Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Exp Bot ; 74(15): 4415-4426, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37177829

RESUMEN

Running crop growth models (CGM) coupled with whole genome prediction (WGP) as a CGM-WGP model introduces environmental information to WGP and genomic relatedness information to the genotype-specific parameters modelled through CGMs. Previous studies have primarily used CGM-WGP to infer prediction accuracy without exploring its potential to enhance CGM and WGP. Here, we implemented a heading and maturity date wheat phenology model within a CGM-WGP framework and compared it with CGM and WGP. The CGM-WGP resulted in more heritable genotype-specific parameters with more biologically realistic correlation structures between genotype-specific parameters and phenology traits compared with CGM-modelled genotype-specific parameters that reflected the correlation of measured phenotypes. Another advantage of CGM-WGP is the ability to infer accurate prediction with much smaller and less diverse reference data compared with that required for CGM. A genome-wide association analysis linked the genotype-specific parameters from the CGM-WGP model to nine significant phenology loci including Vrn-A1 and the three PPD1 genes, which were not detected for CGM-modelled genotype-specific parameters. Selection on genotype-specific parameters could be simpler than on observed phenotypes. For example, thermal time traits are theoretically more independent candidates, compared with the highly correlated heading and maturity dates, which could be used to achieve an environment-specific optimal flowering period. CGM-WGP combines the advantages of CGM and WGP to predict more accurate phenotypes for new genotypes under alternative or future environmental conditions.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Triticum/genética , Genoma , Genotipo , Fenotipo
2.
Sensors (Basel) ; 23(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36850417

RESUMEN

The detection of beneficial microbes living within perennial ryegrass seed causing no apparent defects is challenging, even with the most sensitive and conventional methods, such as DNA genotyping. Using a near-infrared hyperspectral imaging system (NIR-HSI), we were able to discriminate not only the presence of the commercial NEA12 fungal endophyte strain but perennial ryegrass cultivars of diverse seed age and batch. A total of 288 wavebands were extracted for individual seeds from hyperspectral images. The optimal pre-processing methods investigated yielded the best partial least squares discriminant analysis (PLS-DA) classification model to discriminate NEA12 and without endophyte (WE) perennial ryegrass seed with a classification accuracy of 89%. Effective wavelength (EW) selection based on GA-PLS-DA resulted in the selection of 75 wavebands yielding 88.3% discrimination accuracy using PLS-DA. For cultivar identification, the artificial neural network discriminant analysis (ANN-DA) was the best-performing classification model, resulting in >90% classification accuracy for Trojan, Alto, Rohan, Governor and Bronsyn. EW selection using GA-PLS-DA resulted in 87 wavebands, and the PLS-DA model performed the best, with no extensive compromise in performance, resulting in >89.1% accuracy. The study demonstrates the use of NIR-HSI reflectance data to discriminate, for the first time, an associated beneficial fungal endophyte and five cultivars of perennial ryegrass seed, irrespective of seed age and batch. Furthermore, the negligible effects on the classification errors using EW selection improve the capability and deployment of optimized methods for real-time analysis, such as the use of low-cost multispectral sensors for single seed analysis and automated seed sorting devices.


Asunto(s)
Imágenes Hiperespectrales , Lolium , Movimiento Celular , Diagnóstico por Imagen , Semillas
3.
Sensors (Basel) ; 22(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35271127

RESUMEN

Near-infrared (800-2500 nm; NIR) spectroscopy coupled to hyperspectral imaging (NIR-HSI) has greatly enhanced its capability and thus widened its application and use across various industries. This non-destructive technique that is sensitive to both physical and chemical attributes of virtually any material can be used for both qualitative and quantitative analyses. This review describes the advancement of NIR to NIR-HSI in agricultural applications with a focus on seed quality features for agronomically important seeds. NIR-HSI seed phenotyping, describing sample sizes used for building high-accuracy calibration and prediction models for full or selected wavelengths of the NIR region, is explored. The molecular interpretation of absorbance bands in the NIR region is difficult; hence, this review offers important NIR absorbance band assignments that have been reported in literature. Opportunities for NIR-HSI seed phenotyping in forage grass seed are described and a step-by-step data-acquisition and analysis pipeline for the determination of seed quality in perennial ryegrass seeds is also presented.


Asunto(s)
Imágenes Hiperespectrales , Espectroscopía Infrarroja Corta , Calibración , Semillas/química , Espectroscopía Infrarroja Corta/métodos
4.
Molecules ; 27(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35164007

RESUMEN

The high-throughput quantitation of cannabinoids is important for the cannabis industry. As medicinal products increase, and research into compounds that have pharmacological benefits increase, and the need to quantitate more than just the main cannabinoids becomes more important. This study aims to provide a rapid, high-throughput method for cannabinoid quantitation using a liquid chromatography triple-quadrupole mass spectrometer (LC-QQQ-MS) with an ultraviolet diode array detector (UV-DAD) for 16 cannabinoids: CBDVA, CBDV, CBDA, CBGA, CBG, CBD, THCV, THCVA, CBN, CBNA, THC, Δ8-THC, CBL, CBC, THCA-A and CBCA. Linearity, limit of detection (LOD), limit of quantitation (LOQ), accuracy, precision, recovery and matrix effect were all evaluated. The validated method was used to determine the cannabinoid concentration of four different Cannabis sativa strains and a low THC strain, all of which have different cannabinoid profiles. All cannabinoids eluted within five minutes with a total analysis time of eight minutes, including column re-equilibration. This was twice as fast as published LC-QQQ-MS methods mentioned in the literature, whilst also covering a wide range of cannabinoid compounds.


Asunto(s)
Cannabinoides/análisis , Cannabis/química , Ensayos Analíticos de Alto Rendimiento/métodos , Cannabinoides/química , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Límite de Detección , Extractos Vegetales/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem/métodos
5.
BMC Plant Biol ; 21(1): 294, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174826

RESUMEN

BACKGROUND: For millennia, drug-type cannabis strains were extensively used for various medicinal, ritual, and inebriant applications. However, cannabis prohibition during the last century led to cultivation and breeding activities being conducted under clandestine conditions, while scientific development of the crop ceased. Recently, the potential of medicinal cannabis has been reacknowledged and the now expanding industry requires optimal and scientifically characterized varieties. However, scientific knowledge that can propel this advancement is sorely lacking. To address this issue, the current study aims to provide a better understanding of key physiological and phenological traits that can facilitate the breeding of advanced cultivars. RESULTS: A diverse population of 121 genotypes of high-THC or balanced THC-CBD ratio was cultivated under a controlled environment facility and 13 plant parameters were measured. No physiological association across genotypes attributed to the same vernacular classification was observed. Floral bud dry weight was found to be positively associated with plant height and stem diameter but not with days to maturation. Furthermore, the heritability of both plant height and days to maturation was relatively high, but for plant height it decreased during the vegetative growth phase. To advance breeding efficacy, a prediction equation for forecasting floral bud dry weight was generated, driven by parameters that can be detected during the vegetative growth phase solely. CONCLUSIONS: Our findings suggest that selection for taller and fast-growing genotypes is likely to lead to an increase in floral bud productivity. It was also found that the final plant height and stem diameter are determined by 5 independent factors that can be used to maximize productivity through cultivation adjustments. The proposed prediction equation can facilitate the selection of prolific genotypes without the completion of a full cultivation cycle. Future studies that will associate genome-wide variation with plants morphological traits and cannabinoid profile will enable precise and accelerated breeding through genomic selection approaches.


Asunto(s)
Cannabis/genética , Fitomejoramiento , Carácter Cuantitativo Heredable , Cannabis/crecimiento & desarrollo , Cannabis/fisiología , Variación Genética , Fenotipo , Fitomejoramiento/métodos
6.
Mol Genet Genomics ; 294(2): 315-328, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30443676

RESUMEN

Development of grass-endophyte associations with minimal or no detrimental effects in combination with beneficial characteristics is important for pastoral agriculture. The feasibility of enhancing production of an endophyte-derived beneficial alkaloid through introduction of an additional gene copy was assessed in a proof-of-concept study. Sexual and asexual Epichloë species that form symbiotic associations with cool-season grasses of the Poaceae sub-family Pooideae produce bioactive alkaloids that confer resistance to herbivory by a number of organisms. Of these, peramine is thought to be crucial for protection of perennial ryegrass (Lolium perenne L.) from the Argentinian stem weevil, an economically important exotic pest in New Zealand, contributing significantly to pasture persistence. A single gene (perA) has been identified as solely responsible for peramine biosynthesis and is distributed widely across Epichloë taxa. In the present study, a functional copy of the perA gene was introduced into three recipient endophyte genomes by Agrobacterium tumefaciens-mediated transformation. The target strains included some that do not produce peramine, and others containing different perA gene copies. Mitotically stable transformants generated from all three endophyte strains were able to produce peramine in culture and in planta at variable levels. In summary, this study provides an insight into the potential for artificial combinations of alkaloid biosynthesis in a single endophyte strain through transgenesis, as well as the possibility of using novel genome editing techniques to edit the perA gene of non-peramine producing strains.


Asunto(s)
Endófitos/genética , Epichloe/genética , Compuestos Heterocíclicos con 2 Anillos/metabolismo , Poaceae/genética , Poliaminas/metabolismo , Alcaloides/genética , Animales , Resistencia a la Enfermedad/genética , Epichloe/crecimiento & desarrollo , Edición Génica , Control Biológico de Vectores , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Reproducción Asexuada/genética , Simbiosis/genética , Gorgojos/genética , Gorgojos/patogenicidad
7.
Plant Biotechnol J ; 16(4): 877-889, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28913899

RESUMEN

The application of genomics in crops has the ability to significantly improve genetic gain for agriculture. Many marker-dense tools have been developed, but few have seen broad adoption in plant genomics due to issues of significant variations of genome size, levels of ploidy, single nucleotide polymorphism (SNP) frequency and reproductive habit. When combined with limited breeding activities, small research communities and scant sequence resources, the suitability of popular systems is often suboptimal and routinely fails to effectively balance cost-effectiveness and sample throughput. Genotyping-by-sequencing (GBS) encompasses a range of protocols including resequencing of the transcriptome. This study describes a skim GBS-transcriptomics (GBS-t) approach developed to be broadly applicable, cost-effective and high-throughput while still assaying a significant number of SNP loci. A range of crop species with differing levels of ploidy and degree of inbreeding/outbreeding were chosen, including perennial ryegrass, a diploid outbreeding forage grass; phalaris, a putative segmental allotetraploid outbreeding forage grass; lentil, a diploid inbreeding grain legume; and canola, an allotetraploid partially outbreeding oilseed. GBS-t was validated as a simple and largely automated, cost-effective method which generates sufficient SNPs (from 89 738 to 231 977) with acceptable levels of missing data and even genome coverage from c. 3 million sequence reads per sample. GBS-t is therefore a broadly applicable system suitable for many crops, offering advantages over other systems. The correct choice of subsequent sequence analysis software is important, and the bioinformatics process should be iterative and tailored to the specific challenges posed by ploidy variation and extent of heterozygosity.


Asunto(s)
Productos Agrícolas/genética , Técnicas de Genotipaje/métodos , Ploidias , Polimorfismo de Nucleótido Simple , Brassica rapa/genética , Perfilación de la Expresión Génica , Genoma de Planta , Lolium/genética , Phalaris/genética , Reproducibilidad de los Resultados
8.
Theor Appl Genet ; 131(9): 1891-1902, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29860624

RESUMEN

KEY MESSAGE: Exploitation of data from a ryegrass breeding program has enabled rapid development and implementation of genomic selection for sward-based biomass yield with a twofold-to-threefold increase in genetic gain. Genomic selection, which uses genome-wide sequence polymorphism data and quantitative genetics techniques to predict plant performance, has large potential for the improvement in pasture plants. Major factors influencing the accuracy of genomic selection include the size of reference populations, trait heritability values and the genetic diversity of breeding populations. Global diversity of the important forage species perennial ryegrass is high and so would require a large reference population in order to achieve moderate accuracies of genomic selection. However, diversity of germplasm within a breeding program is likely to be lower. In addition, de novo construction and characterisation of reference populations are a logistically complex process. Consequently, historical phenotypic records for seasonal biomass yield and heading date over a 18-year period within a commercial perennial ryegrass breeding program have been accessed, and target populations have been characterised with a high-density transcriptome-based genotyping-by-sequencing assay. Ability to predict observed phenotypic performance in each successive year was assessed by using all synthetic populations from previous years as a reference population. Moderate and high accuracies were achieved for the two traits, respectively, consistent with broad-sense heritability values. The present study represents the first demonstration and validation of genomic selection for seasonal biomass yield within a diverse commercial breeding program across multiple years. These results, supported by previous simulation studies, demonstrate the ability to predict sward-based phenotypic performance early in the process of individual plant selection, so shortening the breeding cycle, increasing the rate of genetic gain and allowing rapid adoption in ryegrass improvement programs.


Asunto(s)
Lolium/genética , Fitomejoramiento , Selección Genética , Biomasa , Productos Agrícolas/genética , Variación Genética , Genética de Población , Genómica , Genotipo , Fenotipo
9.
Transgenic Res ; 27(5): 397-407, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30030680

RESUMEN

Alkaloid concentration of perennial ryegrass herbage is affected by endophyte strain and host plant genotype. However, previous studies suggest that associations between host and endophyte also depends on environmental conditions, especially those affecting nutrient reserves and that water-soluble carbohydrate (WSC) concentration of perennial ryegrass plants may influence grass-endophyte associations. In this study a single transgenic event, with altered expression of fructosyltransferase genes to produce high WSC and biomass, has been crossed into a range of cultivar backgrounds with varying Epichloë endophyte strains. The effect of the association between the transgenic trait and alkaloid production was assessed and compared with transgene free control populations. In the vast-majority of comparisons there was no significant difference between alkaloid concentrations of transgenic and non-transgenic plants within the same cultivar and endophyte backgrounds. There was no significant difference between GOI+ (gene of interest positive) and GOI- (gene of interest negative) populations in Janthritrem response. Peramine concentration was not different between GOI+ and GOI- for 10 of the 12 endophytes-cultivar combinations. Cultivar Trojan infected with NEA6 and Alto with SE (standard endophyte) exhibited higher peramine and lolitrem B (only for Alto SE) concentration, in the control GOI- compared with GOI+. Similarly, cultivar Trojan infected with NEA6 and Alto with NEA3 presented higher ergovaline concentration in GOI-. Differences in alkaloid concentration may be attributable to an indirect effect in the modulation of fungal biomass. These results conclude that the presence of this transgenic insertion, does not alter the risk (toxicity) of the endophyte-grass associations. Endophyte-host interactions are complex and further research into associations with high WSC plant should be performed in a case by case basis.


Asunto(s)
Alcaloides/metabolismo , Endófitos/metabolismo , Epichloe/metabolismo , Hexosiltransferasas/genética , Lolium/microbiología , Micotoxinas/metabolismo , Alimentación Animal , Endófitos/fisiología , Epichloe/fisiología , Ergotaminas/metabolismo , Regulación de la Expresión Génica de las Plantas , Compuestos Heterocíclicos con 2 Anillos/metabolismo , Hexosiltransferasas/metabolismo , Alcaloides Indólicos/metabolismo , Lolium/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Poliaminas/metabolismo
10.
Theor Appl Genet ; 130(7): 1393-1404, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28378053

RESUMEN

KEY MESSAGE: Imputing genotypes from the 90K SNP chip to exome sequence in wheat was moderately accurate. We investigated the factors that affect imputation and propose several strategies to improve accuracy. Imputing genetic marker genotypes from low to high density has been proposed as a cost-effective strategy to increase the power of downstream analyses (e.g. genome-wide association studies and genomic prediction) for a given budget. However, imputation is often imperfect and its accuracy depends on several factors. Here, we investigate the effects of reference population selection algorithms, marker density and imputation algorithms (Beagle4 and FImpute) on the accuracy of imputation from low SNP density (9K array) to the Infinium 90K single-nucleotide polymorphism (SNP) array for a collection of 837 hexaploid wheat Watkins landrace accessions. Based on these results, we then used the best performing reference selection and imputation algorithms to investigate imputation from 90K to exome sequence for a collection of 246 globally diverse wheat accessions. Accession-to-nearest-entry and genomic relationship-based methods were the best performing selection algorithms, and FImpute resulted in higher accuracy and was more efficient than Beagle4. The accuracy of imputing exome capture SNPs was comparable to imputing from 9 to 90K at approximately 0.71. This relatively low imputation accuracy is in part due to inconsistency between 90K and exome sequence formats. We also found the accuracy of imputation could be substantially improved to 0.82 when choosing an equivalent number of exome SNP, instead of 90K SNPs on the existing array, as the lower density set. We present a number of recommendations to increase the accuracy of exome imputation.


Asunto(s)
Exoma , Genómica/métodos , Polimorfismo de Nucleótido Simple , Triticum/genética , Algoritmos , Marcadores Genéticos , Genotipo , Poliploidía
11.
Genome ; 60(12): 1086-1088, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28841400

RESUMEN

RNA-Seq methodology has been used to generate a comprehensive transcriptome sequence resource for perennial ryegrass, an important temperate pasture grass species. A total of 931 547 255 reads were obtained from libraries corresponding to 19 distinct tissue samples, including both vegetative and reproductive stages of development. Assembly of data generated a final filtered reference set of 48 713 contigs and scaffolds. The transcriptome resource will support whole genome sequence assembly, comparative genomics, implementation of genotyping-by-sequencing (GBS) methods based on transcript sampling, and identification of candidate genes for multiple biological functions.


Asunto(s)
Mapeo Contig/normas , Genoma de Planta , Lolium/genética , Transcriptoma , Mapeo Contig/métodos , Anotación de Secuencia Molecular , Valores de Referencia
12.
Genome ; 60(6): 496-509, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28177829

RESUMEN

Symbiotic associations between tall fescue grasses and asexual Epichloë fungal endophytes exhibit biosynthesis of alkaloid compounds causing both beneficial and detrimental effects. Candidate novel endophytes with favourable chemotypic profiles have been identified in germplasm collections by screening for genetic diversity, followed by metabolite profile analysis in endogenous genetic backgrounds. A subset of candidates was subjected to genome survey sequencing to detect the presence or absence and structural status of known genes for biosynthesis of the major alkaloid classes. The capacity to produce specific metabolites was directly predictable from metabolic data. In addition, study of duplicated gene structure in heteroploid genomic constitutions provided further evidence for the origin of such endophytes. Selected strains were inoculated into meristem-derived callus cultures from specific tall fescue genotypes to perform isogenic comparisons of alkaloid profile in different host backgrounds, revealing evidence for host-specific quantitative control of metabolite production, consistent with previous studies. Certain strains were capable of both inoculation and formation of longer-term associations with a nonhost species, perennial ryegrass (Lolium perenne L.). Discovery and primary characterisation of novel endophytes by DNA analysis, followed by confirmatory metabolic studies, offers improvements of speed and efficiency and hence accelerated deployment in pasture grass improvement programs.


Asunto(s)
Alcaloides/genética , Endófitos/genética , Epichloe/genética , Poaceae/genética , Secuencia de Bases , Variación Genética/genética , Genómica/métodos , Genotipo
13.
Theor Appl Genet ; 129(5): 991-1005, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26883039

RESUMEN

KEY MESSAGE: A targeted amplicon-based genotyping-by-sequencing approach has permitted cost-effective and accurate discrimination between ryegrass species (perennial, Italian and inter-species hybrid), and identification of cultivars based on bulked samples. Perennial ryegrass and Italian ryegrass are the most important temperate forage species for global agriculture, and are represented in the commercial pasture seed market by numerous cultivars each composed of multiple highly heterozygous individuals. Previous studies have identified difficulties in the use of morphophysiological criteria to discriminate between these two closely related taxa. Recently, a highly multiplexed single nucleotide polymorphism (SNP)-based genotyping assay has been developed that permits accurate differentiation between both species and cultivars of ryegrasses at the genetic level. This assay has since been further developed into an amplicon-based genotyping-by-sequencing (GBS) approach implemented on a second-generation sequencing platform, allowing accelerated throughput and ca. sixfold reduction in cost. Using the GBS approach, 63 cultivars of perennial, Italian and interspecific hybrid ryegrasses, as well as intergeneric Festulolium hybrids, were genotyped. The genetic relationships between cultivars were interpreted in terms of known breeding histories and indistinct species boundaries within the Lolium genus, as well as suitability of current cultivar registration methodologies. An example of applicability to quality assurance and control (QA/QC) of seed purity is also described. Rapid, low-cost genotypic assays provide new opportunities for breeders to more fully explore genetic diversity within breeding programs, allowing the combination of novel unique genetic backgrounds. Such tools also offer the potential to more accurately define cultivar identities, allowing protection of varieties in the commercial market and supporting processes of cultivar accreditation and quality assurance.


Asunto(s)
Técnicas de Genotipaje/métodos , Lolium/clasificación , Análisis de Secuencia de ADN/métodos , ADN de Plantas/genética , Biblioteca de Genes , Genotipo , Lolium/genética , Polimorfismo de Nucleótido Simple , Especificidad de la Especie
14.
BMC Evol Biol ; 15: 72, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25902799

RESUMEN

BACKGROUND: Perennial ryegrass (Lolium perenne L.) is one of the most important species for temperate pastoral agriculture, forming associations with genetically diverse groups of mutualistic fungal endophytes. However, only two taxonomic groups (E. festucae var. lolii and LpTG-2) have so far been described. In addition to these two well-characterised taxa, a third distinct group of previously unclassified perennial ryegrass-associated endophytes was identified as belonging to a putative novel taxon (or taxa) (PNT) in a previous analysis based on simple sequence repeat (SSR) marker diversity. As well as genotypic differences, distinctive alkaloid production profiles were observed for members of the PNT group. RESULTS: A detailed phylogenetic analysis of perennial ryegrass-associated endophytes using components of whole genome sequence data was performed using complete sequences of 7 nuclear protein-encoding genes. Three independently selected genes (encoding a DEAD/DEAH box helicase [Sbp4], a glycosyl hydrolase [family 92 protein] and a MEAB protein), none of which have been previously used for taxonomic studies of endophytes, were selected together with the frequently used 'house-keeping' genes tefA and tubB (encoding translation elongation factor 1-α and ß-tubulin, respectively). In addition, an endophyte-specific gene (perA for peramine biosynthesis) and the fungal-specific MT genes for mating-type control were included. The results supported previous phylogenomic inferences for the known species, but revealed distinctive patterns of diversity for the previously unclassified endophyte strains, which were further proposed to belong to not one but two distinct novel taxa. Potential progenitor genomes for the asexual endophytes among contemporary teleomorphic (sexual Epichloë) species were also identified from the phylogenetic analysis. CONCLUSIONS: Unique taxonomic status for the PNT was confirmed through comparison of multiple nuclear gene sequences, and also supported by evidence from chemotypic diversity. Analysis of MT gene idiomorphs further supported a predicted independent origin of two distinct perennial ryegrass-associated novel taxa, designated LpTG-3 and LpTG-4, from different members of a similar founder population related to contemporary E. festucae. The analysis also provided higher resolution to the known progenitor contributions of previously characterised perennial ryegrass-associated endophyte taxa.


Asunto(s)
Epichloe/genética , Lolium/microbiología , Filogenia , Endófitos/clasificación , Endófitos/genética , Endófitos/fisiología , Epichloe/clasificación , Epichloe/fisiología , Proteínas Fúngicas/genética , Genes del Tipo Sexual de los Hongos , Compuestos Heterocíclicos con 2 Anillos , Lolium/fisiología , Factor 1 de Elongación Peptídica/genética , Poliaminas , Simbiosis , Tubulina (Proteína)/genética
15.
BMC Biotechnol ; 15: 25, 2015 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-25887558

RESUMEN

BACKGROUND: Fragmentation at random nucleotide locations is an essential process for preparation of DNA libraries to be used on massively parallel short-read DNA sequencing platforms. Although instruments for physical shearing, such as the Covaris S2 focused-ultrasonicator system, and products for enzymatic shearing, such as the Nextera technology and NEBNext dsDNA Fragmentase kit, are commercially available, a simple and inexpensive method is desirable for high-throughput sequencing library preparation. MspJI is a recently characterised restriction enzyme which recognises the sequence motif CNNR (where R = G or A) when the first base is modified to 5-methylcytosine or 5-hydroxymethylcytosine. RESULTS: A semi-random enzymatic DNA amplicon fragmentation method was developed based on the unique cleavage properties of MspJI. In this method, random incorporation of 5-methyl-2'-deoxycytidine-5'-triphosphate is achieved through DNA amplification with DNA polymerase, followed by DNA digestion with MspJI. Due to the recognition sequence of the enzyme, DNA amplicons are fragmented in a relatively sequence-independent manner. The size range of the resulting fragments was capable of control through optimisation of 5-methyl-2'-deoxycytidine-5'-triphosphate concentration in the reaction mixture. A library suitable for sequencing using the Illumina MiSeq platform was prepared and processed using the proposed method. Alignment of generated short reads to a reference sequence demonstrated a relatively high level of random fragmentation. CONCLUSIONS: The proposed method may be performed with standard laboratory equipment. Although the uniformity of coverage was slightly inferior to the Covaris physical shearing procedure, due to efficiencies of cost and labour, the method may be more suitable than existing approaches for implementation in large-scale sequencing activities, such as bacterial artificial chromosome (BAC)-based genome sequence assembly, pan-genomic studies and locus-targeted genotyping-by-sequencing.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enzimas de Restricción del ADN/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Agrobacterium/genética , Arabidopsis/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , ADN de Plantas/análisis , ADN de Plantas/genética , Nucleótidos de Desoxicitosina , Técnicas de Genotipaje , Técnicas de Amplificación de Ácido Nucleico
16.
Transgenic Res ; 23(3): 503-17, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24504635

RESUMEN

C4 grasses are favoured as forage crops in warm, humid climates. The use of C4 grasses in pastures is expected to increase because the tropical belt is widening due to global climate change. While the forage quality of Paspalum dilatatum (dallisgrass) is higher than that of other C4 forage grass species, digestibility of warm-season grasses is, in general, poor compared with most temperate grasses. The presence of thick-walled parenchyma bundle-sheath cells around the vascular bundles found in the C4 forage grasses are associated with the deposition of lignin polymers in cell walls. High lignin content correlates negatively with digestibility, which is further reduced by a high ratio of syringyl (S) to guaiacyl (G) lignin subunits. Cinnamoyl-CoA reductase (CCR) catalyses the conversion of cinnamoyl CoA to cinnemaldehyde in the monolignol biosynthetic pathway and is considered to be the first step in the lignin-specific branch of the phenylpropanoid pathway. We have isolated three putative CCR1 cDNAs from P. dilatatum and demonstrated that their spatio-temporal expression pattern correlates with the developmental profile of lignin deposition. Further, transgenic P. dilatatum plants were produced in which a sense-suppression gene cassette, delivered free of vector backbone and integrated separately to the selectable marker, reduced CCR1 transcript levels. This resulted in the reduction of lignin, largely attributable to a decrease in G lignin.


Asunto(s)
Aldehído Oxidorreductasas/biosíntesis , Lignina/metabolismo , Paspalum/genética , Plantas Modificadas Genéticamente/genética , Aldehído Oxidorreductasas/genética , Cambio Climático , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , Lignina/genética , Paspalum/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Estaciones del Año
17.
BMC Evol Biol ; 13: 270, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24330497

RESUMEN

BACKGROUND: Tall fescue and meadow fescue are important as temperate pasture grasses, forming mutualistic associations with asexual Neotyphodium endophytes. The most frequently identified endophyte of Continental allohexaploid tall fescue is Neotyphodium coenophialum, while representatives of two other taxa (FaTG-2 and FaTG-3) have been described as colonising decaploid and Mediterranean hexaploid tall fescue, respectively. In addition, a recent study identified two other putatively novel endophyte taxa from Mediterranean hexaploid and decaploid tall fescue accessions, which were designated as uncharacterised Neotyphodium species (UNS) and FaTG-3-like respectively. In contrast, diploid meadow fescue mainly forms associations with the endophyte taxon Neotyphodium uncinatum, although a second endophyte taxon, termed N. siegelii, has also been described. RESULTS: Multiple copies of the translation elongation factor 1-a (tefA) and ß-tubulin (tub2) 'house-keeping' genes, as well as the endophyte-specific perA gene, were identified for each fescue-derived endophyte taxon from whole genome sequence data. The assembled gene sequences were used to reconstruct evolutionary relationships between the heteroploid fescue-derived endophytes and putative ancestral sub-genomes derived from known sexual Epichloë species. In addition to the nuclear genome-derived genes, the complete mitochondrial genome (mt genome) sequence was obtained for each of the sequenced endophyte, and phylogenetic relationships between the mt genome protein coding gene complements were also reconstructed. CONCLUSIONS: Complex and highly reticulated evolutionary relationships between Epichloë-Neotyphodium endophytes have been predicted on the basis of multiple nuclear genes and entire mitochondrial protein-coding gene complements, derived from independent assembly of whole genome sequence reads. The results are consistent with previous studies while also providing novel phylogenetic insights, particularly through inclusion of data from the endophyte lineage-specific gene, as well as affording evidence for the origin of cytoplasmic genomes. In particular, the results obtained from the present study imply the possible occurrence of at least two distinct E. typhina progenitors for heteropoid taxa, as well the ancestral contribution of an endophyte species distinct from (although related to) contemporary E. baconii to the extant hybrid species. Furthermore, the present study confirmed the distinct taxonomic status of the newly identified fescue endophyte taxa, FaTG-3-like and UNS, which are consequently proposed to be renamed FaTG4 and FaTG5, respectively.


Asunto(s)
Evolución Biológica , Epichloe/aislamiento & purificación , Festuca/microbiología , Neotyphodium/aislamiento & purificación , Núcleo Celular/genética , Endófitos/fisiología , Epichloe/clasificación , Epichloe/genética , Epichloe/fisiología , Festuca/clasificación , Festuca/genética , Festuca/fisiología , Genes Mitocondriales , Neotyphodium/clasificación , Neotyphodium/genética , Neotyphodium/fisiología , Filogenia , Tubulina (Proteína)/genética
18.
Metabolites ; 13(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36837825

RESUMEN

Perennial ryegrass (Lolium perenne L.), an economically important pasture and turf grass, is commonly infected with asexual Epichloë species endophytes. Endophytes provide enhanced bioprotection by producing alkaloids, and research often focusses on the negative impact on grazing animals. However, alkaloid distribution throughout the plant and their role in biocontrol of insect pests and diseases are less well understood. Additionally, intermediate compounds have not been investigated for their impacts on animal welfare and biological control in pasture-based scenarios. Here, a single liquid chromatography-mass spectrometry (LC-MS) method was used to measure seven alkaloids in different perennial ryegrass tissues infected with SE or NEA12 endophytes. High alkaloid recoveries and a clear plant matrix effect emphasize the importance of using matrix-matched standards for accurate quantitation. The method is sensitive, detecting alkaloids at low concentrations (nanogram levels), which is important for endophyte strains that produce compounds detrimental to livestock. Concentrations were generally highest in seeds, but distribution differed in the shoots/roots: peramine, terpendole E, terpendole C and lolitrem B were higher in shoots, whilst ergovaline, paxilline and epoxy-janthitrem I were more evenly distributed throughout the two tissues. Knowledge of alkaloid distribution may allow for concentrations to be predicted in roots based on concentrations in the shoots, thereby assisting future determinations of resistance to insects, especially subterranean root-feeding pests.

19.
Plants (Basel) ; 12(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36771577

RESUMEN

Maintaining specific and reproducible cannabinoid compositions (type and quantity) is essential for the production of cannabis-based remedies that are therapeutically effective. The current study investigates factors that determine the plant's cannabinoid profile and examines interrelationships between plant features (growth rate, phenology and biomass), inflorescence morphology (size, shape and distribution) and cannabinoid content. An examination of differences in cannabinoid profile within genotypes revealed that across the cultivation facility, cannabinoids' qualitative traits (ratios between cannabinoid quantities) remain fairly stable, while quantitative traits (the absolute amount of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabichromene (CBC), cannabigerol (CBG), Δ9-tetrahydrocannabivarin (THCV) and cannabidivarin (CBDV)) can significantly vary. The calculated broad-sense heritability values imply that cannabinoid composition will have a strong response to selection in comparison to the morphological and phenological traits of the plant and its inflorescences. Moreover, it is proposed that selection in favour of a vigorous growth rate, high-stature plants and wide inflorescences is expected to increase overall cannabinoid production. Finally, a range of physiological and phenological features was utilised for generating a successful model for the prediction of cannabinoid production. The holistic approach presented in the current study provides a better understanding of the interaction between the key features of the cannabis plant and facilitates the production of advanced plant-based medicinal substances.

20.
Plant Cell Environ ; 35(4): 829-37, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22070607

RESUMEN

The cryophilic Antarctic hair grass, Deschampsia antarctica E. Desv., one of two higher plants indigenous to Antarctica, represents a unique resource for the study of freeze tolerance mechanisms. We have previously characterized a multi-gene family in D. antarctica encoding ice recrystallization inhibition proteins (IRIPs) whose transcript levels are responsive to cold acclimation, and whose products confer ice recrystallization inhibition (RI) activity that can account for activity seen in cold acclimated plants. We used molecular and physiological analyses to investigate temporal responses of D. antarctica to cold acclimation and de-acclimation, and sub-zero acclimation. Quantitative profiling revealed that IRIP transcript levels significantly increased and decreased within hours of cold acclimation and de-acclimation, respectively, becoming up to 1000-fold more abundant in fully acclimated plants. Western analysis detected three major immuno-reactive bands whose pattern of accumulation mirrored that of transcript. These data correlated with the onset and decline of RI activity in acclimated and de-acclimated leaves. Plant survival-based testing revealed that cold acclimation enhanced freeze tolerance by 5 °C within 4 d, and that sub-zero acclimation conferred an additional 3 °C of tolerance. Thus, D. antarctica is highly responsive to temperature fluctuations, able to rapidly deploy IRIP based RI activity and enhance its freeze tolerance.


Asunto(s)
Aclimatación/fisiología , Proteínas de Plantas/genética , Poaceae/fisiología , Supervivencia Celular , Frío , Congelación , Regulación de la Expresión Génica de las Plantas/genética , Hielo , Familia de Multigenes , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Poaceae/genética , ARN Mensajero/genética , ARN de Planta/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA