Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(5): 895-911.e10, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35483356

RESUMEN

Different effector arms of the immune system are optimized to protect from different classes of pathogens. In some cases, pathogens manipulate the host immune system to promote the wrong type of effector response-a phenomenon known as immune deviation. Typically, immune deviation helps pathogens to avoid destructive immune responses. Here, we report on a type of immune deviation whereby an opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), induces the type 2 immune response resulting in mucin production that is used as an energy source by the pathogen. Specifically, P. aeruginosa-secreted toxin, LasB, processed and activated epithelial amphiregulin to induce type 2 inflammation and mucin production. This "niche remodeling" by P. aeruginosa promoted colonization and, as a by-product, allergic sensitization. Our study thus reveals a type of bacterial immune deviation by increasing nutrient supply. It also uncovers a mechanism of allergic sensitization by a bacterial virulence factor.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Proteínas Bacterianas , Humanos , Inflamación , Mucinas
2.
Nature ; 628(8006): 204-211, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38418880

RESUMEN

The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina1. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.


Asunto(s)
Encéfalo , Ojo , Sistema Linfático , Animales , Femenino , Humanos , Masculino , Ratones , Conejos , Bacterias/inmunología , Encéfalo/anatomía & histología , Encéfalo/inmunología , Dependovirus/inmunología , Ojo/anatomía & histología , Ojo/inmunología , Glioblastoma/inmunología , Herpesvirus Humano 2/inmunología , Inyecciones Intravítreas , Sistema Linfático/anatomía & histología , Sistema Linfático/inmunología , Vasos Linfáticos/anatomía & histología , Vasos Linfáticos/inmunología , Macaca mulatta , Meninges/inmunología , Nervio Óptico/inmunología , Porcinos , Pez Cebra , Factor C de Crecimiento Endotelial Vascular/inmunología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/farmacología
3.
Proc Natl Acad Sci U S A ; 121(18): e2319566121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648490

RESUMEN

Respiratory virus infections in humans cause a broad-spectrum of diseases that result in substantial morbidity and mortality annually worldwide. To reduce the global burden of respiratory viral diseases, preventative and therapeutic interventions that are accessible and effective are urgently needed, especially in countries that are disproportionately affected. Repurposing generic medicine has the potential to bring new treatments for infectious diseases to patients efficiently and equitably. In this study, we found that intranasal delivery of neomycin, a generic aminoglycoside antibiotic, induces the expression of interferon-stimulated genes (ISGs) in the nasal mucosa that is independent of the commensal microbiota. Prophylactic or therapeutic administration of neomycin provided significant protection against upper respiratory infection and lethal disease in a mouse model of COVID-19. Furthermore, neomycin treatment protected Mx1 congenic mice from upper and lower respiratory infections with a highly virulent strain of influenza A virus. In Syrian hamsters, neomycin treatment potently mitigated contact transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy humans, intranasal application of neomycin-containing Neosporin ointment was well tolerated and effective at inducing ISG expression in the nose in a subset of participants. These findings suggest that neomycin has the potential to be harnessed as a host-directed antiviral strategy for the prevention and treatment of respiratory viral infections.


Asunto(s)
Administración Intranasal , Antivirales , Neomicina , SARS-CoV-2 , Animales , Neomicina/farmacología , Neomicina/administración & dosificación , Ratones , Humanos , Antivirales/farmacología , Antivirales/administración & dosificación , SARS-CoV-2/inmunología , SARS-CoV-2/efectos de los fármacos , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/prevención & control , Mucosa Nasal/inmunología , Mucosa Nasal/virología , Mucosa Nasal/efectos de los fármacos , Modelos Animales de Enfermedad , Tratamiento Farmacológico de COVID-19 , Mesocricetus , Femenino , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología
4.
Nature ; 573(7772): 69-74, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31435009

RESUMEN

Direct recognition of invading pathogens by innate immune cells is a critical driver of the inflammatory response. However, cells of the innate immune system can also sense their local microenvironment and respond to physiological fluctuations in temperature, pH, oxygen and nutrient availability, which are altered during inflammation. Although cells of the immune system experience force and pressure throughout their life cycle, little is known about how these mechanical processes regulate the immune response. Here we show that cyclical hydrostatic pressure, similar to that experienced by immune cells in the lung, initiates an inflammatory response via the mechanically activated ion channel PIEZO1. Mice lacking PIEZO1 in innate immune cells showed ablated pulmonary inflammation in the context of bacterial infection or fibrotic autoinflammation. Our results reveal an environmental sensory axis that stimulates innate immune cells to mount an inflammatory response, and demonstrate a physiological role for PIEZO1 and mechanosensation in immunity.


Asunto(s)
Presión Hidrostática , Inmunidad Innata , Canales Iónicos/metabolismo , Mecanotransducción Celular/inmunología , Animales , Endotelina-1/metabolismo , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Transducción de Señal
6.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L627-L637, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375577

RESUMEN

Pulmonary function testing (PFT) in mice includes biomechanical assessment of lung function relevant to physiology in health and its alteration in disease, hence, it is frequently used in preclinical modeling of human lung pathologies. Despite numerous reports of PFT in mice of various ages, there is a lack of reference data for developing mice collected using consistent methods. Therefore, we profiled PFTs in male and female C57BL/6J mice from 2 to 23 wk of age, providing reference values for age- and sex-dependent changes in mouse lung biomechanics during development and young adulthood. Although males and females have similar weights at birth, females weigh significantly less than males after 5 wk of age (P < 0.001) with largest weight gain observed between 3 and 8 wk in females and 3 and 13 wk in males, after which weight continued to increase more slowly up to 23 wk of age. Lung function parameters including static compliance and inspiratory capacity also increased rapidly between 3 and 8 wk in female and male mice, with male mice having significantly greater static compliance and inspiratory capacity than female mice (P < 0.001). Although these parameters appear higher in males at a given age, allometric scaling showed that static compliance and inspiratory compliance were comparable between the two sexes. This suggests that differences in measurements of lung function are likely body weight-based rather than sex-based. We expect these data to facilitate future lung disease research by filling a critical knowledge gap in our field.NEW & NOTEWORTHY This study provides reference values for changes in mouse lung biomechanics from 2 to 23 wk of age. There are rapid developmental changes in lung structure and function of male and female mice between the ages of 3 and 8 wk. Male mice become noticeably heavier than female mice at or about 5 wk of age. We identified that differences in normal lung function measurements are likely weight-based, not sex-based.


Asunto(s)
Pulmón , Ratones Endogámicos C57BL , Pruebas de Función Respiratoria , Animales , Femenino , Masculino , Pulmón/crecimiento & desarrollo , Ratones , Peso Corporal , Caracteres Sexuales , Factores Sexuales , Envejecimiento/fisiología
7.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L551-L561, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375579

RESUMEN

Excessive or persistent inflammation may have detrimental effects on lung structure and function. Currently, our understanding of conserved host mechanisms that control the inflammatory response remains incompletely understood. In this study, we investigated the role of type I interferon signaling in the inflammatory response against diverse clinically relevant stimuli. Using mice deficient in type I interferon signaling (IFNAR1-/-), we demonstrate that the absence of interferon signaling resulted in a robust and persistent inflammatory response against Pseudomonas aeruginosa, lipopolysaccharide, and chemotherapeutic agent bleomycin. The elevated inflammatory response in IFNAR1-/- mice was manifested as elevated myeloid cells, such as macrophages and neutrophils, in the bronchoalveolar lavage. The inflammatory cell response in the IFNAR1-/- mice persisted to 14 days and there is impaired recovery and fibrotic remodeling of the lung in IFNAR1-/- mice after bleomycin injury. In the Pseudomonas infection model, the elevated inflammatory cell response led to improved bacterial clearance in IFNAR1-/- mice, although there was similar lung injury and survival. We performed RNA sequencing of lung tissue in wild-type and IFNAR1-/- mice after LPS and bleomycin injury. Our unbiased analysis identified differentially expressed genes between IFNAR1-/- and wild-type mice, including previously unknown regulation of nucleotide-binding oligomerization domain (NOD)-like receptor signaling, retinoic acid-inducible gene-I (RIG-I) signaling, and necroptosis pathway by type I interferon signaling in both models. These data provide novel insights into the conserved anti-inflammatory mechanisms of the type I interferon signaling.NEW & NOTEWORTHY Type I interferons are known for their antiviral activities. In this study, we demonstrate a conserved anti-inflammatory role of type I interferon signaling against diverse stimuli in the lung. We show that exacerbated inflammatory response in the absence of type I interferon signaling has both acute and chronic consequences in the lung including structural changes.


Asunto(s)
Interferón Tipo I , Pulmón , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta , Transducción de Señal , Animales , Interferón Tipo I/metabolismo , Pulmón/metabolismo , Pulmón/inmunología , Pulmón/patología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Ratones , Bleomicina , Pseudomonas aeruginosa , Lipopolisacáridos/farmacología , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/patología , Infecciones por Pseudomonas/microbiología , Inflamación/metabolismo , Inflamación/patología , Inflamación/inmunología , Masculino
8.
J Immunol ; 209(7): 1314-1322, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165196

RESUMEN

Postviral bacterial infections are a major health care challenge in coronavirus infections, including COVID-19; however, the coronavirus-specific mechanisms of increased host susceptibility to secondary infections remain unknown. In humans, coronaviruses, including SARS-CoV-2, infect lung immune cells, including alveolar macrophages, a phenotype poorly replicated in mouse models of SARS-CoV-2. To overcome this, we used a mouse model of native murine ß-coronavirus that infects both immune and structural cells to investigate coronavirus-enhanced susceptibility to bacterial infections. Our data show that coronavirus infection impairs the host ability to clear invading bacterial pathogens and potentiates lung tissue damage in mice. Mechanistically, coronavirus limits the bacterial killing ability of macrophages by impairing lysosomal acidification and fusion with engulfed bacteria. In addition, coronavirus-induced lysosomal dysfunction promotes pyroptotic cell death and the release of IL-1ß. Inhibition of cathepsin B decreased cell death and IL-1ß release and promoted bacterial clearance in mice with postcoronavirus bacterial infection.


Asunto(s)
Infecciones Bacterianas , COVID-19 , Coinfección , Virus de la Hepatitis Murina , Animales , Bacterias , Catepsina B , Humanos , Pulmón , Lisosomas , Ratones , SARS-CoV-2
9.
Int Orthop ; 48(6): 1411-1417, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351364

RESUMEN

PURPOSE: The aim of this study was to appraise various factors influencing the correction rate in temporary hemiepiphysiodesis (THE) around the knee joint. Specifically, the study analysed the relationship of correction rate with age, gender, aetiology, type and location of deformity. METHODS: The retrospective study included children who underwent THE for a coronal plane deformity (genu valgus or varum) around the knee joint (distal femur or proximal tibia) over a ten year period (2010-2020). The primary outcome of interest was the correction rate of the deformity. RESULTS: Thirty-three children (27 females and 6 males) with a mean age of 8.1 years involving 86 plates were included in the study. The mean correction achieved was 12.2° over a treatment period of 13.3 months. Subgroup analysis showed significant differences between the type (varus (0.8° per month), valgus (1.1° per month)) and the location of deformity femur (1.2° per month) and tibia (0.7° per month)]. On multivariate analysis, the location and the duration of treatment showed significant associations with the correction rate. CONCLUSION: The correction of coronal deformities following temporary hemiepiphysiodesis is influenced by several factors. Valgus, femoral and deformities in younger children correct at a faster rate. Location of deformity and duration of treatment emerged as potential factors affecting the correction rate.


Asunto(s)
Placas Óseas , Articulación de la Rodilla , Humanos , Femenino , Masculino , Estudios Retrospectivos , Niño , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/anomalías , Articulación de la Rodilla/fisiopatología , Tibia/cirugía , Tibia/anomalías , Fémur/cirugía , Fémur/anomalías , Preescolar , Análisis Multivariante , Resultado del Tratamiento , Genu Varum/cirugía , Adolescente , Epífisis/cirugía
10.
Am J Respir Cell Mol Biol ; 69(1): 22-33, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36450109

RESUMEN

VISTA (V domain immunoglobulin suppressor of T cell activation, also called PD-1H [programmed death-1 homolog]), a novel immune regulator expressed on myeloid and T lymphocyte lineages, is upregulated in mouse and human idiopathic pulmonary fibrosis (IPF). However, the significance of VISTA and its therapeutic potential in regulating IPF has yet to be defined. To determine the role of VISTA and its therapeutic potential in IPF, the expression profile of VISTA was evaluated from human single-cell RNA sequencing data (IPF Cell Atlas). Inflammatory response and lung fibrosis were assessed in bleomycin-induced experimental pulmonary fibrosis models in VISTA-deficient mice compared with wild-type littermates. In addition, these outcomes were evaluated after VISTA agonistic antibody treatment in the wild-type pulmonary fibrosis mice. VISTA expression was increased in lung tissue-infiltrating monocytes of patients with IPF. VISTA was induced in the myeloid population, mainly circulating monocyte-derived macrophages, during bleomycin-induced pulmonary fibrosis. Genetic ablation of VISTA drastically promoted pulmonary fibrosis, and bleomycin-induced fibroblast activation was dependent on the interaction between VISTA-expressing myeloid cells and fibroblasts. Treatment with VISTA agonistic antibody reduced fibrotic phenotypes accompanied by the suppression of lung innate immune and fibrotic mediators. In conclusion, these results suggest that VISTA upregulation in pulmonary fibrosis may be a compensatory mechanism to limit inflammation and fibrosis, and stimulation of VISTA signaling using VISTA agonists effectively limits the fibrotic innate immune landscape and consequent tissue fibrosis. Further studies are warranted to test VISTA as a novel therapeutic target for the IPF treatment.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Ratones , Animales , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Fibrosis , Bleomicina/farmacología , Inflamación/metabolismo , Fibroblastos/metabolismo
11.
J Virol ; 96(2): e0124121, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34705554

RESUMEN

Coronaviruses are a major health care threat to humankind. Currently, the host factors that contribute to limit disease severity in healthy young patients are not well defined. Interferons are key antiviral molecules, especially type I and type III interferons. The role of these interferons during coronavirus disease is a subject of debate. Here, using mice that are deficient in type I (IFNAR1-/-), type III (IFNLR1-/-), or both (IFNAR1/LR1-/-) interferon signaling pathways and murine-adapted coronavirus (MHV-A59) administered through the intranasal route, we define the role of interferons in coronavirus infection. We show that type I interferons play a major role in host survival in this model, while a minimal role of type III interferons was manifested only in the absence of type I interferons or during a lethal dose of coronavirus. IFNAR1-/- and IFNAR1/LR1-/- mice had an uncontrolled viral burden in the airways and lung and increased viral dissemination to other organs. The absence of only type III interferon signaling had no measurable difference in the viral load. The increased viral load in IFNAR1-/- and IFNAR1/LR1-/- mice was associated with increased tissue injury, especially evident in the lung and liver. Type I but not type III interferon treatment was able to promote survival if treated during early disease. Further, we show that type I interferon signaling in macrophages contributes to the beneficial effects during coronavirus infection in mice. IMPORTANCE The antiviral and pathological potential of type I and type III interferons during coronavirus infection remains poorly defined, and opposite findings have been reported. We report that both type I and type III interferons have anticoronaviral activities, but their potency and organ specificity differ. Type I interferon deficiency rendered the mice susceptible to even a sublethal murine coronavirus infection, while the type III interferon deficiency impaired survival only during a lethal infection or during a sublethal infection in the absence of type I interferon signaling. While treatment with both type I and III interferons promoted viral clearance in the airways and lung, only type I interferons promoted the viral clearance in the liver and improved host survival upon early treatment (12 h postinfection). This study demonstrates distinct roles and potency of type I and type III interferons and their therapeutic potential during coronavirus lung infection.


Asunto(s)
Infecciones por Coronavirus/inmunología , Interferón Tipo I/inmunología , Interferones/inmunología , Pulmón , Animales , Femenino , Pulmón/inmunología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferón lambda
12.
Virol J ; 20(1): 189, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620959

RESUMEN

BACKGROUND: The emergence of COVID-19 and the implementation of preventive measures and behavioral changes have led to a significant decrease in the prevalence of other respiratory viruses. However, the manner in which seasonal viruses will reemerge in the absence of COVID-19-related restrictions remains unknown. METHODS: Patients presenting with influenza-like illness in two hospitals in Beijing were subjected to testing for COVID-19, influenza A, and influenza B to determine the causative agent for viral infections. The prevalence of influenza B across China was confirmed using data from the Centers for Disease Control, China (China CDC). Clinical characteristics, laboratory findings, imaging results, and mortality data were collected for a cohort of 70 hospitalized patients with confirmed influenza B from 9 hospitals across China. RESULTS: Starting from October 2021, a substantial increase in the number of patients visiting the designated fever clinics in Beijing was observed, with this trend continuing until January 2022. COVID-19 tests conducted on these patients yielded negative results, while the positivity rate for influenza rose from approximately 8% in October 2021 to over 40% by late January 2022. The cases started to decline after this peak. Data from China CDC confirmed that influenza B is a major pathogen during the season. Sequencing of the viral strain revealed the presence of the Victoria-like lineage of the influenza B strain, with minor variations from the Florida/39/2018 strain. Analysis of the hospitalized patients' characteristics indicated that severe cases were relatively more prevalent among younger individuals, with an average age of 40.9 ± 24.1 years. Among the seven patients who succumbed to influenza, the average age was 30 ± 30.1 years. These patients exhibited secondary infections involving either bacterial or fungal pathogens and displayed elevated levels of cell death markers (such as LDH) and coagulation pathway markers (D-dimer). CONCLUSION: Influenza B represents a significant infection threat and can lead to substantial morbidity and mortality, particularly among young patients. To mitigate morbidity and mortality rates, it is imperative to implement appropriate vaccination and other preventive strategies.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Adulto , Persona de Mediana Edad , Adolescente , Adulto Joven , Anciano , Gripe Humana/epidemiología , COVID-19/epidemiología , Estaciones del Año , Prueba de COVID-19 , China/epidemiología
13.
J Immunol ; 206(2): 329-334, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33277388

RESUMEN

The COVID-19 pandemic has affected more than 20 million people worldwide, with mortality exceeding 800,000 patients. Risk factors associated with severe disease and mortality include advanced age, hypertension, diabetes, and obesity. Each of these risk factors pathologically disrupts the lipidome, including immunomodulatory eicosanoid and docosanoid lipid mediators (LMs). We hypothesized that dysregulation of LMs may be a defining feature of the severity of COVID-19. By examining LMs and polyunsaturated fatty acid precursor lipids in serum from hospitalized COVID-19 patients, we demonstrate that moderate and severe disease are separated by specific differences in abundance of immune-regulatory and proinflammatory LMs. This difference in LM balance corresponded with decreased LM products of ALOX12 and COX2 and an increase LMs products of ALOX5 and cytochrome p450. Given the important immune-regulatory role of LMs, these data provide mechanistic insight into an immuno-lipidomic imbalance in severe COVID-19.


Asunto(s)
COVID-19 , Eicosanoides , Lipidómica , SARS-CoV-2 , Adulto , Anciano , Anciano de 80 o más Años , Araquidonato 12-Lipooxigenasa/inmunología , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 5-Lipooxigenasa/inmunología , Araquidonato 5-Lipooxigenasa/metabolismo , Biomarcadores/sangre , COVID-19/sangre , COVID-19/inmunología , Ciclooxigenasa 2/inmunología , Ciclooxigenasa 2/metabolismo , Eicosanoides/sangre , Eicosanoides/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo
14.
Am J Respir Crit Care Med ; 206(12): 1463-1479, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998281

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U.S. Food and Drug Administration-approved antifibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Objectives: Using an in silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. Methods: We investigated the antifibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in bleomycin and recombinant Ad-TGF-ß (adenovirus transforming growth factor-ß) murine models of pulmonary fibrosis; and 3) ex vivo in mice and human precision-cut lung slices from these two murine models as well as patients with IPF and healthy donors. Measurements and Main Results: In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone. Transcriptomic analyses of TGF-ß-stimulated normal human lung fibroblasts identified specific gene sets associated with fibrosis, including epithelial-mesenchymal transition, TGF-ß, and WNT signaling that was uniquely altered by saracatinib. Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.


Asunto(s)
Fibrosis Pulmonar Idiopática , Inhibidores de Proteínas Quinasas , Animales , Humanos , Ratones , Bleomicina/efectos adversos , Fibroblastos/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Familia-src Quinasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
15.
J Enzyme Inhib Med Chem ; 38(1): 2282379, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37985663

RESUMEN

Acid phosphatases (EC 3.1.3.2) are the enzymes that catalyse transphosphorylation reactions and promotes the hydrolysis of numerous orthophosphate esters in acidic media, as a crucial element for the metabolism of phosphate in tissues. Inorganic phosphate (Pi) utilisation and scavenging, as well as the turnover of Pi-rich sources found in plant vacuoles, are major processes in which intracellular and secretory acid phosphatases function. Therefore, a thorough understanding of these enzymes' structural characteristics, specificity, and physiochemical properties is required to comprehend the function of acid phosphatases in plant energy metabolism. Furthermore, acid phosphatases are gaining increasing importance in industrial biotechnology due to their involvement in transphosphorylation processes and their ability to reduce phosphate levels in food products. Hence, this review aims to provide a comprehensive overview of the purification methods employed for isolating acid phosphatases from diverse plant sources, as well as their structural and functional properties. Additionally, the review explores the potential applications of these enzymes in various fields.


Asunto(s)
Fosfatasa Ácida , Plantas , Fosfatasa Ácida/química , Fosfatasa Ácida/metabolismo , Hidrólisis , Fosfatos
16.
Yale J Biol Med ; 96(1): 23-42, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009190

RESUMEN

Objective: We aim to comprehensively describe the transcriptional activity and signaling of pulmonary parenchymal and immune cells before and after cardiopulmonary bypass (CPB) by using a multi-omic approach coupled with functional cellular assays. We hypothesize that key signaling pathways from specific cells within the lung alter pulmonary endothelial cell function resulting in worsening or improving disease. Methods: We collected serial tracheobronchial lavage samples from intubated patients less than 2-years-old undergoing surgery with CPB. Samples were immediately processed for single cell RNA sequencing (10x Genomics). Cell clustering, cell-type annotation, and visualization were performed, and differentially expressed genes (DEG) between serial samples were identified. Metabolomic and proteomic analyses were performed on the supernatant using mass spectrometry and a multiplex assay (SomaScan) respectively. Functional assays were done using electric cell-substrate impedance sensing to measure resistance across human pulmonary microvascular endothelial cells (HPMECs). Results: Analysis of eight patients showed a heterogeneous mixture of pulmonary parenchymal and immune cells. Cell clustering demonstrated time-dependent changes in the transcriptomic signature indicating altered cellular phenotypes after CPB. DEG analysis was represented by genes involved in host defense, innate immunity, and the mitochondrial respiratory transport chain. Ingenuity pathway analysis showed upregulation of the integrated stress response across all cell types after CPB. Metabolomic analysis demonstrated upregulation of ascorbate and aldarate metabolism. Unbiased proteomic analysis revealed upregulation of proteins involved in cytokine and chemokine pathways. Post-CPB patient supernatant improved HMPEC barrier function, suggesting a protective cellular response to CPB. Conclusion: Children who undergo CPB for cardiac surgery have distinct cell populations, transcriptional activity, and metabolism that change over time. The response to ischemia-reperfusion injury in the lower airway of children appears to be protective, with the need to identify potential targets through future investigations.


Asunto(s)
Puente Cardiopulmonar , Células Endoteliales , Niño , Humanos , Preescolar , Puente Cardiopulmonar/efectos adversos , Puente Cardiopulmonar/métodos , Permeabilidad Capilar , Proteómica , Pulmón/irrigación sanguínea , Pulmón/metabolismo
17.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L518-L525, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196896

RESUMEN

Sarcoidosis is a chronic granulomatous disease of unknown etiology that primarily affects the lungs. The development of stage IV or fibrotic lung disease accounts for a significant proportion of the morbidity and mortality attributable to sarcoidosis. Further investigation into the active mechanisms of disease pathogenesis and fibrogenesis might illuminate fundamental mediators of injury and repair while providing new opportunities for clinical intervention. However, progress in sarcoidosis research has been hampered by the heterogeneity of clinical phenotypes and the lack of a consensus modeling system. Recently, reverse translational research, wherein observations made at the patient level catalyze hypothesis-driven research at the laboratory bench, has generated new discoveries regarding the immunopathogenic mechanisms of pulmonary granuloma formation, fibrogenesis, and disease model development. The purpose of this review is to highlight the promise and possibility of these novel investigative efforts.


Asunto(s)
Fibrosis Pulmonar , Sarcoidosis , Granuloma/patología , Humanos , Pulmón/patología , Fibrosis Pulmonar/patología , Sarcoidosis/patología , Investigación Biomédica Traslacional
18.
Pediatr Diabetes ; 23(1): 5-9, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34773338

RESUMEN

BACKGROUND: The HLA associations of celiac disease (CD) in north Indians differ from that in Europeans. Our dietary gluten is among the highest in the world. Data on CD in people with diabetes (PWD) in north India is scant. OBJECTIVE: To estimate the prevalence and clinical profile of CD in children with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: Retrospective review of case records of PWD with onset ≤18 years of age, registered between 2009 and 2020, having at least one anti tissue-transglutaminase (anti-tTG) serology report. RESULTS: Of 583 registered PWD, 398 (68.2%) had celiac serology screening. A positive report was obtained in 66 (16.6%). Of 51 biopsied people, 22 (5.5%) were diagnosed to have CD, 12 in the first 2 years of diabetes onset. Symptomatic CD at diagnosis was seen in 63% (14/22). Age at diabetes onset (median [IQR] age 5.5 years, [2-12]) was lower in PWD and CD compared to PWD alone (10 years, [7-14], p < 0.016). Of 36 biopsied children with anti-tTG >100 au/ml, 20 (55.5%) had CD, while 2 out of 15 (13.3%) of those with lower anti-tTG titer had histopathology suggestive of CD. Of 23 seropositive children not diagnosed with CD, 5 of 8 with anti tTG >100 au/ml, and all 15 with lower anti-tTG, had normalization of titers over the 24 (10-41) months. CONCLUSIONS: Our prevalence of CD is comparable to international data. Celiac disease was common with younger age at onset of T1D and higher titer of celiac serology. A high proportion was symptomatic of CD at diagnosis.


Asunto(s)
Enfermedad Celíaca/clasificación , Diabetes Mellitus Tipo 1/clasificación , Centros de Atención Terciaria/estadística & datos numéricos , Adolescente , Enfermedad Celíaca/epidemiología , Niño , Preescolar , Correlación de Datos , Diabetes Mellitus Tipo 1/epidemiología , Femenino , Humanos , India/epidemiología , Masculino , Tamizaje Masivo/métodos , Tamizaje Masivo/estadística & datos numéricos , Prevalencia , Estudios Retrospectivos , Estadísticas no Paramétricas , Centros de Atención Terciaria/organización & administración
19.
J Pediatr Hematol Oncol ; 44(6): 273-279, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35700365

RESUMEN

Corticosteroids and l -asparaginase used in the treatment of pediatric acute lymphoblastic leukemia (ALL) can cause drug-induced diabetes mellitus (DIDM). DIDM can lead to dyselectrolytemia, a higher risk of infections including cellulitis, bacteremia, fungemia, and a higher incidence of febrile neutropenia and may have an impact on the outcome of ALL. Literature on the management of DIDM among children with ALL is sparse and the diagnostic criteria for pediatric diabetes should be carefully applied considering the acute and transient nature of DIDM during ALL therapy. Insulin remains the standard of care for DIDM management and the choice of Insulin regimen (stand-alone Neutral Protamine Hagedorn or basal bolus) should be based on the type and dose of steroids used for ALL and the pattern of hyperglycemia. A modest glycemic control (postmeal 140 to 180 mg/dL, premeal <140 mg/dL) to prevent complications of hyperglycemia, as well as hypoglycemia, would be the general approach. This review is intended to suggest evidence-based practical guidance in the diagnosis and management of DIDM during pediatric ALL therapy.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Glucemia , Niño , Humanos , Hiperglucemia/inducido químicamente , Hipoglucemiantes/efectos adversos , Insulina , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico
20.
Public Health Nutr ; : 1-10, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35067260

RESUMEN

OBJECTIVE: High burden of anaemia exists amongst rural adolescent girls in India. The objective of this study was to characterise anaemia in school going adolescent girls in rural Haryana, India. DESIGN: Linear and multiple logistic regression analysis of data collected prior to an intervention trial was conducted. Participants were classified into anaemic (haemoglobin <12 g/dl) and non-anaemic group and were further classified into deficiencies of Fe, folate or vitamin B12, mixed, anaemia of other causes and inflammation. SETTING: Three schools in Ballabgarh block of Faridabad District, Haryana, India. PARTICIPANTS: One hundered and ninety-eight non-anaemic and 202 anaemic adolescent girls (12-19 years). RESULTS: Anaemic girls had 29·6 % Fe deficiency, 28·1 % folate or vitamin B12 deficiency, 15·8 % mixed deficiency and 9·7 % acute inflammation. Anaemia of other causes was found in 16·8 % of the anaemic participants. Girls with Fe and isolated folate deficiency had 2·5 times and four times higher odds of developing anaemia, respectively, as compared with non-anaemic girls. Fe deficiency with no anaemia was found amongst 11 % non-anaemic girls. Non-anaemic girls had a high prevalence of combined deficiency of folate or vitamin B12 (29·5 %) and acute inflammation (14·4 %). CONCLUSIONS: The current strategy of Fe and folic acid supplementation alone will not suffice for achieving the desired reduction in the prevalence of anaemia as unknown causes and anaemia of inflammation contribute to a substantial proportion of anaemia. Integrating other nutrition-specific components like improving water, sanitation and hygiene practices with the ongoing micronutrient supplementation program will comprehensively tackle anaemia. Unknown causes of anaemia warrant further research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA