prevalence of infection and levels of antibody responses were shaped by prior seasonal coronavirus infections.ResultsPrevalence of HCoV infections were similar in HOS, MIS and CTL groups. Antibody levels against HCoV were not significantly different in the three groups and were not related to the level of SARS-CoV-2 antibodies in the HOS and MIS groups. SARS-CoV-2 antibody profiles were different between HOS and MIS children.ConclusionPrior infection by seasonal coronaviruses, as assessed by serology, does not interfere with SARS-CoV-2 infection and related MIS in children.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Coronavirus Humano OC43 , SARS-CoV-2/inmunología , Síndrome de Respuesta Inflamatoria Sistémica , Adolescente , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/diagnóstico , Niño , Preescolar , Estudios Transversales , Femenino , Francia/epidemiología , Humanos , Lactante , Recién Nacido , Masculino , Paris , Estaciones del Año , Pruebas Serológicas/métodos , Glicoproteína de la Espiga del Coronavirus
20.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806154

RESUMEN

Knowledge on the mechanisms of acid and base secretion in airways has progressed recently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL) pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the interstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as cystic fibrosis. Basolateral bicarbonate (HCO3-) entry occurs via the electrogenic, coupled transport of sodium (Na+) and HCO3-, and, together with carbonic anhydrase enzymatic activity, provides HCO3- for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate exchanger pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient. Paracellular HCO3- transport, the direction of which depends on the ASL pH value, acts as an ASL protective buffering mechanism. How the transepithelial transport of H+ and HCO3- is coordinated to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.


Asunto(s)
Bicarbonatos/química , Anhidrasas Carbónicas/metabolismo , Epitelio/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Antiportadores/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ratones , Conejos , Transportadores de Sulfato/metabolismo , Tráquea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA