Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Opt Soc Am A Opt Image Sci Vis ; 41(3): 476-488, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437439

RESUMEN

Color constancy is a basic step for achieving stable color perception in both biological visual systems and the image signal processing (ISP) pipeline of cameras. So far, there have been numerous computational models of color constancy that focus on scenes under normal light conditions but are less concerned with nighttime scenes. Compared with daytime scenes, nighttime scenes usually suffer from relatively higher-level noise and insufficient lighting, which usually degrade the performance of color constancy methods designed for scenes under normal light. In addition, there is a lack of nighttime color constancy datasets, limiting the development of relevant methods. In this paper, based on the gray-pixel-based color constancy methods, we propose a robust gray pixel (RGP) detection method by carefully designing the computation of illuminant-invariant measures (IIMs) from a given color-biased nighttime image. In addition, to evaluate the proposed method, a new dataset that contains 513 nighttime images and corresponding ground-truth illuminants was collected. We believe this dataset is a useful supplement to the field of color constancy. Finally, experimental results show that the proposed method achieves superior performance to statistics-based methods. In addition, the proposed method was also compared with recent deep-learning methods for nighttime color constancy, and the results show the method's advantages in cross-validation among different datasets.

2.
Cell Biol Toxicol ; 39(3): 771-793, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34458952

RESUMEN

Clarithromycin (CLA) has been widely used in the treatment of bacterial infection. Research reveals the adverse effects on the central nervous system among patients receiving CLA treatment; whereas, a relevant underlying mechanism remains considerably unclear. According to our research, an integrated lipidomic and transcriptomic analysis was applied to explore the effect of CLA on neurobehavior. CLA treatment caused anxiety-like behaviors dose-dependently during open field as well as elevated plus maze trials on mice. Transcriptomes and LC/MS-MS-based metabolomes were adopted for investigating how CLA affected lipidomic profiling as well as metabolic pathway of the cerebral cortex. CLA exposure greatly disturbed glycerophospholipid metabolism and the carbon chain length of fatty acids. By using whole transcriptome sequencing, we found that CLA significantly downregulated the mRNA expression of CEPT1 and CHPT1, two key enzymes involved in the synthesis of glycerophospholipids, supporting the findings from the lipidomic profiling. Also, CLA causes changes in neuronal morphology and function in vitro, which support the existing findings concerning neurobehavior in vivo. We speculate that altered glycerophospholipid metabolism may be involved in the neurobehavioral effect of CLA. Our findings contribute to understanding the mechanisms of CLA-induced adverse effects on the central nervous system. 1. Clarithromycin treatment caused anxiety-like behavior with dose-dependent response both in the open field and elevated plus maze test in mice; 2. Clarithromycin exposing predominately disturbed the metabolism of glycerophospholipids in the cerebral cortex of mice; 3. Clarithromycin application remarkably attenuated CEPT1 and CHPT1 gene expression, which participate in the last step in the synthesis of glycerophospholipids; 4. The altered glycerophospholipid metabolomics may be involved in the abnormal neurobehavior caused by clarithromycin.


Asunto(s)
Claritromicina , Lipidómica , Animales , Ratones , Claritromicina/farmacología , Transcriptoma , Glicerofosfolípidos/metabolismo , Corteza Cerebral/metabolismo
3.
J Neurosci ; 41(31): 6753-6774, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34099513

RESUMEN

The development, persistence and relapse of drug addiction require drug memory that generally develops with drug administration-paired contextual stimuli. Adult hippocampal neurogenesis (AHN) contributes to cocaine memory formation; however, the underlying mechanism remains unclear. Male mice hippocampal expression of Tau was significantly decreased during the cocaine-associated memory formation. Genetic overexpression of four microtubule-binding repeats Tau (4R Tau) in the mice hippocampus disrupted cocaine memory by suppressing AHN. Furthermore, 4R Tau directly interacted with phosphoinositide 3-kinase (PI3K)-p85 and impaired its nuclear translocation and PI3K-AKT signaling, processes required for hippocampal neuron proliferation. Collectively, 4R Tau modulates cocaine memory formation by disrupting AHN, suggesting a novel mechanism underlying cocaine memory formation and provide a new strategy for the treatment of cocaine addiction.SIGNIFICANCE STATEMENT Drug memory that generally develops with drug-paired contextual stimuli and drug administration is critical for the development, persistence and relapse of drug addiction. Previous studies have suggested that adult hippocampal neurogenesis (AHN) plays a role in cocaine memory formation. Here, we showed that Tau was significantly downregulated in the hippocampus in the cocaine memory formation. Tau knock-out (KO) promoted AHN in the hippocampal dentate gyrus (DG), resulting in the enhanced memory formation evoked by cocaine-cue stimuli. In contrast, genetically overexpressed 4R Tau in the hippocampus disrupted cocaine-cue memory by suppressing AHN. In addition, 4R Tau interacted directly with phosphoinositide 3-kinase (PI3K)-p85 and hindered its nuclear translocation, eventually repressing PI3K-AKT signaling, which is essential for hippocampal neuronal proliferation.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Hipocampo/metabolismo , Memoria/fisiología , Neurogénesis/fisiología , Proteínas tau/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas
4.
Acta Pharmacol Sin ; 43(2): 295-306, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34522005

RESUMEN

Behavioral sensitization is a progressive increase in locomotor or stereotypic behaviours in response to drugs. It is believed to contribute to the reinforcing properties of drugs and to play an important role in relapse after cessation of drug abuse. However, the mechanism underlying this behaviour remains poorly understood. In this study, we showed that mTOR signaling was activated during the expression of behavioral sensitization to cocaine and that intraperitoneal or intra-nucleus accumbens (NAc) treatment with rapamycin, a specific mTOR inhibitor, attenuated cocaine-induced behavioural sensitization. Cocaine significantly modified brain lipid profiles in the NAc of cocaine-sensitized mice and markedly elevated the levels of phosphatidylinositol-4-monophosphates (PIPs), including PIP, PIP2, and PIP3. The behavioural effect of cocaine was attenuated by intra-NAc administration of LY294002, an AKT-specific inhibitor, suggesting that PIPs may contribute to mTOR activation in response to cocaine. An RNA-sequencing analysis of the downstream effectors of mTOR signalling revealed that cocaine significantly decreased the expression of SynDIG1, a known substrate of mTOR signalling, and decreased the surface expression of GluA2. In contrast, AAV-mediated SynDIG1 overexpression in NAc attenuated intracellular GluA2 internalization by promoting the SynDIG1-GluA2 interaction, thus maintaining GluA2 surface expression and repressing cocaine-induced behaviours. In conclusion, NAc SynDIG1 may play a negative regulatory role in cocaine-induced behavioural sensitization by regulating synaptic surface expression of GluA2.


Asunto(s)
Proteínas Portadoras/metabolismo , Cocaína/farmacología , Núcleo Accumbens/efectos de los fármacos , Receptores AMPA/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Biotinilación , Western Blotting , Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/metabolismo
5.
Mar Drugs ; 20(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35877711

RESUMEN

The mandelalides are complex macrolactone natural products with distinct macrocycle motifs and a bioactivity profile that is heavily influenced by compound glycosylation. Mandelalides A and B are direct inhibitors of mitochondrial ATP synthase (complex V) and therefore more toxic to mammalian cells with an oxidative metabolic phenotype. To provide further insight into the pharmacology of the mandelalides, we studied the AMP-activated protein kinase (AMPK) energy stress pathway and report that mandelalide A is an indirect activator of AMPK. Wild-type mouse embryonic fibroblasts (MEFs) and representative human non-small cell lung cancer (NSCLC) cells showed statistically significant increases in phospho-AMPK (Thr172) and phospho-ACC (Ser79) in response to mandelalide A. Mandelalide L, which also harbors an A-type macrocycle, induced similar increases in phospho-AMPK (Thr172) and phospho-ACC (Ser79) in U87-MG glioblastoma cells. In contrast, MEFs co-treated with an AMPK inhibitor (dorsomorphin), AMPKα-null MEFs, or NSCLC cells lacking liver kinase B1 (LKB1) lacked this activity. Mandelalide A was significantly more cytotoxic to AMPKα-null MEFs than wild-type cells, suggesting that AMPK activation serves as a protective response to mandelalide-induced depletion of cellular ATP. However, LKB1 status alone was not predictive of the antiproliferative effects of mandelalide A against NSCLC cells. When EGFR status was considered, erlotinib and mandelalide A showed strong cytotoxic synergy in combination against erlotinib-resistant 11-18 NSCLC cells but not against erlotinib-sensitive PC-9 cells. Finally, prolonged exposures rendered mandelalide A, a potent and efficacious cytotoxin, against a panel of human glioblastoma cell types regardless of the underlying metabolic phenotype of the cell. These results add biological relevance to the mandelalide series and provide the basis for their further pre-clinical evaluation as ATP synthase inhibitors and secondary activators of AMPK.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Glioblastoma , Neoplasias Pulmonares , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Clorhidrato de Erlotinib , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Macrólidos , Mamíferos/metabolismo , Ratones , Fosforilación
6.
Ecotoxicol Environ Saf ; 248: 114302, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399995

RESUMEN

Recent investigations have revealed that puerarin (PU) alleviates cadmium (Cd)-caused hepatic damage via inhibiting oxidative stress. Mitochondria are dynamic organelles and play a critical part in regulating the occurrence of oxidative stress, but the role of mitochondria in the protection of PU against hepatocellular damage caused by Cd exposure remains unknown. Thus, this study was aimed to clarify this issue using mouse hepatocyte AML-12 cell line. Transmission electron microscopy analysis firstly showed that PU prevents Cd-induced mitochondrial ultrastructure damage. Mitochondrial network image analysis by confocal microscopy revealed that PU exerts the protection against Cd-induced cytotoxicity via restoring mitochondrial network fragmentation. Also, mitochondrial dynamic protein expression profiles showed that enhanced fission protein levels and inhibited fusion protein levels in Cd-treated cells were significantly reversed by PU, suggesting the protective effect of PU against Cd-induced mitochondrial fission. Moreover, changes of intracellular ATP level and protein levels of key regulators involving in mitochondrial biogenesis indicated that Sirtuin-1(Sirt1) pathway may be involved in the protection of Cd-impaired mitochondrial function by PU. Next, Sirt1 protein levels in treated cells were effectively regulated by genetic knockdown or chemical agonist SRT1720. Accordingly, alleviation of Cd-induced mitochondrial fission assays and cell viability by PU was markedly regulated by SRT1720 or Sirt1 knockdown, suggesting the indispensable role of Sirt1 in this process. Collectively, these findings highlight that PU prevents Cd-induced mitochondrial fission to alleviate cytotoxicity via Sirt1-dependent pathway, which provide novel evidences to fully understand the hepatoprotective action of PU against heavy metal toxicity.


Asunto(s)
Leucemia Mieloide Aguda , Dinámicas Mitocondriales , Animales , Ratones , Cadmio/toxicidad , Sirtuina 1/genética
7.
J Cell Mol Med ; 24(5): 3183-3191, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31975567

RESUMEN

Mitochondrial fusion and fission dynamic are critical to the myocardial protection against ischaemia-reperfusion injury. Notch1 signalling plays an important role in heart development, maturation and repair. However, the role of Notch1 in the myocardial mitochondrial fusion and fission dynamic remains elusive. Here, we isolated myocardial cells from rats and established myocardial ischaemia-reperfusion injury (IRI) model. We modulated Notch1, MFN1 and DRP1 expression levels in myocardial cells via infection with recombinant adenoviruses. The results showed that Notch1 improves the cell viability and mitochondrial fusion in myocardiocytes exposed to IRI. These improvements were dependent on the regulation of MFN1 and DRP1. On the mechanism, we found that MNF1 is transcriptionally activated by RBP-Jk in myocardiocytes. Notch1 also improves the mitochondrial membrane potential in myocardiocytes exposed to IRI. Moreover, we further confirmed the protection of the Notch1-MFN1/Drp1 axis on the post-ischaemic recovery of myocardial performance is associated with the preservation of the mitochondrial structure. In conclusion, this study presented a detailed mechanism by which Notch1 signalling improves mitochondrial fusion during myocardial protection.


Asunto(s)
Dinaminas/genética , GTP Fosfohidrolasas/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Infarto del Miocardio/genética , Daño por Reperfusión Miocárdica/genética , Receptor Notch1/genética , Animales , Apoptosis/genética , Supervivencia Celular/genética , Regulación de la Expresión Génica/genética , Masculino , Potencial de la Membrana Mitocondrial/genética , Mitocondrias Cardíacas/genética , Dinámicas Mitocondriales/genética , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Sustancias Protectoras/farmacología , Ratas , Transducción de Señal/genética
8.
Biochem Biophys Res Commun ; 511(4): 935-940, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30853180

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).. This article has been retracted at the request of < the Editor in Chief. The Editor in Chief has been made aware of numerous problems with this paper regarding authorship, poor or insufficient supervision of researchers and the unauthorized use of data acquired from a lab visit by one of the authors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Linfocitos T/citología , Animales , Recuento de Células , Autorrenovación de las Células , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Linfocitos T/metabolismo , Timocitos/citología , Timocitos/metabolismo , Timo/citología , Timo/crecimiento & desarrollo , Timo/metabolismo
9.
J Org Chem ; 83(8): 4287-4306, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29480727

RESUMEN

The mandelalides comprise a family of structurally complex marine macrolides that display significant cytotoxicity against several human cancer cell lines. Presented here is a full account on the development of an Anion Relay Chemistry (ARC) strategy for the total synthesis of (-)-mandelalides A and L, the two most potent members of the mandelalide family. The design and implementation of a three-component type II ARC/cross-coupling protocol and a four-component type I ARC union permits rapid access respectively to the key tetrahydrofuran and tetrahydropyran structural motifs of these natural products. Other highlights of the synthesis include an osmium-catalyzed oxidative cyclization of an allylic 1,3-diol, a mild Yamaguchi esterification to unite the northern and southern hemispheres, and a late-stage Heck macrocyclization. Synthetic mandelalides A and L displayed potent cytotoxicity against human HeLa cervical cancer cells (EC50, 1.3 and 3.1 nM, respectively). This synthetic approach also provides access to several highly potent non-natural mandelalide analogs, including a biotin-tagged mandelalide probe for future biological investigation.


Asunto(s)
Antineoplásicos/farmacología , Macrólidos/farmacología , Aniones/química , Aniones/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Macrólidos/síntesis química , Macrólidos/química , Estructura Molecular , Relación Estructura-Actividad
10.
J Nat Prod ; 81(6): 1417-1425, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29808677

RESUMEN

Jizanpeptins A-E (1-5) are micropeptin depsipeptides isolated from a Red Sea specimen of a Symploca sp. cyanobacterium. The planar structures of the jizanpeptins were established using NMR spectroscopy and mass spectrometry and contain 3-amino-6-hydroxy-2-piperidone (Ahp) as one of eight residues in a typical micropeptin motif, as well as a side chain terminal glyceric acid sulfate moiety. The absolute configurations of the jizanpeptins were assigned using a combination of Marfey's methodology and chiral-phase HPLC analysis of hydrolysis products compared to commercial and synthesized standards. Jizanpeptins A-E showed specific inhibition of the serine protease trypsin (IC50 = 72 nM to 1 µM) compared to chymotrypsin (IC50 = 1.4 to >10 µM) in vitro and were not overtly cytotoxic to HeLa cervical or NCI-H460 lung cancer cell lines at micromolar concentrations.


Asunto(s)
Cianobacterias/química , Depsipéptidos/química , Depsipéptidos/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Quimotripsina/química , Quimotripsina/farmacología , Humanos , Océano Índico , Espectroscopía de Resonancia Magnética/métodos , Piperidonas/química , Piperidonas/farmacología
11.
Mar Drugs ; 16(3)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494533

RESUMEN

Our understanding of autophagy and lysosomal function has been greatly enhanced by the discovery of natural product structures that can serve as chemical probes to reveal new patterns of signal transduction in cells. Coibamide A is a cytotoxic marine natural product that induces mTOR-independent autophagy as an adaptive stress response that precedes cell death. Autophagy-related (ATG) protein 5 (ATG5) is required for coibamide-induced autophagy but not required for coibamide-induced apoptosis. Using wild-type and autophagy-deficient mouse embryonic fibroblasts (MEFs) we demonstrate that coibamide-induced toxicity is delayed in ATG5-/- cells relative to ATG5+/+ cells. Time-dependent changes in annexin V staining, membrane integrity, metabolic capacity and caspase activation indicated that MEFs with a functional autophagy pathway are more sensitive to coibamide A. This pattern could be distinguished from autophagy modulators that induce acute ER stress (thapsigargin, tunicamycin), ATP depletion (oligomycin A) or mTORC1 inhibition (rapamycin), but was shared with the Sec61 inhibitor apratoxin A. Coibamide- or apratoxin-induced cell stress was further distinguished from the action of thapsigargin by a pattern of early LC3-II accumulation in the absence of CHOP or BiP expression. Time-dependent changes in ATG5-ATG12, PARP1 and caspase-3 expression patterns were consistent with the conversion of ATG5 to a pro-death signal in response to both compounds.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/metabolismo , Autofagia/efectos de los fármacos , Depsipéptidos/toxicidad , Animales , Proteína 5 Relacionada con la Autofagia/genética , Línea Celular , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibroblastos , Técnicas de Inactivación de Genes , Toxinas Marinas/toxicidad , Ratones , Transducción de Señal/efectos de los fármacos , Tapsigargina/toxicidad
12.
Invest New Drugs ; 34(1): 24-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26563191

RESUMEN

Coibamide A is a cytotoxic lariat depsipeptide isolated from a rare cyanobacterium found within the marine reserve of Coiba National Park, Panama. Earlier testing of coibamide A in the National Cancer Institute in vitro 60 human tumor cell line panel (NCI-60) revealed potent anti-proliferative activity and a unique selectivity profile, potentially reflecting a new target or mechanism of action. In the present study we evaluated the antitumor activity of coibamide A in several functional cell-based assays and in vivo. U87-MG and SF-295 glioblastoma cells showed reduced migratory and invasive capacity and underwent G1 cell cycle arrest as, likely indirect, consequences of treatment. Coibamide A inhibited extracellular VEGFA secreted from U87-MG glioblastoma and MDA-MB-231 breast cancer cells with low nM potency, attenuated proliferation and migration of normal human umbilical vein endothelial cells (HUVECs) and selectively decreased expression of vascular endothelial growth factor receptor 2 (VEGFR2). We report that coibamide A retains potent antitumor properties in a nude mouse xenograft model of glioblastoma; established subcutaneous U87-MG tumors failed to grow for up to 28 days in response to 0.3 mg/Kg doses of coibamide A. However, the natural product was also associated with varied patterns of weight loss and thus targeted delivery and/or medicinal chemistry approaches will almost certainly be required to improve the toxicity profile of this unusual macrocycle. Finally, similarities between coibamide A- and apratoxin A-induced changes in cell morphology, decreases in VEGFR2 expression and macroautophagy signaling in HUVECs raise the possibility that both cyanobacterial natural products share a common mechanism of action.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Depsipéptidos/farmacología , Glioblastoma/tratamiento farmacológico , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Glioblastoma/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Desnudos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 47(2): 262-6, 2016 Mar.
Artículo en Zh | MEDLINE | ID: mdl-27263307

RESUMEN

OBJECTIVE: To establish an assay using 9-color flow cytometry immunophenotyping to detect activation and apoptosis of human TCR Vß lymphocyte subpopulations in peripheral blood samples. METHODS: We used 5 antibodies (CD3, CD4, CD8, CD95, CD69), phospholipids binding proteins Annexin V, TCR Vß Repertoire Kit and nucleus dye DAPI to establish a 9-color flow cytometry assay. Peripheral blood samples were taken from eight healthy people for test of antibodies and determination of optimal PMT and staining method (single-stained vs stained with all but one antibody). RESULTS: Appropriate detecting voltage, antibody concentration and compensation methods were determined. The distribution of TCR Vß subgroup in our samples was consistent with the TCR Vß Repertoire Kit instruction and other published literature. CONCLUSION: We have established a effective easy using 9-color flow cytometry immunophenotyping to detect human TCR Vß lymphocyte subpopulations in peripheral blood samples.


Asunto(s)
Apoptosis , Citometría de Flujo , Inmunofenotipificación/métodos , Activación de Linfocitos , Subgrupos Linfocitarios/citología , Anticuerpos , Color , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Coloración y Etiquetado
15.
Front Biosci (Landmark Ed) ; 29(3): 125, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38538265

RESUMEN

BACKGROUND: The prevalence of laryngeal squamous cell carcinoma (LSCC) is increasing, and it poses a significant threat to human health; therefore, identifying specific targets for LSCC remains crucial. METHODS: Bioinformatics analysis was used to compare the different expression genes expressed in LSCC. Immunohistochemical assay and western blotting were used to analysis protein expression. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)((4,5 Dimethyl thiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide)4,5 Dimethyl thiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) and 5-ethynyl 2'-deoxyuridine (Edu) assay. Flow cytometry was used to measure the cell cycle. Cell migration was measured by wound healing assay and transwell assay. RESULTS: Our analysis revealed 36 upregulated and 65 downregulated differentially expressed genes (DEGs) when comparing LSCC tumors to adjacent tissues, with cornulin (CRNN) identified as a key hub gene connecting these DEGs. We observed a consistent downregulation of CRNN expression in LSCC cell lines and tissues and was associated with poor patient survival and the tumor microenvironment. CRNN overexpression was found to significantly inhibit cell growth, cell cycle progression, migration and invasion, while CRNN knockdown had the opposite effects. Additionally, in vivo experiments demonstrated that CRNN overexpression suppressed tumor growth in nude mice. CONCLUSIONS: CRNN functions as a potential tumor suppressor and regulates important aspects of LSCC, providing valuable insights into the role of CRNN in LSCC pathogenesis and potential for targeted therapeutic interventions.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Laríngeas , MicroARNs , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Humanos , Ratones , Bromuros/metabolismo , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patología , Ratones Desnudos , MicroARNs/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Microambiente Tumoral
16.
ACS Pharmacol Transl Sci ; 7(6): 1823-1838, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38898945

RESUMEN

Coibamide A (CbA) is a cyanobacterial lariat depsipeptide that selectively inhibits multiple secreted and integral membrane proteins from entering the endoplasmic reticulum secretory pathway through binding the alpha subunit of the Sec61 translocon. As a complex peptide-based macrocycle with 13 stereogenic centers, CbA is presumed to adopt a conformationally restricted orientation in the ligand-bound state, resulting in potent antitumor and antiangiogenic bioactivity. A stereochemical structure-activity relationship for CbA was previously defined based on cytotoxicity against established cancer cell lines. However, the ability of synthetic isomers to inhibit the biosynthesis of specific Sec61 substrates was unknown. Here, we report that two less toxic diastereomers of CbA, [L-Hiv2]-CbA and [L-Hiv2, L-MeAla11]-CbA, are pharmacologically active Sec61 inhibitors. Both compounds inhibited the expression of a secreted reporter (Gaussia luciferase), VEGF-A, and a Type 1 membrane protein (VCAM1), while [L-Hiv2]-CbA also decreased the expression of ICAM1 and BiP/GRP78. Analysis of 43 different chemokines in the secretome of SF-268 glioblastoma cells revealed different inhibitory profiles for the two diastereomers. When the cytotoxic potential of CbA compounds was compared against a panel of patient-derived glioblastoma stem-like cells (GSCs), Sec61 inhibitors were remarkably toxic to five of the six GSCs tested. Each ligand showed a distinct cytotoxic potency and selectivity pattern for CbA-sensitive GSCs, with IC50 values ranging from subnanomolar to low micromolar concentrations. Together, these findings highlight the extreme sensitivity of GSCs to Sec61 modulation and the importance of ligand stereochemistry in determining the spectrum of inhibited Sec61 client proteins.

17.
Biol Psychiatry ; 95(9): 896-908, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37913973

RESUMEN

BACKGROUND: Circular RNAs are highly enriched in the synapses of the mammalian brain and play important roles in neurological function by acting as molecular sponges of microRNAs. circAnk3 is derived from the 11th intron of the ankyrin-3 gene, Ank3, a strong genetic risk factor for neuropsychiatric disorders; however, the function of circAnk3 remains elusive. In this study, we investigated the function of circAnk3 and its downstream regulatory network for target genes in the hippocampus of mice. METHODS: The DNA sequence from which circAnk3 is generated was modified using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) technology, and neurobehavioral tests (anxiety and depression-like behaviors, social behaviors) were performed in circAnk3+/- mice. A series of molecular and biochemical assays were used to investigate the function of circAnk3 as a microRNA sponge and its downstream regulatory network for target genes. RESULTS: circAnk3+/- mice exhibited both anxiety-like behaviors and social deficits. circAnk3 was predominantly located in the cytoplasm of neuronal cells and functioned as a miR-7080-3p sponge to regulate the expression of Iqgap1. Inhibition of miR-7080-3p or restoration of Iqgap1 in the hippocampus ameliorated the behavioral deficits of circAnk3+/- mice. Furthermore, circAnk3 deficiency decreased the expression of the NMDA receptor subunit GluN2a and impaired the structural plasticity of dendritic synapses in the hippocampus. CONCLUSIONS: Our results reveal an important role of the circAnk3/miR-7080-3p/IQGAP1 axis in maintaining the structural plasticity of hippocampal synapses. circAnk3 might offer new insights into the involvement of circular RNAs in neuropsychiatric disorders.


Asunto(s)
MicroARNs , ARN Circular , Ratones , Animales , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Ansiedad/genética , Mamíferos/genética , Mamíferos/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-35860003

RESUMEN

Objective: To investigate the effect of cantharidin on DNA damage in hepatocellular carcinoma cells and its possible mechanism. Methods: Cell proliferation assay and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were used to analyze the effects of cantharidin on cell proliferation and apoptosis of hepatocellular carcinoma cells. The expression levels of DNA damage markers H2AX and P21 were analyzed by qRT-PCR. The expression of KDM4A and H3K36me3 was observed by western blot. The expression of KDM4A was regulated by siRNA or plasmid transfection. The effect of KDM4A on DNA damage induced by cantharidin in liver cancer was observed after overexpression and addiction of KDM4A. Results: Cantharidin can significantly inhibit the growth of hepatocellular carcinoma cells and induce apoptosis of hepatocellular carcinoma cells. Cantharidin enhances the chemotherapy sensitivity of liver cancer by targeting the upregulation of KDM4A and the regulation of DNA damage induced by H3K36me3. Overexpression of KDM4A enhances DNA damage induced by cantharidin in HCC. KDM4A silencing attenuated the damage of cantharidin to the DNA of HCC cells. Conclusion: Cantharidin can inhibit the growth and promote apoptosis of hepatocellular carcinoma cells. Meanwhile, cantharidin can induce DNA damage in HCC cells. Mechanism studies have shown that cantharidin induces DNA damage through the demethylation of KDM4A-dependent histone H3K36.

19.
Complement Ther Med ; 70: 102849, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35835269

RESUMEN

OBJECTIVE: To evaluate the completeness of reporting of acupuncture interventions in trials for functional constipation (FC) following the STandards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) guidelines. METHODS: We searched eight databases for all published trials, including clinical trials, pilot/feasibility studies, observational studies, and case studies, for acupuncture in patients with FC up to June 31, 2021. The completeness of reporting was evaluated using the STRICTA guidelines. RESULTS: Finally, 99 studies were included and analysed based on the latest STRICTA guidelines. Out of the 17 analysed STRICTA sub-items, only five were found to be appropriately reported in more than 90% of the trials, while five were completely reported in less than 30%. CONCLUSIONS: The reporting completeness of acupuncture trials for FC in accordance with STRICTA guidelines is moderate, with poor guideline adherence for several items. Clinical trial reports should be further improved in accordance with STRICTA guidelines to enhance the completeness of evidence. There is also a need to explore the underlying reasons as to why the authors did not report these items and to develop strategies for improving guideline compliance.


Asunto(s)
Terapia por Acupuntura , Acupuntura , Estreñimiento , Humanos , Proyectos de Investigación , Informe de Investigación
20.
Cell Stress Chaperones ; 27(3): 223-239, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35244890

RESUMEN

Osteosarcoma is the most common type of bone cancer in dogs and humans, with significant numbers of patients experiencing treatment failure and disease progression. In our search for new approaches to treat osteosarcoma, we previously detected multiple chaperone proteins in the surface-exposed proteome of canine osteosarcoma cells. In the present study, we characterized expression of representative chaperones and find evidence for stress adaptation in canine osteosarcoma cells relative to osteogenic progenitors from normal bone. We compared the cytotoxic potential of direct (HA15) and putative (OSU-03012) inhibitors of Grp78 function and found canine POS and HMPOS osteosarcoma cells to be more sensitive to both compounds than normal cells. HA15 and OSU-03012 increased the thermal stability of Grp78 in intact POS cells at low micromolar concentrations, but each induced distinct patterns in Grp78 expression without significant change in Grp94. Both inhibitors were as effective alone as carboplatin and showed little evidence of synergy in combination treatment. However, HMPOS cells with acquired resistance to carboplatin were sensitive to inhibition of Grp78 (by HA15; OSU-03012), Hsp70 (by VER-155008), and Hsp90 (by 17-AAG) function. These results suggest that multiple nodes within the osteosarcoma chaperome may be relevant chemotherapeutic targets against platinum resistance.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Neoplasias Óseas/tratamiento farmacológico , Carboplatino , Línea Celular Tumoral , Perros , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Osteosarcoma/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA