Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 587(7834): 377-386, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32894860

RESUMEN

Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Atención a la Salud/métodos , Atención a la Salud/tendencias , Medicina/métodos , Medicina/tendencias , Patología , Análisis de la Célula Individual , Inteligencia Artificial , Atención a la Salud/ética , Atención a la Salud/normas , Diagnóstico Precoz , Educación Médica , Europa (Continente) , Femenino , Salud , Humanos , Legislación Médica , Masculino , Medicina/normas
2.
Diabetes Metab Res Rev ; 38(4): e3520, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35080096

RESUMEN

AIMS: During the Covid-19 epidemic, many countries imposed population lockdown. This study aimed to analyse diabetic foot ulcer (DFU) evolution of outpatients between the lockdown period and 1 month after its end. MATERIALS AND METHODS: We conducted a prospective, observational, single-centre study without modification of care. All patients who followed up for a DFU in the study centre between 15 April 2020 and 11 May 2020 were included. The baseline assessment occurred 4 weeks after the beginning of lockdown and the follow-up visit 4-6 weeks after easing of lockdown. The primary analysis was based on the Site, Ischaemia, Neuropathy, Bacterial infection, Area, Depth (SINBAD) classification. RESULTS: Twenty-seven patients were included, median 69.4 years, and 25 were followed-up at easing of lockdown. The median SINBAD score was 2 (interquartile range 1; 3) at inclusion and 1 (1; 2) at easing of lockdown, with a mean change of -0.32 (95% confidence interval -0.93; 0.29). Seventy-two percent of the population had a stable or improved score between the two visits. The proportion of patients using off-loading footwear was higher among those whose SINBAD score improved compared to those whose score worsened or remained stable (72%, 44% and 28%, respectively). Diabetes type was linked to DFU prognosis. Five patients (20%) were hospitalized during the follow-up period. CONCLUSION: Lockdown appears to have had a positive effect on DFU if patients remain under the care of their expert wound centre. We believe this effect is related to better compliance with offloading. The wide use of tele-medicine seems relevant for the follow-up of DFU.


Asunto(s)
COVID-19 , Diabetes Mellitus , Pie Diabético , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles , Pie Diabético/epidemiología , Pie Diabético/prevención & control , Hospitalización , Humanos , Estudios Prospectivos
4.
J Radiol Prot ; 39(1): 250-278, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30721148

RESUMEN

Ambient dose equivalent measurements with radiation protection instruments are associated to large uncertainties, mostly due to the energy dependence of the instrument response and to the dissimilarity between the spectra of the standard calibration source and the workplace field. The purpose of this work is to evaluate its impact on the performance of area and environmental detectors in the proton therapy environment, and to provide practical solutions whenever needed and possible. The study was carried out at the Centre Antoine Lacassagne (CAL) proton therapy site, and included a number of commercially available area detectors and a home-made environmental thermoluminescent dosimeter based on a polyethylene moderator loaded with TLD600H/TLD700H pairs. Monte Carlo simulations were performed with MCNP to calculate, first, missing or partially lacking instrument responses, covering the range of energies involved in proton therapy. Second, neutron and gamma spectra were computed at selected positions in and outside the CAL proton therapy bunkers. Appropriate correction factors were then derived for each detector, workplace location and calibration radionuclide source, which amounts to up to 1.9 and 1.5 for neutron and photon area detectors, respectively, and suggest that common ambient dose equivalent instruments might not meet IEC requirements. The TLD environmental system was calibrated in situ and appropriate correction factors were applied to account for the cosmic spectra. Measurements performed with this system from 2014 to 2017 around the installation were consistent with reference natural background dose data and with pre-operational levels registered at the site before the construction of the building in 1988, showing thus no contribution from the site clinical activities. An in situ verification procedure for the radiation protection instruments was also implemented in 2016 at the low energy treatment room using the QA beam reference conditions. The method presents main methodological, practical and economic advantages over external verifications.


Asunto(s)
Rayos gamma , Neutrones , Terapia de Protones , Exposición a la Radiación/análisis , Monitoreo de Radiación/métodos , Protección Radiológica , Calibración , Simulación por Computador
6.
BMC Genomics ; 18(1): 955, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29216827

RESUMEN

BACKGROUND: Brevibacterium strains are widely used for the manufacturing of surface-ripened cheeses, contributing to the breakdown of lipids and proteins and producing volatile sulfur compounds and red-orange pigments. The objective of the present study was to perform comparative genomic analyses in order to better understand the mechanisms involved in their ability to grow on the cheese surface and the differences between the strains. RESULTS: The genomes of 23 Brevibacterium strains, including twelve strains isolated from cheeses, were compared for their gene repertoire involved in salt tolerance, iron acquisition, bacteriocin production and the ability to use the energy compounds present in cheeses. All or almost all the genomes encode the enzymes involved in ethanol, acetate, lactate, 4-aminobutyrate and glycerol catabolism, and in the synthesis of the osmoprotectants ectoine, glycine-betaine and trehalose. Most of the genomes contain two contiguous genes encoding extracellular proteases, one of which was previously characterized for its activity on caseins. Genes encoding a secreted triacylglycerol lipase or involved in the catabolism of galactose and D-galactonate or in the synthesis of a hydroxamate-type siderophore are present in part of the genomes. Numerous Fe3+/siderophore ABC transport components are present, part of them resulting from horizontal gene transfers. Two cheese-associated strains have also acquired catecholate-type siderophore biosynthesis gene clusters by horizontal gene transfer. Predicted bacteriocin biosynthesis genes are present in most of the strains, and one of the corresponding gene clusters is located in a probable conjugative transposon that was only found in cheese-associated strains. CONCLUSIONS: Brevibacterium strains show differences in their gene repertoire potentially involved in the ability to grow on the cheese surface. Part of these differences can be explained by different phylogenetic positions or by horizontal gene transfer events. Some of the distinguishing features concern biotic interactions with other strains such as the secretion of proteases and triacylglycerol lipases, and competition for iron or bacteriocin production. In the future, it would be interesting to take the properties deduced from genomic analyses into account in order to improve the screening and selection of Brevibacterium strains, and their association with other ripening culture components.


Asunto(s)
Brevibacterium/genética , Queso/microbiología , Bacteriocinas/biosíntesis , Brevibacterium/clasificación , Brevibacterium/aislamiento & purificación , Brevibacterium/metabolismo , Genómica , Glicerol/metabolismo , Hierro/metabolismo , Metabolismo de los Lípidos/genética , Presión Osmótica , Fenazinas/metabolismo , Filogenia
7.
Stem Cells ; 33(6): 2011-24, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25786382

RESUMEN

It has been proposed that the adult dorsal root ganglia (DRG) harbor neural stem/progenitor cells (NPCs) derived from the neural crest. However, the thorough characterization of their stemness and differentiation plasticity was not addressed. In this study, we investigated adult DRG-NPC stem cell properties overtime, and their fate when ectopically grafted in the central nervous system. We compared them in vitro and in vivo to the well-characterized adult spinal cord-NPCs derived from the same donors. Using micro-dissection and neurosphere cultures, we demonstrate that adult DRG-NPCs have quasi unlimited self-expansion capacities without compromising their tissue specific molecular signature. Moreover, they differentiate into multiple peripheral lineages in vitro. After transplantation, adult DRG-NPCs generate pericytes in the developing forebrain but remyelinating Schwann cells in response to spinal cord demyelination. In addition, we show that axonal and endothelial/astrocytic factors as well astrocytes regulate the fate of adult DRG-NPCs in culture. Although the adult DRG-NPC multipotency is restricted to the neural crest lineage, their dual responsiveness to developmental and lesion cues highlights their impressive adaptive and repair potentials making them valuable targets for regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , Enfermedades Desmielinizantes/patología , Ganglios Espinales/citología , Vaina de Mielina/metabolismo , Pericitos/citología , Células de Schwann/citología , Células Madre Adultas/citología , Animales , Células Cultivadas , Enfermedades Desmielinizantes/terapia , Ganglios Espinales/metabolismo , Ratones Endogámicos C57BL , Ratones Desnudos , Regeneración Nerviosa/fisiología , Cresta Neural/citología , Neuronas/citología
8.
Proc Natl Acad Sci U S A ; 110(18): 7440-5, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589880

RESUMEN

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are central mediators of cardiac hypertrophy and are discussed as potential therapeutic targets. However, direct inhibition of ERK1/2 leads to exacerbated cardiomyocyte death and impaired heart function. We have previously identified ERK(Thr188) autophosphorylation as a regulatory phosphorylation of ERK1/2 that is a key factor in cardiac hypertrophy. Here, we investigated whether interference with ERK(Thr188) phosphorylation permits the impairment of ERK1/2-mediated cardiac hypertrophy without increasing cardiomyocyte death. The impact of ERK(Thr188) phosphorylation on cardiomyocyte hypertrophy and cell survival was analyzed in isolated cells and in mice using the mutant ERK2(T188A), which is dominant-negative for ERK(Thr188) signaling. ERK2(T188A) efficiently attenuated cardiomyocyte hypertrophic responses to phenylephrine and to chronic pressure overload, but it affected neither antiapoptotic ERK1/2 signaling nor overall physiological cardiac function. In contrast to its inhibition of pathological hypertrophy, ERK2(T188A) did not interfere with physiological cardiac growth occurring with age or upon voluntary exercise. A preferential role of ERK(Thr188) phosphorylation in pathological types of hypertrophy was also seen in patients with aortic valve stenosis: ERK(Thr188) phosphorylation was increased 8.5 ± 1.3-fold in high-gradient, rapidly progressing cases (≥40 mmHg gradient), whereas in low-gradient, slowly progressing cases, the increase was not significant. Because interference with ERK(Thr188) phosphorylation (i) inhibits pathological hypertrophy and (ii) does not impair antiapoptotic ERK1/2 signaling and because ERK(Thr188) phosphorylation shows strong prevalence for aortic stenosis patients with rapidly progressing course, we conclude that interference with ERK(Thr188) phosphorylation offers the possibility to selectively address pathological types of cardiac hypertrophy.


Asunto(s)
Cardiomegalia/enzimología , Cardiomegalia/fisiopatología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfotreonina/metabolismo , Animales , Estenosis de la Válvula Aórtica/complicaciones , Estenosis de la Válvula Aórtica/enzimología , Estenosis de la Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/fisiopatología , Apoptosis , Cardiomegalia/complicaciones , Cardiomegalia/patología , Núcleo Celular/enzimología , Núcleo Celular/patología , Supervivencia Celular , Citosol/enzimología , Activación Enzimática , Femenino , Corazón/crecimiento & desarrollo , Corazón/fisiopatología , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fosforilación , Ratas , Ratas Sprague-Dawley
9.
Rep Pract Oncol Radiother ; 20(2): 135-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25859404

RESUMEN

AIM: To investigate the feasibility of dose escalation using rapid arc (RA) and Helical Tomotherapy (HT) for patients with upper, middle and distal esophageal carcinomas, even for large tumor volumes. BACKGROUND: In esophageal cancer, for patients with exclusive radio-chemotherapy, local disease control remains poor. Planning study with dose escalation was done for two sophisticated modulated radiotherapy techniques: Rapid arc against Tomotherapy. MATERIALS AND METHODS: Six patients treated with a RA simultaneous integrated boost (SIB) of 60 Gy were re-planned for RA and HT techniques with a SIB dose escalated to 70 Gy. Dose volume histogram statistics, conformity indices and homogeneity indices were analyzed. For a given set of normal tissue constraints, the capability of each treatment modality to increase the GTV dose to 70 Gy was investigated. RESULTS: Either HT or VMAT may be used to escalate the dose delivered in esophageal tumors while maintaining the spinal cord, lung and heart doses within tolerance. Adequate target coverage was achieved by both techniques. Typically, HT achieved better lung sparing and PTV coverage than did RA. CONCLUSIONS: Dose escalation for esophageal cancer becomes clinically feasible with the use of RA and HT. This promising result could be explored in a carefully controlled clinical study which considered normal tissue complications and tumor control as endpoints.

10.
Proc Natl Acad Sci U S A ; 108(26): 10714-9, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21670295

RESUMEN

Boundary cap cells (BC), which express the transcription factor Krox20, participate in the formation of the boundary between the central nervous system and the peripheral nervous system. To study BC stemness, we developed a method to purify and amplify BC in vitro from Krox20(Cre/+), R26R(YFP/+) mouse embryos. We show that BC progeny are EGF/FGF2-responsive, form spheres, and express neural crest markers. Upon growth factor withdrawal, BC progeny gave rise to multiple neural crest and CNS lineages. Transplanted into the developing murine forebrain, they successfully survived, migrated, and integrated within the host environment. Surprisingly, BC progeny generated exclusively CNS cells, including neurons, astrocytes, and myelin-forming oligodendrocytes. In vitro experiments indicated that a sequential combination of ventralizing morphogens and glial growth factors was necessary to reprogram BC into oligodendrocytes. Thus, BC progeny are endowed with differentiation plasticity beyond the peripheral nervous system. The demonstration that CNS developmental cues can reprogram neural crest-derived stem cells into CNS derivatives suggests that BC could serve as a source of cell type-specific lineages, including oligodendrocytes, for cell-based therapies to treat CNS disorders.


Asunto(s)
Diferenciación Celular , Sistema Nervioso Periférico/citología , Células Madre/citología , Animales , Linaje de la Célula , Movimiento Celular , Células Cultivadas , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Oligodendroglía/metabolismo
11.
J Phys Condens Matter ; 36(24)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38447159

RESUMEN

Radioluminescent silica-based fiber dosimeters offer great advantages for designing miniaturized realtime sensors for high dose-rate dosimetry. Rise and fall kinetics of their response must be properly understood to better assess their performances in terms of measurement speed and repeatability. A standard model of radioluminescence (RL) has already been quantitatively validated for doped silica glasses, but beyond conclusive comparisons with specific experiments, a comprehensive understanding of the processes and parameters determining transient and equilibrium kinetics of RL is still lacking. We analyze in detail the kinetics inherent in the standard RL model. Several asymptotical regimes in the RL growth are demonstrated in the case of a pristine sample (succesive quadratic, linear and power-law time dependencies before the plateau is reached). We show how this situation is modified when a pre-irradiation partly fills traps beforehand. RL growth is then greatly accelerated because of the pre-formation of recombination centers (RCs) from dopant ions, but not due to pre-filling of trapping levels. In all cases, the RL intensity eventually tends to a constant level equal to the pair generation rate, long before all carrier densities themselves reach equilibrium. This occurs late under irradiation, when deep traps get to saturation. The fraction of dopants converted into RCs is then 'frozen' at a lower level the smaller the density of deep traps. Controlling RL kinetics through the engineering of material traps is not an option. Pre-irradiation appears to be the simplest way to obtain accelerated and repeatable kinetics.

12.
Phys Med Biol ; 69(8)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38252970

RESUMEN

Objective. Ionization chambers, mostly used for beam calibration and for reference dosimetry, can show high recombination effects in pulsed high dose rate proton beams. The aims of this paper are: first, to characterize the linearity response of newly designed asymmetrical beam monitor chambers (ABMC) in a 100-226 MeV pulsed high dose rate per pulse scanned proton beam; and secondly, to calibrate the ABMC with a PPC05 (IBA Dosimetry) plane parallel ionization chamber and compare to calibration with a home-made Faraday cup (FC).Approach. The ABMC response linearity was evaluated with both the FC and a PTW 60019 microDiamond detector. Regarding ionometry-based ABMC calibration, recombination factors were evaluated theoretically, then numerically, and finally experimentally measured in water for a plane parallel ionization chamber PPC05 (IBA Dosimetry) throughkssaturation curves. Finally, ABMC calibration was also achieved with FC and compared to the ionometry method for 7 energies.Main results. Linearity measurements showed that recombination losses in the new ABMC design were well taken into account for the whole range of the machine dose rates. The two-voltage-method was not suitable for recombination correction, but Jaffé's plots analysis was needed, emphasizing the current IAEA TRS-398 reference protocol limitations. Concerning ABMC calibration, FC based absorbed dose estimation and PPC05-based absorbed dose estimation differ by less than 6.3% for the investigated energies.Significance.So far, no update on reference dosimetry protocols is available to estimate the absorbed dose in ionization chambers for clinical high dose rate per pulse pulsed scanned proton beams. This work proposes a validation of the new ABMC design, a method to take into account the recombination effect for ionometry-based ABMC calibration and a comparison with FC dose estimation in this type of proton beams.


Asunto(s)
Protones , Radiactividad , Ciclotrones , Calibración , Radiometría/métodos , Agua
13.
Infect Dis Model ; 9(1): 234-244, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38303993

RESUMEN

This work introduces the Queen's University Agent-Based Outbreak Outcome Model (QUABOOM). This tool is an agent-based Monte Carlo simulation for modelling epidemics and informing public health policy. We illustrate the use of the model by examining capacity restrictions during a lockdown. We find that public health measures should focus on the few locations where many people interact, such as grocery stores, rather than the many locations where few people interact, such as small businesses. We also discuss a case where the results of the simulation can be scaled to larger population sizes, thereby improving computational efficiency.

14.
Radiother Oncol ; 198: 110414, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942120

RESUMEN

BACKGROUND AND PURPOSE: As no guidelines for pencil beam scanning (PBS) proton therapy (PT) of paediatric posterior fossa (PF) tumours exist to date, this study investigated planning techniques across European PT centres, with special considerations for brainstem and spinal cord sparing. MATERIALS AND METHODS: A survey and a treatment planning comparison were initiated across nineteen European PBS-PT centres treating paediatric patients. The survey assessed all aspects of the treatment chain, including but not limited to delineations, dose constraints and treatment planning. Each centre planned two PF tumour cases for focal irradiation, according to their own clinical practice but based on common delineations. The prescription dose was 54 Gy(RBE) for Case 1 and 59.4 Gy(RBE) for Case 2. For both cases, planning strategies and relevant dose metrics were compared. RESULTS: Seventeen (89 %) centres answered the survey, and sixteen (80 %) participated in the treatment planning comparison. In the survey, thirteen (68 %) centres reported using the European Particle Therapy Network definition for brainstem delineation. In the treatment planning study, while most centres used three beam directions, their configurations varied widely across centres. Large variations were also seen in brainstem doses, with a brainstem near maximum dose (D2%) ranging from 52.7 Gy(RBE) to 55.7 Gy(RBE) (Case 1), and from 56.8 Gy(RBE) to 60.9 Gy(RBE) (Case 2). CONCLUSION: This study assessed the European PBS-PT planning of paediatric PF tumours. Agreement was achieved in e.g. delineation-practice, while wider variations were observed in planning approach and consequently dose to organs at risk. Collaboration between centres is still ongoing, striving towards common guidelines.

15.
J Neurosci ; 32(48): 17172-85, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23197710

RESUMEN

Oligodendrocytes are the myelin-forming cells of the vertebrate CNS. Little is known about the molecular control of region-specific oligodendrocyte development. Here, we show that oligodendrogenesis in the mouse rostral hindbrain, which is organized in a metameric series of rhombomere-derived (rd) territories, follows a rhombomere-specific pattern, with extensive production of oligodendrocytes in the pontine territory (r4d) and delayed and reduced oligodendrocyte production in the prepontine region (r2d, r3d). We demonstrate that segmental organization of oligodendrocytes is controlled by Hox genes, namely Hoxa2 and Hoxb2. Specifically, Hoxa2 loss of function induced a dorsoventral enlargement of the Olig2/Nkx2.2-expressing oligodendrocyte progenitor domain, whereas conditional Hoxa2 overexpression in the Olig2(+) domain inhibited oligodendrogenesis throughout the brain. In contrast, Hoxb2 deletion resulted in a reduction of the pontine oligodendrogenic domain. Compound Hoxa2(-/-)/Hoxb2(-/-) mutant mice displayed the phenotype of Hoxb2(-/-) mutants in territories coexpressing Hoxa2 and Hoxb2 (rd3, rd4), indicating that Hoxb2 antagonizes Hoxa2 during rostral hindbrain oligodendrogenesis. This study provides the first in vivo evidence that Hox genes determine oligodendrocyte regional identity in the mammalian brain.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Oligodendroglía/metabolismo , Rombencéfalo/metabolismo , Factores de Transcripción/genética , Animales , Tipificación del Cuerpo/genética , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Rombencéfalo/embriología , Factores de Transcripción/metabolismo
16.
Phys Med Biol ; 68(12)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37220766

RESUMEN

Objective.The range uncertainty in proton radiotherapy is a limiting factor to achieve optimum dose conformity to the tumour volume. Ionoacoustics is a promising approach forin siturange verification, which would allow to reduce the size of the irradiated volume relative to the tumour volume. The energy deposition of a pulsed proton beam leads to an acoustic pressure wave (ionoacoustics), the detection of which allows conclusion about the distance between the Bragg peak and the acoustic detector. This information can be transferred into a co-registered ultrasound image, marking the Bragg peak position relative to the surrounding anatomy.Approach.A CIRS 3D abdominal phantom was irradiated with 126 MeV protons at a clinical proton therapy centre. Acoustic signals were recorded on the beam axis distal to the Bragg peak with a Cetacean C305X hydrophone. The ionoacoustic measurements were processed with a correlation filter using simulated filter templates. The hydrophone was rigidly attached to an ultrasound device (Interson GP-C01) recording ultrasound images of the irradiated region.Main results.The time of flight obtained from ionoacoustic measurements were transferred to an ultrasound image by means of an optoacoustic calibration measurement. The Bragg peak position was marked in the ultrasound image with a statistical uncertainty ofσ= 0.5 mm of 24 individual measurements depositing 1.2 Gy at the Bragg peak. The difference between the evaluated Bragg peak position and the one obtained from irradiation planning (1.0 mm) is smaller than the typical range uncertainty (≈4 mm) at the given penetration depth (10 cm).Significance.The measurements show that it is possible to determine the Bragg peak position of a clinical proton beam with submillimetre precision and transfer the information to an ultrasound image of the irradiated region. The dose required for this is smaller than that used for a typical irradiation fraction.


Asunto(s)
Terapia de Protones , Protones , Terapia de Protones/métodos , Acústica , Sonido , Fantasmas de Imagen , Dosificación Radioterapéutica , Método de Montecarlo
17.
Stem Cell Reports ; 17(11): 2467-2483, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351367

RESUMEN

The presence of putative stem/progenitor cells has been suggested in adult peripheral nervous system (PNS) tissue, including the dorsal root ganglion (DRG). To date, their identification and fate in pathophysiological conditions have not been addressed. Combining multiple in vitro and in vivo approaches, we identified the presence of stem cells in the adult DRG satellite glial population, and progenitors were present in the DRGs and sciatic nerve. Cell-specific transgenic mouse lines highlighted the proliferative potential of DRG stem cells and progenitors in vitro. DRG stem cells had gliogenic and neurogenic potentials, whereas progenitors were essentially gliogenic. Lineage tracing showed that, under physiological conditions, adult DRG stem cells maintained DRG homeostasis by supplying satellite glia. Under pathological conditions, adult DRG stem cells replaced DRG neurons lost to injury in addition of renewing the satellite glial pool. These novel findings open new avenues for development of therapeutic strategies targeting DRG stem cells for PNS disorders.


Asunto(s)
Células Madre Adultas , Ganglios Espinales , Ratones , Animales , Neuroglía , Neuronas , Células Madre
18.
Phys Med Biol ; 67(20)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36070743

RESUMEN

Objective.Image guidance and precise irradiation are fundamental to ensure the reliability of small animal oncology studies. Accurate positioning of the animal and the in-beam monitoring of the delivered radio-therapeutic treatment necessitate several imaging modalities. In the particular context of proton therapy with a pulsed beam, information on the delivered dose can be retrieved by monitoring the thermoacoustic waves resulting from the brief and local energy deposition induced by a proton beam (ionoacoustics). The objective of this work was to fabricate a multimodal phantom (x-ray, proton, ultrasound, and ionoacoustics) allowing for sufficient imaging contrast for all the modalities.Approach.The phantom anatomical parts were extracted from mouse computed tomography scans and printed using polylactic acid (organs) and a granite/polylactic acid composite (skeleton). The anatomical pieces were encapsulated in silicone rubber to ensure long term stability. The phantom was imaged using x-ray cone-beam computed tomography, proton radiography, ultrasound imaging, and monitoring of a 20 MeV pulsed proton beam using ionoacoustics.Main results.The anatomical parts could be visualized in all the imaging modalities validating the phantom capability to be used for multimodal imaging. Ultrasound images were simulated from the x-ray cone-beam computed tomography and co-registered with ultrasound images obtained before the phantom irradiation and low-resolution ultrasound images of the mouse phantom in the irradiation position, co-registered with ionoacoustic measurements. The latter confirmed the irradiation of a tumor surrogate for which the reconstructed range was found to be in reasonable agreement with the expectation.Significance.This study reports on a realistic small animal phantom which can be used to investigate ionoacoustic range (or dose) verification together with ultrasound, x-ray, and proton imaging. The co-registration between ionoacoustic reconstructions of the impinging proton beam and x-ray imaging is assessed for the first time in a pre-clinical scenario.


Asunto(s)
Terapia de Protones , Animales , Ratones , Fantasmas de Imagen , Impresión Tridimensional , Protones , Reproducibilidad de los Resultados , Elastómeros de Silicona
19.
Front Oncol ; 12: 925542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408153

RESUMEN

Purpose: The Bragg peak located at the end of the ion beam range is one of the main advantages of ion beam therapy compared to X-Ray radiotherapy. However, verifying the exact position of the Bragg peak within the patient online is a major challenge. The goal of this work was to achieve submillimeter proton beam range verification for pulsed proton beams of an energy of up to 220 MeV using ionoacoustics for a clinically relevant dose deposition of typically 2 Gy per fraction by i) using optimal proton beam characteristics for ionoacoustic signal generation and ii) improved signal detection by correlating the signal with simulated filter templates. Methods: A water tank was irradiated with a preclinical 20 MeV proton beam using different pulse durations ranging from 50 ns up to 1 µs in order to maximise the signal-to-noise ratio (SNR) of ionoacoustic signals. The ionoacoustic signals were measured using a piezo-electric ultrasound transducer in the MHz frequency range. The signals were filtered using a cross correlation-based signal processing algorithm utilizing simulated templates, which enhances the SNR of the recorded signals. The range of the protons is evaluated by extracting the time of flight (ToF) of the ionoacoustic signals and compared to simulations from a Monte Carlo dose engine (FLUKA). Results: Optimised SNR of 28.0 ± 10.6 is obtained at a beam current of 4.5 µA and a pulse duration of 130 ns at a total peak dose deposition of 0.5 Gy. Evaluated ranges coincide with Monte Carlo simulations better than 0.1 mm at an absolute range of 4.21 mm. Higher beam energies require longer proton pulse durations for optimised signal generation. Using the correlation-based post-processing filter a SNR of 17.8 ± 5.5 is obtained for 220 MeV protons at a total peak dose deposition of 1.3 Gy. For this clinically relevant dose deposition and proton beam energy, submillimeter range verification was achieved at an absolute range of 303 mm in water. Conclusion: Optimal proton pulse durations ensure an ideal trade-off between maximising the ionoacoustic amplitude and minimising dose deposition. In combination with a correlation-based post-processing evaluation algorithm, a reasonable SNR can be achieved at low dose levels putting clinical applications for online proton or ion beam range verification into reach.

20.
Z Med Phys ; 31(2): 192-202, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33726960

RESUMEN

PURPOSE: The aims of this work are to study the response of a small-gap plane-parallel ionization chamber in the presence of charge multiplication and suggest an experimental method to determine the product of the recombination correction factor (ks) and the charge multiplication correction factor (kCM) in order to investigate the latter. METHODS: Experimental data were acquired in scanned proton beams and in a Cobalt-60 beam. Measurements were carried out using an IBA PPC05 chambers of which the electrode gap is 0.6mm. The study is based on the determination of Jaffé plots by operating the chambers at different voltages. Experimental results are compared to theoretical equations describing initial and volume recombination as well as charge multiplication for continuous and pulsed beams. RESULTS: Results obtained in protons and Cobalt-60 with the same PPC05 chamber indicate that the charge multiplication effect is independent of the beam quality, while results obtained in different proton beams with two different PPC05 chambers show that the charge multiplication effect is chamber dependent. CONCLUSIONS: The approach to be taken when using a small-gap plane-parallel ionization chamber with a high voltage (e.g. 300V or 500V) for reference dosimetry in scanned proton beams depends on which correction factors were applied to the chamber response during its calibration in terms of absorbed dose to water: In both cases, it is recommended to use the ionization chamber at the same operating voltage used during its ND,w-calibration. Another solution consists of operating the PPC05 chamber at a lower voltage (e.g. 50V) with larger ks and smaller kCM and determining the product of both factors with higher accuracy using a linear extrapolation method.


Asunto(s)
Protones , Radiometría , Calibración , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA