Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 744
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 613(7944): 485-489, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653565

RESUMEN

Antiferromagnetic spintronics1-16 is a rapidly growing field in condensed-matter physics and information technology with potential applications for high-density and ultrafast information devices. However, the practical application of these devices has been largely limited by small electrical outputs at room temperature. Here we describe a room-temperature exchange-bias effect between a collinear antiferromagnet, MnPt, and a non-collinear antiferromagnet, Mn3Pt, which together are similar to a ferromagnet-antiferromagnet exchange-bias system. We use this exotic effect to build all-antiferromagnetic tunnel junctions with large nonvolatile room-temperature magnetoresistance values that reach a maximum of about 100%. Atomistic spin dynamics simulations reveal that uncompensated localized spins at the interface of MnPt produce the exchange bias. First-principles calculations indicate that the remarkable tunnelling magnetoresistance originates from the spin polarization of Mn3Pt in the momentum space. All-antiferromagnetic tunnel junction devices, with nearly vanishing stray fields and strongly enhanced spin dynamics up to the terahertz level, could be important for next-generation highly integrated and ultrafast memory devices7,9,16.

2.
Cell Mol Life Sci ; 81(1): 282, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943031

RESUMEN

Cetuximab resistance has been a major challenge for head and neck squamous cell carcinoma (HNSCC) patients receiving targeted therapy. However, the mechanism that causes cetuximab resistance, especially microRNA (miRNA) regulation, remains unclear. Growing evidence suggests that miRNAs may act as "nuclear activating miRNAs" for targeting promoter regions or enhancers related to target genes. This study elucidates a novel mechanism underlying cetuximab resistance in HNSCC involving the nuclear activation of KDM7A transcription via miR-451a. Herein, small RNA sequencing, quantitative real-time polymerase chain reaction (qRT‒PCR) and fluorescence in situ hybridization (FISH) results provided compelling evidence of miR-451a nuclear enrichment in response to cetuximab treatment. Chromatin isolation via RNA purification, microarray analysis, and bioinformatic analysis revealed that miR-451a interacts with an enhancer region in KDM7A, activating its expression and further facilitating cetuximab resistance. It has also been demonstrated that the activation of KDM7A by nuclear miR-451a is induced by cetuximab treatment and is AGO2 dependent. Logistic regression analyses of 87 HNSCC samples indicated the significance of miR-451a and KDM7A in the development of cetuximab resistance. These discoveries support the potential of miR-451a and KDM7A as valuable biomarkers for cetuximab resistance and emphasize the function of nuclear-activating miRNAs.


Asunto(s)
Cetuximab , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , MicroARNs , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Cetuximab/farmacología , Resistencia a Antineoplásicos/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Animales , Ratones , Núcleo Celular/metabolismo , Núcleo Celular/genética , Femenino , Ratones Desnudos
3.
Proc Natl Acad Sci U S A ; 119(12): e2118709119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290128

RESUMEN

Triterpenoids are biologically active metabolites synthesized from a common linear precursor catalyzed by 2,3-oxidosqualene cyclases (OSCs) to form diverse triterpenoid skeletons. OSCs corresponding to many discovered triterpene alcohols in nature have not been functionally and mechanistically characterized due to the diversity of chemical structures and complexity of the cyclization mechanism. We carried out a genome-wide investigation of OSCs from Avena strigosa and discovered two triterpene synthases, namely, AsHS1 and AsHS2, using a Nicotiana benthamiana expression system. These synthases produce hopenol B and hop-17(21)-en-3ß-ol, which are components of surface wax in oat panicles and sheathes, respectively. We demonstrated that substitutions of two to three amino acid residues in AsHS1 with corresponding residues from AsHS2 allowed it to be completely converted into a hop-17(21)-en-3ß-ol synthase. AsHS2 mutants with a substitution at site 410 could synthesize hopenol B alone or mixed with a side product isomotiol. The combined quantum mechanics and molecular mechanics calculation demonstrated that the side chain size of the residue at site 410 regulated the relative orientations between the hopyl C22 cation and Phe257, leading to a difference in deprotonation positions through providing or not providing cation­π interaction between the aromatic ring of F257 and the carbocation intermediate. A similar mechanism could be applied to a hopenol B synthase from a dicotyledonous plant Aquilegia. This study provided mechanistic insight into triterpenoid synthesis and discovered key amino acid residues acting on hydride transfer and a deprotonation site to differentiate between hopane-type scaffolds in diverse plant species.


Asunto(s)
Transferasas Intramoleculares , Triterpenos , Avena/genética , Transferasas Intramoleculares/genética , Plantas
4.
Nano Lett ; 24(2): 584-591, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38165127

RESUMEN

Cu2S likely plays an important role in the sharp resistivity transition of LK-99. Nevertheless, this immediately arouses an intriguing question of whether the extraordinary room-temperature colossal magnetoresistance in the initial reports, which has been less focused, originates from Cu2S as well. To resolve this issue, we have systematically investigated the electrical transport and magnetotransport properties of near-stoichiometric Cu2S pellets and thin films. Neither Cu2S nor LK-99 containing Cu2S in this study was found to exhibit the remarkable magnetoresistance effect implied by Lee et al. This implies that Cu2S could not account for all of the intriguing transport properties of the initially reported LK-99, and the initially reported LK-99 samples might contain magnetic impurities. Moreover, based on the crystal-structure-sensitive electrical properties of Cu2S, we have constructed a piezoelectric-strain-controlled device and obtained a giant and reversible resistance modulation of 2 orders of magnitude at room temperature, yielding a huge gauge factor of 160,000.

5.
Crit Rev Biochem Mol Biol ; 57(2): 113-132, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34601979

RESUMEN

Triterpenoids are one of the largest groups of secondary metabolites and exhibit diverse structures, which are derived from C30 skeletons that are biosynthesized via the isoprenoid pathway by cyclization of 2,3-oxidosqualene. Triterpenoids have a wide range of biological activities, and are used in functional foods, drugs, and as industrial materials. Due to the low content levels in their native plants and limited feasibility and efficiency of chemical synthesis, heterologous biosynthesis of triterpenoids is the most promising strategy. Herein, we classified 121 triterpene alcohols/ketones according to their conformation and ring numbers, among which 51 skeletons have been experimentally characterized as the products of oxidosqualene cyclases (OSCs). Interestingly, 24 skeletons that have not been reported from nature source were generated by OSCs in heterologous expression. Comprehensive evolutionary analysis of the identified 152 OSCs from 75 species in 25 plant orders show that several pentacyclic triterpene synthases repeatedly originated in multiple plant lineages. Comparative analysis of OSC catalytic reaction revealed that stabilization of intermediate cations, steric hindrance, and conformation of active center amino acid residues are primary factors affecting triterpene formation. Optimization of OSC could be achieved by changing of side-chain orientations of key residues. Recently, methods, such as rationally design of pathways, regulation of metabolic flow, compartmentalization engineering, etc., were introduced in improving chassis for the biosynthesis of triterpenoids. We expect that extensive study of natural variation of large number of OSCs and catalytical mechanism will provide basis for production of high level of triterpenoids by application of synthetic biology strategies.


Asunto(s)
Triterpenos , Plantas/metabolismo , Esqueleto/metabolismo , Escualeno/análogos & derivados , Triterpenos/química , Triterpenos/metabolismo
6.
Biochem Biophys Res Commun ; 722: 150151, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38801801

RESUMEN

Although the functions of basic leucine zipper (bZIP) family transcription factors in the regulation of various abiotic stresses are beginning to be unveiled, the precise roles of bZIP proteins in plants coping with submergence stress remain unclear. Here we identified a bZIP gene GmbZIP71-4 from soybean, which localized in the nucleus. The GmbZIP71-4 over-expressed tabocco line showed reduced submergence resistance due to the decreased abscisic acid (ABA) content. GO and KEGG pathway analysis based on chromatin immunoprecipitation assay sequencing (ChIP-seq) indicated that the differences expressed genes between submergence treatment and control groups were specially enriched in plant hormone signal transduction items, especially those in response to ABA. Electrophoretic mobility shift assays (EMSA) demonstrated that GmbZIP71-4 bound to the promoter of GmABF2 gene, which is consistent with the ChIP-qPCR results. GmbZIP71-4 function as a negative regulator of soybean in responding to submergence stress through manipulating ABA signaling pathway. This findings will set a solid foundation for the understanding of submergence resistance in plants.


Asunto(s)
Ácido Abscísico , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Glycine max , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Regiones Promotoras Genéticas , Transducción de Señal
7.
Small ; 20(26): e2309114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38233203

RESUMEN

Deep cracking of bulky hydrocarbons on zeolite-containing catalysts into light products with high activity, desired selectivity, and long-term stability is demanded but challenging. Herein, the efficient deep cracking of 1,3,5-triisopropylbenzene (TIPB) on intimate ZSM-5@AlSBA-15 composites via tandem catalysis is demonstrated. The rapid aerosol-confined assembly enables the synthesis of the composites composed of a continuous AlSBA-15 matrix decorated with isolated ZSM-5 nanoparticles. The two components at various ZSM-5/AlSBA-15 mass ratios are uniformly mixed with chemically bonded pore walls, interconnected pores, and eliminated external surfaces of nanosized ZSM-5. The typical composite with a ZSM-5/AlSBA-15 mass ratio of 0.25 shows superior performance in TIPB cracking with outstanding activity (≈100% conversion) and deep cracking selectivity (mass of propylene + benzene > 60%) maintained for a long time (> 6 h) under a high TIPB flux (2 mL h-1), far better (several to tens of times higher) than the single-component and physically mixed catalysts and superior to literature results. The high performance is attributed to the cooperative tandem catalytic process, that is, selective and timely pre-cracking of TIPB to isopropylbenzene (IPB) in AlSBA-15 and subsequently timely diffusion and deep cracking of IPB in nanosized ZSM-5.

8.
Plant Biotechnol J ; 22(3): 662-677, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37909415

RESUMEN

Upland rice is a distinctive drought-aerobic ecotype of cultivated rice highly resistant to drought stress. However, the genetic and genomic basis for the drought-aerobic adaptation of upland rice remains largely unclear due to the lack of genomic resources. In this study, we identified 25 typical upland rice accessions and assembled a high-quality genome of one of the typical upland rice varieties, IRAT109, comprising 384 Mb with a contig N50 of 19.6 Mb. Phylogenetic analysis revealed upland and lowland rice have distinct ecotype differentiation within the japonica subgroup. Comparative genomic analyses revealed that adaptive differentiation of lowland and upland rice is likely attributable to the natural variation of many genes in promoter regions, formation of specific genes in upland rice, and expansion of gene families. We revealed differentiated gene expression patterns in the leaves and roots of the two ecotypes and found that lignin synthesis mediated by the phenylpropane pathway plays an important role in the adaptive differentiation of upland and lowland rice. We identified 28 selective sweeps that occurred during domestication and validated that the qRT9 gene in selective regions can positively regulate drought resistance in rice. Eighty key genes closely associated with drought resistance were appraised for their appreciable potential in drought resistance breeding. Our study enhances the understanding of the adaptation of upland rice and provides a genome navigation map of drought resistance breeding, which will facilitate the breeding of drought-resistant rice and the "blue revolution" in agriculture.


Asunto(s)
Resistencia a la Sequía , Oryza , Oryza/metabolismo , Filogenia , Fitomejoramiento , Sequías , Genómica
9.
BMC Infect Dis ; 24(1): 152, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297200

RESUMEN

BACKGROUND: Pneumocystis jirovecii pneumonia (PJP) is a life-threatening and severe disease in immunocompromised hosts. A synergistic regimen based on the combination of sulfamethoxazole-trimethoprim (SMX-TMP) with caspofungin and glucocorticosteroids (GCSs) may be a potential first-line therapy for PJP. Therefore, it is important to explore the efficacy and safety of this synergistic therapy for treating non-HIV-related PJP patients. METHODS: We retrospectively analysed the data of 38 patients with non-HIV-related PJP at the First Affiliated Hospital of Xi'an Jiaotong University. Patients were divided into two groups: the synergistic therapy group (ST group, n = 20) and the monotherapy group (MT group, n = 18). All patients were from the ICU and were diagnosed with severe PJP. In the ST group, all patients were treated with SMX-TMP (TMP 15-20 mg/kg per day) combined with caspofungin (70 mg as the loading dose and 50 mg/day as the maintenance dose) and a GCS (methylprednisolone 40-80 mg/day). Patients in the MT group were treated only with SMX-TMP (TMP 15-20 mg/kg per day). The clinical response, adverse events and mortality were compared between the two groups. RESULTS: The percentage of patients with a positive clinical response in the ST group was significantly greater than that in the MT group (100.00% vs. 66.70%, P = 0.005). The incidence of adverse events in the MT group was greater than that in the ST group (50.00% vs. 15.00%, P = 0.022). Furthermore, the dose of TMP and duration of fever in the ST group were markedly lower than those in the MT group (15.71 mg/kg/day vs. 18.35 mg/kg/day (P = 0.001) and 7.00 days vs. 11.50 days (P = 0.029), respectively). However, there were no significant differences in all-cause mortality or duration of hospital stay between the MT group and the ST group. CONCLUSIONS: Compared with SMZ/TMP monotherapy, synergistic therapy (SMZ-TMP combined with caspofungin and a GCS) for the treatment of non-HIV-related PJP can increase the clinical response rate, decrease the incidence of adverse events and shorten the duration of fever. These results indicate that synergistic therapy is effective and safe for treating severe non-HIV-related PJP.


Asunto(s)
Pneumocystis carinii , Neumonía por Pneumocystis , Humanos , Neumonía por Pneumocystis/tratamiento farmacológico , Combinación Trimetoprim y Sulfametoxazol/efectos adversos , Caspofungina/uso terapéutico , Estudios Retrospectivos , Centros de Atención Terciaria , Corticoesteroides/uso terapéutico
10.
Eur J Pediatr ; 183(3): 1233-1244, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38091068

RESUMEN

This study aims to examine the clinical characteristics and outcomes of clinical myocarditis in pediatric patients in China. This is a multicenter retrospective study. Children diagnosed with clinical myocarditis from 20 hospitals in China and admitted between January 1, 2015, and December 30, 2021, were enrolled. The clinical myocarditis was diagnosed based on the "Diagnostic Recommendation for Myocarditis in Children (Version 2018)". The clinical data were collected from their medical records. A total of 1210 patients were finally enrolled in this study. Among them, 45.6% had a history of respiratory tract infection. An abnormal electrocardiogram was observed in 74.2% of patients. Echocardiography revealed that 32.3% of patients had a left ventricular ejection fraction of less than 50%. Cardiac MRI was performed in 4.9% of children with clinical myocarditis, of which 61% showed localized or diffuse hypersignal on T2-weighted images. Serum levels of cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), and N-terminal B-type natriuretic peptide (NT-proBNP) were higher in patients with fulminant myocarditis than in patients with myocarditis, making them potential risk factors for fulminant myocarditis. Following active treatment, 12.1% of patients were cured, and 79.1% were discharged with improvement. CONCLUSION: Clinical myocarditis in children often presents with symptoms outside the cardiovascular system. CK-MB, cTnI, and NT-proBNP are important indicators for assessing clinical myocarditis. The electrocardiogram and echocardiogram findings in children with clinical myocarditis exhibit significant variability but lack specificity. Cardiac MRI can be a useful tool for screening clinical myocarditis. Most children with clinical myocarditis have a favorable prognosis. WHAT IS KNOWN: • Pediatric myocarditis presents complex clinical manifestations and exhibits varying degrees of severity. Children with mild myocarditis generally have a favorable prognosis, while a small number of children with critically ill myocarditis experience sudden onset, hemodynamic disorders, and fatal arrhythmias. Therefore, early diagnosis and timely treatment of myocarditis are imperative. WHAT IS NEW: • To the best of our knowledge, this multicenter retrospective study is the largest ever reported in China, aiming to reveal the clinical characteristics and outcomes of pediatric clinical myocarditis in China. We provided an extensive analysis of the clinical characteristics, diagnosis, treatment, prognosis, and factors impacting disease severity in pediatric clinical myocarditis in China, which provides insights into the epidemiological characteristics of pediatric clinical myocarditis.


Asunto(s)
Miocarditis , Niño , Humanos , Miocarditis/diagnóstico , Miocarditis/terapia , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Izquierda , Forma MB de la Creatina-Quinasa , Arritmias Cardíacas , China/epidemiología
11.
J Nanobiotechnology ; 22(1): 299, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812031

RESUMEN

BACKGROUND: Discrepancies in the utilization of reactive oxygen species (ROS) between cancer cells and their normal counterparts constitute a pivotal juncture for the precise treatment of cancer, delineating a noteworthy trajectory in the field of targeted therapies. This phenomenon is particularly conspicuous in the domain of nano-drug precision treatment. Despite substantial strides in employing nanoparticles to disrupt ROS for cancer therapy, current strategies continue to grapple with challenges pertaining to efficacy and specificity. One of the primary hurdles lies in the elevated levels of intracellular glutathione (GSH). Presently, predominant methods to mitigate intracellular GSH involve inhibiting its synthesis or promoting GSH efflux. However, a conspicuous gap remains in the absence of a strategy capable of directly and efficiently clearing GSH. METHODS: We initially elucidated the chemical mechanism underpinning oridonin, a diminutive pharmacological agent demonstrated to perturb reactive oxygen species, through its covalent interaction with glutathione. Subsequently, we employed the incorporation of maleimide-liposomes, renowned for their capacity to disrupt the ROS delivery system, to ameliorate the drug's water solubility and pharmacokinetics, thereby enhancing its ROS-disruptive efficacy. In a pursuit to further refine the targeting for acute myeloid leukemia (AML), we harnessed the maleic imide and thiol reaction mechanism, facilitating the coupling of Toll-like receptor 2 (TLR2) peptides to the liposomes' surface via maleic imide. This strategic approach offers a novel method for the precise removal of GSH, and its enhancement endeavors are directed towards fortifying the precision and efficacy of the drug's impact on AML targets. RESULTS: We demonstrated that this peptide-liposome-small molecule machinery targets AML and consequently induces cell apoptosis both in vitro and in vivo through three disparate mechanisms: (I) Oridonin, as a Michael acceptor molecule, inhibits GSH function through covalent bonding, triggering an initial imbalance of oxidative stress. (II) Maleimide further induces GSH exhaustion, aggravating redox imbalance as a complementary augment with oridonin. (III) Peptide targets TLR2, enhances the directivity and enrichment of oridonin within AML cells. CONCLUSION: The rationally designed nanocomplex provides a ROS drug enhancement and targeted delivery platform, representing a potential solution by disrupting redox balance for AML therapy.


Asunto(s)
Diterpenos de Tipo Kaurano , Glutatión , Leucemia Mieloide Aguda , Liposomas , Especies Reactivas de Oxígeno , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/farmacología , Glutatión/metabolismo , Glutatión/química , Liposomas/química , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Línea Celular Tumoral , Receptor Toll-Like 2/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos
12.
Arch Toxicol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703205

RESUMEN

Consumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.

13.
J Obstet Gynaecol Res ; 50(5): 890-898, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403851

RESUMEN

AIM: To investigate the impact of letrozole cotreatment progestin-primed ovarian stimulation (PPOS) (Le PPOS) in controlled ovarian stimulation (COS) and the pregnancy outcomes in frozen-thawed embryo transfer cycles. METHODS: This retrospective cohort study included women who underwent in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI). A total of 2575 cycles were included (1675 in the Le PPOS group and 900 in the PPOS group). The primary outcome was the clinical pregnancy rates. The secondary outcome was the live birth rates. RESULTS: In this study, propensity score matching (PSM) was performed to create a perfect match of 379 patients in each group. After matching, the numbers of oocytes retrieved, mature oocytes, fertilization, and clinical pregnancy rates were more favorable in the Le PPOS group than in the PPOS group (all p < 0.05). The multivariable analysis showed that the clinical pregnancy rate was higher in the Le PPOS than in the PPOS group (odds ratio = 1.46, 95% confidence interval: 1.05-2.04, p = 0.024) after adjusting for potentially confounding factors (age, anti-Müllerian hormone levels, antral follicular count, the type of embryo transferred, number of transferred embryos, body mass index, and follicular stimulating hormone and estradiol levels on starting day). CONCLUSIONS: This retrospective study with a limited sample size suggests that the Le PPOS protocol might be an alternative to the PPOS protocol in women undergoing COS and could lead to better pregnancy outcomes. The results should be confirmed using a formal randomized controlled trial.


Asunto(s)
Fertilización In Vitro , Letrozol , Inducción de la Ovulación , Índice de Embarazo , Progestinas , Humanos , Femenino , Letrozol/administración & dosificación , Letrozol/farmacología , Inducción de la Ovulación/métodos , Embarazo , Adulto , Estudios Retrospectivos , Fertilización In Vitro/métodos , Progestinas/administración & dosificación , Progestinas/farmacología , Inyecciones de Esperma Intracitoplasmáticas/métodos , Transferencia de Embrión/métodos , Inhibidores de la Aromatasa/administración & dosificación , Inhibidores de la Aromatasa/farmacología
14.
Mikrochim Acta ; 191(2): 85, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195845

RESUMEN

A ratiometric electrochemical immunosensor is proposed for simultaneous detection of cellular-myelocytomatosis oncoprotein (C-myc) and B-cell lymphoma 2 (Bcl-2) via the potential-resolved strategy. It relied on multi-role co-loaded alloy composites (CLACs) and poly(3,4-ethylenedioxythiophene) (PEDOT)-graphene oxide (GO)-multiwalled carbon nanotubes (MWCNTs) (PGM) modified electrodes. CLACs with good catalytic and enzyme-like properties were synthesized in one step by loading tetramethylbenzidine (TMB) or methylene blue (MB) into Pt-Pd alloy and used as label materials. After immunological reactions, CLACs showed distinguishable dual differential pulse voltammetry signals at - 0.26 V and 0.38 V, corresponding to C-myc and Bcl-2, and the PGM had an electrochemical signal at 1.2 V, which could be used as a reference signal to construct a ratiometric sensor. CLACs had a satisfactory synergistic effect with the PGM, and eventually achieved quadruple signal amplification. Thus, benefiting from multiple magnification and ratiometric self-calibration functions, sensitive detections of C-myc and Bcl-2 were achieved, with detection limits as low as 0.5 and 2.5 pg mL-1, respectively. Additionally, when the designed method was applied to blood samples from lymphoma patients, results consistent with the ELISA kit were obtained. This will open avenues for constructing multiple protein detection sensors.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Humanos , Inmunoensayo , Aleaciones , Calibración
15.
Int J Environ Health Res ; : 1-10, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38544398

RESUMEN

We collected meteorological and urolithiasis-related hospitalization data from four counties in Ganzhou City for 2018-2019 and used the DLNM method to assess the lagged and cumulative effects of temperature on urolithiasis hospitalizations and obtain the total effect after meta-combination. Based on the nonlinear association between temperature and urolithiasis hospitalizations, the relative risk of overall high temperature (30℃) was 2.10 (95% CI: 1.07-4.10). No statistically significant difference (p = 0.07) was observed between males (RR = 2.04, 95% CI: 1.42-2.94) and females (RR = 1.45, 95% CI: 1.09-1.92) for the heat effect, which was higher in the ≥ 60 years age group (RR = 3.18, 95% CI: 1.76-5.76) than in the < 60 years age group (p = 0.007). High temperatures increased the risk of hospitalization for urolithiasis in Ganzhou, China, and the risk was greatest for individuals aged 60 and above, with similar risks observed across counties and genders.

16.
BMC Nurs ; 23(1): 445, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943099

RESUMEN

BACKGROUND: In the cultural milieu of China, family caregivers assume a pivotal role in the post-adolescent suicide attempt recovery journey. Nevertheless, they frequently encounter a dearth of requisite knowledge and information pertaining to the appropriate caregiving protocols for these adolescents. Notwithstanding, scholarly investigation into the informational requisites of this demographic concerning caregiving remains significantly constrained. METHODS: Between September and December 2023, a phenomenological approach was applied in qualitative research. Semi-structured interviews were undertaken with 15 family caregivers of adolescents who had experienced suicide attempts. The amassed data underwent systematic organization and analysis through the utilization of the Colaizzi method. RESULTS: Four primary themes were identified: (1) negative emotional encounters; (2) requirements for addressing dilemmas; (3) addressing the needs of the unknown; and (4) insufficient access to support. CONCLUSIONS: Family caregivers experience complex negative emotions upon learning about a teenager's suicide attempt. Throughout the caregiving process, they face numerous challenges, with apparent lack of external support, leading to an increased urgent need for caregiving information. Healthcare professionals, especially nurses, should actively identify and respond to the informational needs of family caregivers when caring for adolescents who have attempted suicide. This includes providing education on various coping mechanisms and support strategies, as well as assisting them in better understanding how to effectively manage the stress and challenges of caregiving. By doing so, healthcare professionals can help alleviate the psychological and emotional burden on family caregivers, thereby enhancing their caregiving abilities and overall well-being.

17.
Glia ; 71(5): 1197-1216, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36617748

RESUMEN

The homeostasis of glutamate is mainly regulated by the excitatory amino acid transporters (EAATs), especially by EAAT2 in astrocytes. Excessive glutamate in the synaptic cleft caused by dysfunction or dysregulation of EAAT2 can lead to excitotoxicity, neuronal death and cognitive dysfunction. However, it remains unclear about the detailed regulation mechanism of expression and function of astrocytic EAAT2. In this study, first, we found increased neuronal death and impairment of cognitive function in YAPGFAP -CKO mice (conditionally knock out Yes-associated protein [YAP] in astrocytes), and identified EAAT2 as a downstream target of YAP through RNA sequencing. Second, the expression of EAAT2 was decreased in cultured YAP-/- astrocytes and the hippocampus of YAPGFAP -CKO mice, and glutamate uptake was reduced in YAP-/- astrocytes, but increased in YAP-upregulated astrocytes. Third, further investigation of the mechanism showed that the mRNA and protein levels of ß-catenin were decreased in YAP-/- astrocytes and increased in YAP-upregulated astrocytes. Wnt3a activated YAP signaling and up-regulated EAAT2 through ß-catenin. Furthermore, over-expression or activation of ß-catenin partially restored the downregulation of EAAT2, the impairment of glutamate uptake, neuronal death and cognitive decline that caused by YAP deletion. Finally, activation of EAAT2 also rescued neuronal death and cognitive decline in YAPGFAP -CKO mice. Taken together, our study identifies an unrecognized role of YAP signaling in the regulation of glutamate homeostasis through the ß-catenin/EAAT2 pathway in astrocytes, which may provide novel insights into the pathogenesis of brain diseases that closely related to the dysfunction or dysregulation of EAAT2, and promote the development of clinical strategy.


Asunto(s)
Astrocitos , Proteínas Señalizadoras YAP , Animales , Ratones , Astrocitos/metabolismo , beta Catenina/metabolismo , Ácido Glutámico/metabolismo , Homeostasis , Sistemas de Transporte de Aminoácidos/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo
18.
Small ; 19(7): e2204744, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36494189

RESUMEN

Supported bimetallic nanoparticles (NPs) with ultrasmall sizes and homogeneous alloying are attractive for catalysis. However, facile synthesis of this type of material remains very challenging. Here, the aerosol drying impregnation method for rapid, scalable, and general synthesis of silica-supported bimetallic NPs is proposed. The method relies on aerosol spray drying to promote the mixing and dispersing of binary metal precursors on SiO2 . It is capable of controlling the composition and size of bimetallic NPs and avoids the use of expensive metal complex salts and complicated experiment procedures. Twelve permutations combining a noble metal (Pd, Ru, and Pt) and a base one (Fe, Co, Ni, and Cu) with ultrasmall sizes (1.4-2.2 nm in average size), uniform dispersion, and good alloying are synthesized. Interesting activity and selectivity trends in catalytic semihydrogenation of phenylacetylene over the supported Pd-based NPs can be observed. The silica-supported PdNi NPs deliver both high activity and styrene selectivity. Spectroscopic and density functional theory calculation results reveal the improved chemoselectivity originated from the suitably down-shifted d-band center of the PdNi NPs inducing an increased energy barrier for overhydrogenation and a weakened styrene adsorption.

19.
Planta ; 257(5): 95, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37036535

RESUMEN

MAIN CONCLUSION: The keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced reutilization of reserves in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. Soil alkalization of farmlands is increasingly serious, adversely restricting crop growth and endangering food security. Here, based on integrated analysis of transcriptomics and metabolomics, we systematically investigated changes in cotyledon weight and young root growth in response to alkali stress in two ecotypes of wild soybean after germination to reveal alkali-resistance mechanisms in barren-tolerant wild soybean. Compared with barren-tolerant wild soybean, the dry weight of common wild soybean cotyledons under alkali stress decreased slowly and the length of young roots shortened. In barren-tolerant wild soybean, nitrogen-transport amino acids asparagine and glutamate decreased in cotyledons but increased in young roots, and nitrogen-compound transporter genes and genes involved in asparagine metabolism were significantly up-regulated in both cotyledons and young roots. Moreover, isocitric, succinic, and L-malic acids involved in the glyoxylate cycle significantly accumulated and the malate synthetase gene was up-regulated in barren-tolerant wild soybean cotyledons. In barren-tolerant wild soybean young roots, glutamate and glycine related to glutathione metabolism increased significantly and the glutathione reductase gene was up-regulated. Pyruvic acid and citric acid involved in pyruvate-citrate metabolism increased distinctly and genes encoding pyruvate decarboxylase and citrate synthetase were up-regulated. Integrated analysis showed that the keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced protein decomposition, amino acid transport, and lipolysis in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. This study provides new ideas for the exploitation and utilization of wild soybean resources.


Asunto(s)
Fabaceae , Glycine max , Glycine max/metabolismo , Germinación , Transcriptoma , Álcalis/metabolismo , Asparagina/genética , Asparagina/metabolismo , Antioxidantes/metabolismo , Fabaceae/genética , Nitrógeno/metabolismo , Citratos/metabolismo , Glutamatos/genética , Glutamatos/metabolismo
20.
New Phytol ; 238(3): 1146-1162, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36862074

RESUMEN

A strong root system facilitates the absorption of water and nutrients from the soil, to improve the growth of crops. However, to date, there are still very few root development regulatory genes that can be used in crop breeding for agriculture. In this study, we cloned a negative regulator gene of root development, Robust Root System 1 (RRS1), which encodes an R2R3-type MYB family transcription factor. RRS1 knockout plants showed enhanced root growth, including longer root length, longer lateral root length, and larger lateral root density. RRS1 represses root development by directly activating the expression of OsIAA3 which is involved in the auxin signaling pathway. A natural variation in the coding region of RRS1 changes the transcriptional activity of its protein. RRS1T allele, originating from wild rice, possibly increases root length by means of weakening regulation of OsIAA3. Knockout of RRS1 enhances drought resistance by promoting water absorption and improving water use efficiency. This study provides a new gene resource for improving root systems and cultivating drought-resistant rice varieties with important values in agricultural applications.


Asunto(s)
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Sequía , Oryza/metabolismo , Fitomejoramiento , Sequías , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA