Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proteins ; 91(10): 1437-1443, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37318226

RESUMEN

The interaction between avidin and its counterpart biotin is one of central importance in biology and has been reproposed and studied at length. However, the binding pocket of avidin is prone to promiscuous binding, able to accommodate even non-biotinylated ligands. Comprehending the factors that distinguish the extremely strong interaction with biotin to other ligands is an important step to fully picture the thermodynamics of these low-affinity complexes. Here, we present the complex between chicken white egg avidin and theophylline (TEP), the xanthine derivative used in the therapy of asthma. In the crystal structure, TEP lies in the biotin-binding pocket with the same orientation and planarity of the aromatic ring of 8-oxodeoxyguanosine. Indeed, its affinity for avidin measured by isothermal titration calorimetry is in the same µM range as those obtained for the previously characterized nucleoside derivatives. By the use of molecular dynamic simulations, we have investigated the most important intermolecular interactions occurring in the avidin-TEP binding pocket and compared them with those obtained for the avidin 8-oxodeoxyguanosine and avidin-biotin complexes. These results testify the capability of avidin to complex purely aromatic molecules.


Asunto(s)
Avidina , Biotina , Avidina/química , Avidina/metabolismo , Biotina/química , Biotina/metabolismo , Teofilina , Ligandos , Termodinámica
2.
J Phys Chem A ; 127(44): 9283-9290, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37906682

RESUMEN

The chemical shift (CS) values obtained by 1H NMR spectroscopy for the hydrogen atoms of a tetradentate N2O2-substituted Salphen ligand (H2L1) are differently shifted in its complexes of nickel(II), palladium(II), platinum(II), and zinc(II), all bearing the same charge on the metal ions. To rationalize the observed trends, DFT calculations have been performed in the implicit d6-DMSO solvent in terms of the electronic effects induced by the metal ion and of the nature and strength of the metal-N and metal-O bonds. Overall, the results obtained point out that, in the complexes involving group 10 elements, the CS values show the greater shift when considering the two hydrogen atoms at a shorter distance from the coordinated metal center and follow the decreasing metal charge in the order Ni > Pd > Pt. This trend suggests a more covalent character of the ligand-metal bonds with the increase of the metal atomic number. Furthermore, a slightly poorer agreement between experimental and calculated data is observed in the presence of the nickel(II) ion. Such discrepancy is explained by the formation of stacked oligomers, aimed at minimizing the repulsive interactions with the polar DMSO solvent.

3.
Molecules ; 28(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049810

RESUMEN

Despite the significant outcomes attained by scientific research, breast cancer (BC) still represents the second leading cause of death in women. Estrogen receptor-positive (ER+) BC accounts for the majority of diagnosed BCs, highlighting the disruption of estrogenic signalling as target for first-line treatment. This goal is presently pursued by inhibiting aromatase (AR) enzyme or by modulating Estrogen Receptor (ER) α. An appealing strategy for fighting BC and reducing side effects and resistance issues may lie in the design of multifunctional compounds able to simultaneously target AR and ER. In this paper, previously reported flavonoid-related potent AR inhibitors were suitably modified with the aim of also targeting ERα. As a result, homoisoflavone derivatives 3b and 4a emerged as well-balanced submicromolar dual acting compounds. An extensive computational study was then performed to gain insights into the interactions the best compounds established with the two targets. This study highlighted the feasibility of switching from single-target compounds to balanced dual-acting agents, confirming that a multi-target approach may represent a valid therapeutic option to counteract ER+ BC. The homoisoflavone core emerged as a valuable natural-inspired scaffold for the design of multifunctional compounds.


Asunto(s)
Inhibidores de la Aromatasa , Aromatasa , Neoplasias de la Mama , Diseño de Fármacos , Receptor alfa de Estrógeno , Flavonoides , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/metabolismo , Inhibidores de la Aromatasa/síntesis química , Inhibidores de la Aromatasa/química , Inhibidores de la Aromatasa/farmacología , Flavonoides/síntesis química , Flavonoides/química , Flavonoides/farmacología , Humanos , Femenino , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/metabolismo , Simulación de Dinámica Molecular , Aromatasa/química , Aromatasa/metabolismo , Termodinámica , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular
4.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555221

RESUMEN

Aiming at reducing the unselective cytotoxicity of Pt(II) chemotherapeutics, a great deal of effort has been concentrated into the design of metal-containing drugs with different anticancer mechanisms of action. Inert Pt(IV) prodrugs have been proposed to be a valid alternative as they are activated by reduction directly into the cell releasing active Pt(II) species. On the other hand, a promising strategy for designing metallodrugs is to explore new potential biological targets rather than canonical B-DNA. G-quadruplex nucleic acid, obtained by self-assembly of guanine-rich nucleic acid sequences, has recently been considered an attractive target for anticancer drug design. Therefore, compounds capable of binding and stabilizing this type of DNA structure would be greatly beneficial in anticancer therapy. Here, computational analysis reports the mechanism of action of a recently synthesized Pt(IV)-salphen complex conjugating the inertness of Pt(IV) prodrugs with the ability to bind G-quadruplexes of the corresponding Pt(II) complex. The reduction mechanism of the Pt(IV) complex with a biological reducing agent was investigated in depth by means of DFT, whereas classical MD simulations were carried out to shed light into the binding mechanism of the released Pt(II) complex. The results show that the Pt(IV) prodrug may be reduced by both inner- and outer-sphere mechanisms, and the active Pt(II) complex, as a function of its protonation state, stabilizes the G-quadruplex DNA prevalently, either establishing π-stacking interactions with the terminal G-tetrad or through electrostatic interactions along with H-bonds formation.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Profármacos , Platino (Metal)/farmacología , Platino (Metal)/química , Profármacos/farmacología , Profármacos/química , Oxidación-Reducción , ADN/química , Antineoplásicos/farmacología
5.
J Chem Inf Model ; 61(6): 2967-2980, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-33861592

RESUMEN

Glioblastoma (GBM) is the most common and lethal brain tumor. GBM has a remarkable degree of motility and is able to infiltrate the healthy brain. In order to perform a rationale-based drug-repositioning study, we have used known inhibitors of two small Rho GTPases, Rac1 and Cdc42, which are upregulated in GBM and are involved in the signaling processes underlying the orchestration of the cytoskeleton and cellular motility. The selected inhibitors (R-ketorolac and ML141 for Cdc42 and R-ketorolac and EHT 1864 for Rac1) have been successfully employed to reduce the infiltration propensity of GBM in live cell imaging studies. Complementarily, all-atom simulations have elucidated the molecular basis of their inhibition mechanism, identifying the binding sites targeted by the inhibitors and dissecting their impact on the small Rho GTPases' function. Our results demonstrate the potential of targeting the Rac1 and Cdc42 proteins with small molecules to contrast GBM infiltration growth and supply precious information for future drug discovery studies aiming to fight GBM and other infiltrative cancer types.


Asunto(s)
Glioblastoma , Glioblastoma/tratamiento farmacológico , Humanos , Microtúbulos/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(26): 6584-6589, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891649

RESUMEN

The spliceosome (SPL) is a majestic macromolecular machinery composed of five small nuclear RNAs and hundreds of proteins. SPL removes noncoding introns from precursor messenger RNAs (pre-mRNAs) and ligates coding exons, giving rise to functional mRNAs. Building on the first SPL structure solved at near-atomic-level resolution, here we elucidate the functional dynamics of the intron lariat spliceosome (ILS) complex through multi-microsecond-long molecular-dynamics simulations of ∼1,000,000 atoms models. The ILS essential dynamics unveils (i) the leading role of the Spp42 protein, which heads the gene maturation by tuning the motions of distinct SPL components, and (ii) the critical participation of the Cwf19 protein in displacing the intron lariat/U2 branch helix. These findings provide unprecedented details on the SPL functional dynamics, thus contributing to move a step forward toward a thorough understanding of eukaryotic pre-mRNA splicing.


Asunto(s)
Simulación por Computador , Intrones/genética , Modelos Genéticos , Conformación de Ácido Nucleico , Precursores del ARN/metabolismo , Empalme del ARN/fisiología , Proteínas Represoras/fisiología , Ribonucleoproteína Nuclear Pequeña U5/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Empalmosomas/fisiología , Magnesio/fisiología , Modelos Moleculares , Simulación de Dinámica Molecular , Movimiento (Física) , Análisis de Componente Principal , Conformación Proteica , Precursores del ARN/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Proteínas Represoras/química , Ribonucleoproteína Nuclear Pequeña U5/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Electricidad Estática
7.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681880

RESUMEN

The SF3B1 protein, part of the SF3b complex, recognizes the intron branch point sequence of precursor messenger RNA (pre-mRNA), thus contributing to splicing fidelity. SF3B1 is frequently mutated in cancer and is the target of distinct families of splicing modulators (SMs). Among these, H3B-8800 is of particular interest, as it induces preferential lethality in cancer cells bearing the frequent and highly pathogenic K700E SF3B1 mutation. Despite the potential of H3B-8800 to treat myeloid leukemia and other cancer types hallmarked by SF3B1 mutations, the molecular mechanism underlying its preferential lethality towards spliceosome-mutant cancer cells remains elusive. Here, microsecond-long all-atom simulations addressed the binding/dissociation mechanism of H3B-8800 to wild type and K700E SF3B1-containing SF3b (K700ESB3b) complexes at the atomic level, unlocking that the K700E mutation little affects the thermodynamics and kinetic traits of H3B-8800 binding. This supports the hypothesis that the selectivity of H3B-8800 towards mutant cancer cells is unrelated to its preferential targeting of K700ESB3b. Nevertheless, this set of simulations discloses that the K700E mutation and H3B-8800 binding affect the overall SF3b internal motion, which in turn may influence the way SF3b interacts with other spliceosome components. Finally, we unveil the existence of a putative druggable SF3b pocket in the vicinity of K700E that could be harnessed in future rational drug-discovery efforts to specifically target mutant SF3b.


Asunto(s)
Mutación , Neoplasias/patología , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Piperazinas/metabolismo , Piridinas/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Empalme del ARN , Humanos , Simulación de Dinámica Molecular , Neoplasias/genética , Neoplasias/metabolismo , Fenotipo , Fosfoproteínas/genética , Piperazinas/química , Conformación Proteica , Piridinas/química , Factores de Empalme de ARN/genética
8.
J Chem Inf Model ; 60(5): 2510-2521, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-31539251

RESUMEN

Splicing modulators (SMs) pladienolides, herboxidienes, and spliceostatins exert their antitumor activity by altering the ability of SF3B1 and PHF5A proteins, components of SF3b splicing factor, to recognize distinct intron branching point sequences, thus finely calibrating constitutive/alternative/aberrant splicing of pre-mRNA. Here, by exploiting structural information obtained from cryo-EM data, and by performing multiple µs-long all-atom simulations of SF3b in apo form and in complex with selected SMs, we disclose how these latter seep into the narrow slit at the SF3B1/PHF5A protein interface. This locks the intrinsic open/closed conformational transitions of SFB1's solenoidal structure into the open state. As a result, SMs prevent the formation of a closed/intron-loaded conformation of the SF3B1 protein by decreasing the internal SF3B1 cross-correlation and reducing SF3B1's functional plasticity. We further compellingly support the proposition that SMs' action exceeds a purely competitive inhibition. Indeed, our simulations also demonstrate that the introduction of recurrent drug resistance/sensitizing mutations in SF3B1 or PHF5A, besides affecting the binding affinity of SMs, likewise influence the functional dynamics of SF3B1. This knowledge clarifies the molecular terms of SF3b modulation by small-molecules, fostering the rational-based discovery of drugs tackling distinct cancer types resulting from dysregulated splicing. This work also supports the coming of age usage of cryo-EM structural data in forthcoming drug-discovery studies.


Asunto(s)
Fosfoproteínas , Empalme del ARN , Microscopía por Crioelectrón , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
9.
J Chem Inf Model ; 59(6): 2930-2940, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31033287

RESUMEN

Phosphorylation by kinases enzymes is a widespread regulatory mechanism able of rapidly altering the function of target proteins. Among these are cytochrome P450s (CYP450), a superfamily of enzymes performing the oxidation of endogenous and exogenous substrates thanks to the electron supply of a redox partner. In spite of its pivotal role, the molecular mechanism by which phosphorylation modulates CYP450s metabolism remains elusive. Here by performing microsecond-long all-atom molecular dynamics simulations, we disclose how phosphorylation regulates estrogen biosynthesis, catalyzed by the Human Aromatase (HA) enzyme. Namely, we unprecedentedly propose that HA phosphorylation at Y361 markedly stabilizes its adduct with the flavin mononucleotide domain of CYP450s reductase (CPR), the redox partner of microsomal CYP450s, and a variety of other proteins. With CPR present at physiological conditions in a limiting ratio with respect to its multiple oxidative partners, the enhanced stability of the CPR/HA adduct may favor HA in the competition with the other proteins requiring CPR's electron supply, ultimately facilitating the electron transfer and estrogen biosynthesis. As a result, our work elucidates at atomic-level the post-translational regulation of CYP450s catalysis. Given the potential for rational clinical management of diseases associated with steroid metabolism disorders, unraveling this mechanism is of utmost importance, and raises the intriguing perspective of exploiting this knowledge to devise novel therapies.


Asunto(s)
Aromatasa/química , Aromatasa/metabolismo , Simulación de Dinámica Molecular , Procesamiento Proteico-Postraduccional , Sitios de Unión , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , NADP/metabolismo , Fosforilación , Conformación Proteica , Teoría Cuántica
10.
J Chem Inf Model ; 59(1): 351-359, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30586302

RESUMEN

Multiple mechanisms of cell death exist (apoptosis, necroptosis, pyroptosis) and the subtle balance of several distinct proteins and inhibitors tightly regulates the cell fate toward one or the other pathway. Here, by combining coimmunoprecipitation, enzyme assays, and molecular simulations, we ascribe a new role, within this entangled regulatory network, to the interleukin-1 receptor antagonist (IL-1Ra). Our study enlightens that IL-1Ra, which usually inhibits the inflammatory effects of IL-1α/ß by binding to IL-1 receptor, under advanced pathological states prevents apoptosis and/or necroptosis by noncompetitively inhibiting the activity of caspase-8 and -9. Consensus docking, followed by cumulative 10 µs of molecular dynamics simulations unprecedentedly reveal that IL-1Ra binds both caspases at their dimeric interface, preventing, in this manner, the formation of their catalytically/signaling active form. The resulting IL-1Ra/caspase-8(9) adducts are stabilized by hydrophobic and by few key hydrogen bonding interactions, formed by residues fully conserved across distinct caspases (-3, -6, -7, -8, and -9), and closely resemble the binding mode of the caspases inhibitors XIAP (X-linked inhibitor of apoptosis) and c-FLIP (cellular FLICE-like inhibitory protein). Tight regulation of the different forms of cell death has a major impact on distinct human illnesses (i.e., cancer, neurodegeneration, ischemic injury, atherosclerosis, viral/bacterial infections, and immune reaction). Hence, our study, pinpointing IL-1Ra as new actor of the intricate cell death regulatory network and gaining an atomic-scale understanding of its mechanism may open new avenues toward innovative therapeutic strategies to tackle major human diseases.


Asunto(s)
Muerte Celular , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Simulación de Dinámica Molecular , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Biología Computacional , Activación Enzimática , Proteína Antagonista del Receptor de Interleucina 1/química , Conformación Proteica , Receptores de Interleucina-1/metabolismo , Termodinámica
11.
Mar Drugs ; 17(3)2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857142

RESUMEN

Due to the limited number of available antibiotics, antimicrobial peptides (AMPs) are considered antimicrobial candidates to fight difficult-to-treat infections such as those associated with biofilms. Marine environments are precious sources of AMPs, as shown by the recent discovery of antibiofilm properties of Holothuroidin 2 (H2), an AMP produced by the Mediterranean sea cucumber Holothuria tubulosa. In this study, we considered the properties of a new H2 derivative, named H2d, and we tested it against seven strains of the dangerous foodborne pathogen Listeria monocytogenes. This peptide was more active than H2 in inhibiting the growth of planktonic L. monocytogenes and was able to interfere with biofilm formation at sub-minimum inhibitory concentrations (MICs). Atomic-level molecular dynamics (MD) simulations revealed insights related to the enhanced inhibitory activity of H2d, showing that the peptide is characterized by a more defined tertiary structure with respect to its ancestor. This allows the peptide to better exhibit an amphipathic character, which is an essential requirement for the interaction with cell membranes, similarly to other AMPs. Altogether, these results support the potential use of our synthetic peptide, H2d, as a template for the development of novel AMP-based drugs able to fight foodborne that are resistant to conventional antibiotics.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Holothuria , Listeria monocytogenes/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Biopelículas/efectos de los fármacos , Diseño de Fármacos , Farmacorresistencia Bacteriana , Enfermedades Transmitidas por los Alimentos/tratamiento farmacológico , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/patología , Listeria monocytogenes/aislamiento & purificación , Listeria monocytogenes/fisiología , Listeriosis/tratamiento farmacológico , Listeriosis/microbiología , Listeriosis/patología , Mar Mediterráneo , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína
12.
Chemistry ; 24(42): 10840-10849, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29770981

RESUMEN

Cytochrome P450 (CYP450) enzymes are involved in the metabolism of exogenous compounds and in the synthesis of signaling molecules. Among the latter, human aromatase (HA) promotes estrogen biosynthesis, which is a key pharmacological target against breast cancers. After decades of debate, interest in gaining a comprehensive picture of HA catalysis has been renewed by the recent discovery that compound I (Cpd I) is the reactive species of the peculiar aromatization step. Herein, for the first time, a complete atomic-level picture of all controversial steps of estrogen biosynthesis is presented. By performing cumulative quantum-classical molecular dynamics and metadynamics simulations of about 180 ps, it is revealed that the most likely enzymatic path relies on three factors: 1) androstenedione enolization and compound 0 (Cpd 0) formation through a proton network mediated by Asp309; 2) subsequent formation of Cpd I, upon rearrangement of the Asp309 side chain and the establishment of a proton network involving Asp309 and Thr310; and 3) after two hydroxylation reactions, 19,19-gem-diol is converted into estrone by Cpd I, through an uncommon dehydrogenase-like dual hydrogen abstraction mechanism. As a result, HA performs estrogen biosynthesis by merging hydroxylase with dehydrogenase activity, which suggests that the need to perform complex chemical transformations led nature to engineer HA, and possibly other steroidogenic CYP450s, by expanding its range of functions to achieve an optimal catalytic efficiency.


Asunto(s)
Androstenodiona/metabolismo , Aromatasa/metabolismo , Sistema Enzimático del Citocromo P-450/química , Estrógenos/química , Hidrógeno/química , Androstenodiona/química , Aromatasa/química , Catálisis , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Hidroxilación , Simulación de Dinámica Molecular , Oxidación-Reducción , Oxidorreductasas , Protones
13.
Mar Drugs ; 16(10)2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279359

RESUMEN

With the aim to obtain new antimicrobials against important pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa, we focused on antimicrobial peptides (AMPs) from Echinoderms. An example of such peptides is Paracentrin 1 (SP1), a chemically synthesised peptide fragment of a sea urchin thymosin. In the present paper, we report on the biological activity of a Paracentrin 1 derivative obtained by recombination. The recombinant paracentrin RP1, in comparison to the synthetic SP1, is 22 amino acids longer and it was considerably more active against the planktonic forms of S. aureus ATCC 25923 and P. aeruginosa ATCC 15442 at concentrations of 50 µg/mL. Moreover, it was able to inhibit biofilm formation of staphylococcal and P. aeruginosa strains at concentrations equal to 5.0 and 10.7 µg/mL, respectively. Molecular dynamics (MD) simulations allowed to rationalise the results of the experimental investigations, providing atomistic insights on the binding of RP1 toward models of mammalian and bacterial cell membranes. Overall, the results obtained point out that RP1 shows a remarkable preference for bacterial membranes, in excellent agreement with the antibacterial activity, highlighting the promising potential of using the tested peptide as a template for the development of novel antimicrobial agents.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Paracentrotus/metabolismo , Péptidos/metabolismo , Proteínas Recombinantes/metabolismo , Erizos de Mar/metabolismo , Timosina/metabolismo , Animales , Pruebas de Sensibilidad Microbiana/métodos , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
14.
World J Microbiol Biotechnol ; 32(8): 124, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27339305

RESUMEN

Conventional antibiotics might fail in the treatment of biofilm-associated infections causing infection recurrence and chronicity. The search for antimicrobial peptides has been performed with the aim to discover novel anti-infective agents active on pathogens in both planktonic and biofilm associated forms. The fragment 9-19 of human thymosin ß4 was studied through 1 µs MD simulation. Two main conformations of the peptide were detected, both constituted by a central hydrophobic core and by the presence of peripheral charged residues suggesting a possible mechanism of interaction with two models of biological membranes, related to eukaryotic or bacterial membrane respectively. In addition, the peptide was chemically synthesized and its antimicrobial activity was tested in vitro against planktonic and biofilm form of a group of reference strains of Staphylococcus spp. and one P. aeruginosa strain. The human thymosin ß4 fragment EIEKFDKSKLK showed antibacterial activity against staphylococcal strains and Pseudomonas aeruginosa ATCC 15442 at concentrations from 12.5 to 6.2 mg/ml and inhibited biofilm formation at sub-inhibitory concentrations (3.1-0.75 mg/ml). The activity of the fragment in inhibiting biofilm formation, could be due to the conformations highlighted by the MD simulations, suggesting its interaction with the bacterial membrane. Human thymosin ß4 fragment can be considered a promising lead compound to develop novel synthetic or recombinant derivatives with improved pharmaceutical potential.


Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Péptidos/síntesis química , Péptidos/farmacología , Timosina/genética , Secuencia de Aminoácidos , Antiinfecciosos/química , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación de Dinámica Molecular , Péptidos/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Timosina/química
15.
Chemistry ; 20(24): 7439-47, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24828069

RESUMEN

The photophysical and DNA-binding properties of the cationic zinc(II) complex of 5-triethylammonium methyl salicylidene ortho-phenylenediiminato (ZnL(2+)) were investigated by a combination of experimental and theoretical methods. DFT calculations were performed on both the ground and the first excited states of ZnL(2+) and on its possible mono- and dioxidation products, both in vacuo and in selected solvents mimicked by the polarizable continuum model. Comparison of the calculated absorption and fluorescence transitions with the corresponding experimental data led to the conclusion that visible light induces a two-electron photooxidation process located on the phenylenediiminato ligand. Kinetic measurements, performed by monitoring absorbance changes over time in several solvents, are in agreement with a slow unimolecular photooxidation process, which is faster in water and slower in less polar solvents. Moreover, structural details of ZnL-DNA binding were obtained by DFT calculations on the intercalation complexes between ZnL and the d(ApT)2 and d(GpC)2 dinucleoside monophosphate duplexes. Two main complementary binding interactions are proposed: 1) intercalation of the central phenyl ring of the ligand between the stacked DNA base pairs; 2) external electrostatic attraction between the negatively charged phosphate groups and the two cationic triethylammonium groups of the Schiff-base ligand. Such suggestions are supported by fluorescence titrations performed on the ZnL/DNA system at different ionic strengths and temperatures. In particular, the values of the DNA-binding constants obtained at different temperatures provided the enthalpic and entropic contributions to the binding and confirmed that two competitive mechanisms, namely, intercalation and external interaction, are involved. The two mechanisms are coexistent at room temperature under physiological conditions.


Asunto(s)
Compuestos Organometálicos/química , Fenilendiaminas/química , Análisis Espectral/métodos , Zinc/química
16.
Mol Pharm ; 11(3): 653-64, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24483936

RESUMEN

The presence in the mRNA of premature stop codons (PTCs) results in protein truncation responsible for several inherited (genetic) diseases. A well-known example of these diseases is cystic fibrosis (CF), where approximately 10% (worldwide) of patients have nonsense mutations in the CF transmembrane regulator (CFTR) gene. PTC124 (3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)-benzoic acid), also known as Ataluren, is a small molecule that has been suggested to allow PTC readthrough even though its target has yet to be identified. In the lack of a general consensus about its mechanism of action, we experimentally tested the ability of PTC124 to promote the readthrough of premature termination codons by using a new reporter. The reporter vector was based on a plasmid harboring the H2B histone coding sequence fused in frame with the green fluorescent protein (GFP) cDNA, and a TGA stop codon was introduced in the H2B-GFP gene by site-directed mutagenesis. Additionally, an unprecedented computational study on the putative supramolecular interaction between PTC124 and an 11-codon (33-nucleotides) sequence corresponding to a CFTR mRNA fragment containing a central UGA nonsense mutation showed a specific interaction between PTC124 and the UGA codon. Altogether, the H2B-GFP-opal based assay and the molecular dynamics (MD) simulation support the hypothesis that PTC124 is able to promote the specific readthrough of internal TGA premature stop codons.


Asunto(s)
Codón sin Sentido/metabolismo , Codón de Terminación/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Oxadiazoles/metabolismo , ARN Mensajero/genética , Western Blotting , Células Cultivadas , Codón sin Sentido/genética , Codón de Terminación/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Conformación de Ácido Nucleico , Oxadiazoles/química , Conformación Proteica , ARN Mensajero/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Dalton Trans ; 53(14): 6311-6322, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38487871

RESUMEN

While platinum(II)-based drugs continue to be employed in cancer treatments, the escalating occurrence of severe side effects has spurred researchers to explore novel sources for potential therapeutic agents. Notably, cobalt(III) has emerged as a subject of considerable interest due to its ubiquitous role in human physiology. Several studies investigating the anticancer effects of Salphen complexes derived from cobalt(III) have unveiled intriguing antiproliferative properties. In a bid to enhance our understanding of this class of compounds, we synthesized and characterized two novel half Salphen cobalt(III) complexes. Both compounds exhibited notable stability, even in the presence of physiologically relevant concentrations of glutathione. The application of spectroscopic and computational methodologies unravelled their interactions with duplex and G4-DNAs, suggesting an external binding affinity for these structures, with preliminary indications of selectivity trends. Importantly, antiproliferative assays conducted on 3D cultured SW-1353 cancer cells unveiled a compelling anticancer activity at low micromolar concentrations, underscoring the potential therapeutic efficacy of this novel class of cobalt(III) complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , Complejos de Coordinación/química , Cobalto/farmacología , Cobalto/química , Fenilendiaminas/química , ADN/química , Antineoplásicos/química
18.
J Phys Chem Lett ; 14(27): 6263-6269, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37399065

RESUMEN

The pillar of faithful premature-messenger (pre-mRNA) splicing is the precise recognition of key intronic sequences by specific splicing factors. The heptameric splicing factor 3b (SF3b) recognizes the branch point sequence (BPS), a key part of the 3' splice site. SF3b contains SF3B1, a protein holding recurrent cancer-associated mutations. Among these, K700E, the most-frequent SF3B1 mutation, triggers aberrant splicing, being primarily implicated in hematologic malignancies. Yet, K700E and the BPS recognition site are 60 Å apart, suggesting the existence of an allosteric cross-talk between the two distal spots. Here, we couple molecular dynamics simulations and dynamical network theory analysis to unlock the molecular terms underpinning the impact of SF3b splicing factor mutations on pre-mRNA selection. We establish that by weakening and remodeling interactions of pre-mRNA with SF3b, K700E scrambles RNA-mediated allosteric cross-talk between the BPS and the mutation site. We propose that the altered allostery contributes to cancer-associated missplicing by mutated SF3B1. This finding broadens our comprehension of the elaborate mechanisms underlying pre-mRNA metabolism in eukaryotes.


Asunto(s)
Neoplasias , Precursores del ARN , Humanos , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Mensajero , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN , Mutación , Neoplasias/genética , Factores de Transcripción
19.
J Phys Chem B ; 127(28): 6287-6295, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37428676

RESUMEN

The Transmembrane Protease Serine 2 (TMPRSS2) is a human enzyme which is involved in the maturation and post-translation of different proteins. In addition to being overexpressed in cancer cells, TMPRSS2 plays a further fundamental role in favoring viral infections by allowing the fusion of the virus envelope with the cellular membrane, notably in SARS-CoV-2. In this contribution, we resort to multiscale molecular modeling to unravel the structural and dynamical features of TMPRSS2 and its interaction with a model lipid bilayer. Furthermore, we shed light on the mechanism of action of a potential inhibitor (nafamostat), determining the free-energy profile associated with the inhibition reaction and showing the facile poisoning of the enzyme. Our study, while providing the first atomistically resolved mechanism of TMPRSS2 inhibition, is also fundamental in furnishing a solid framework for further rational design targeting transmembrane proteases in a host-directed antiviral strategy.


Asunto(s)
Antivirales , COVID-19 , Humanos , Antivirales/farmacología , Antivirales/química , SARS-CoV-2 , Membrana Celular , Serina
20.
J Phys Chem Lett ; 14(20): 4704-4710, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37171167

RESUMEN

Guanine quadruplexes (G4s) play essential protective and regulatory roles within cells, influencing gene expression. In several gene-promoter regions, multiple G4-forming sequences are in close proximity and may form three-dimensional arrangements. We analyze the interplay among the three neighboring G4s in the c-KIT proto-oncogene promoter (WK1, WSP, and WK2). We highlight that the three G4s are structurally linked and their cross-talk favors the formation of a parallel structure for WSP. Relying on all-atom molecular dynamic simulations exceeding the µs time scale and using enhanced sampling methods, we provide the first computationally resolved structure of a well-organized G4 cluster in the promoter of a crucial gene involved in cancer development. Our results indicate that neighboring G4s influence their mutual three-dimensional arrangement and provide a powerful tool to predict and interpret complex DNA structures that can ultimately be used as a starting point for drug discovery.


Asunto(s)
G-Cuádruplex , Regiones Promotoras Genéticas/genética , ADN/química , Proto-Oncogenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA