Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 181(3): 716-727.e11, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259488

RESUMEN

Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS. Knockouts of many mitochondrial pathways thought to be essential, including complex I and enzymes in Fe-S biosynthesis, grow relatively well at low oxygen and thus are buffered by hypoxia. In contrast, in certain cell types, knockout of lipid biosynthetic and peroxisomal genes causes fitness defects only in low oxygen. Our resource nominates genetic diseases whose severity may be modulated by oxygen and links hundreds of genes to oxygen homeostasis.


Asunto(s)
Metabolismo de los Lípidos/genética , Mitocondrias/genética , Oxígeno/metabolismo , Transcriptoma/genética , Hipoxia de la Célula , Pruebas Genéticas/métodos , Estudio de Asociación del Genoma Completo/métodos , Células HEK293 , Humanos , Hipoxia/metabolismo , Células K562 , Metabolismo de los Lípidos/fisiología , Lípidos/genética , Lípidos/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
2.
J Struct Biol ; 216(1): 108065, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310992

RESUMEN

Bacteria use the fatty acid composition of membrane lipids to maintain homeostasis of the bilayer. ß-Ketoacyl-ACP synthase III (FabH) initiates fatty acid biosynthesis and is the primary determinant of the fatty acid composition. FabH condenses malonyl-acyl carrier protein with an acyl-Coenzyme A primer to form ß -ketoacyl-acyl carrier protein which is used to make substrates for lipid synthesis. The acyl-Coenzyme A primer determines whether an acyl chain in the membrane has iso, anteiso, or no branching (straight chain) and biophysical properties of the membrane. The soil bacterium Bacillus subtilis encodes two copies of FabH (BsFabHA and BsFabHB), and here we solve their crystal structures. The substrate-free 1.85 Å and 2.40 Å structures of BsFabHA and BsFabHB show both enzymes have similar residues that line the active site but differ in the architecture surrounding the catalytic residues and oxyanion hole. Branching in the BsFabHB active site may better accommodate the structure of an iso-branched acyl-Coenzyme A molecule and thus confer superior utilization to BsFabHA for this primer type. The 2.02 Å structure of BsFabHA•Coenzyme A shows how the active site architecture changes after binding the first substrate. The other notable difference is an amino acid insertion in BsFabHB that extends a cap that covers the dimer interface. The cap topology is diverse across FabH structures and appears to be a distinguishing feature. FabH enzymes have variable sensitivity to natural product inhibitors and the availability of crystal structures help clarify how nature designs antimicrobials that differentially target FabH homologs.


Asunto(s)
Proteína Transportadora de Acilo , Bacillus subtilis , Especificidad por Sustrato , Proteína Transportadora de Acilo/química , Ácidos Grasos , Coenzima A
3.
J Bacteriol ; 203(20): e0022121, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34309397

RESUMEN

Enterococcus faecalis, a multiple antibiotic-resistant Gram-positive bacterium, has emerged as a serious nosocomial pathogen. Here, we used a genetic approach to characterize the strategies used by E. faecalis to fulfill its requirements for endogenous fatty acid (FA) synthesis in vitro and in vivo. The type II fatty acid synthesis (FASII) pathway is encoded by two operons and two monocistronic genes. Expression of all of these genes is repressed by exogenous FAs, which are incorporated into the E. faecalis membrane and modify its composition. Deletion of nine genes of the 12-gene operon abolished growth in an FA-free medium. Addition of serum, which is lipid rich, restored growth. Interestingly, the E. faecalis membrane contains cyclic fatty acids that modify membrane properties but that are unavailable in host serum. The cfa gene that encodes the cyclopropanation process is located in a locus independent of the FASII genes. Its deletion did not alter growth under the conditions tested, but yielded bacteria devoid of cyclic FAs. No differences were observed between mice infected with wild-type (WT) or with FASII or cyclopropanation mutant strains, in terms of bacterial loads in blood, liver, spleen, or kidneys. We conclude that in E. faecalis, neither FASII nor cyclopropanation enzymes are suitable antibiotic targets. IMPORTANCE Membrane lipid homeostasis is crucial for bacterial physiology, adaptation, and virulence. Fatty acids are constituents of the phospholipids that are essential membrane components. Most bacteria incorporate exogenous fatty acids into their membranes. Enterococcus faecalis has emerged as a serious nosocomial pathogen that is responsible for urinary tract infections, bacteremia, and endocarditis and is intrinsically resistant to numerous antibiotics. E. faecalis synthesizes saturated and unsaturated fatty acids, as well as cyclic fatty acids that are not found in the human host. Here, we characterized mutant strains deficient in fatty acid synthesis and modification using genetic, biochemical, and in vivo approaches. We conclude that neither the fatty acid synthesis pathway nor the cyclopropanation enzyme are suitable targets for E. faecalis antibiotic development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ciclopropanos/metabolismo , Enterococcus faecalis/metabolismo , Ácidos Grasos/biosíntesis , Metiltransferasas/metabolismo , Animales , Proteínas Bacterianas/genética , Medios de Cultivo , Ciclopropanos/química , ADN Bacteriano/genética , Enterococcus faecalis/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Humanos , Metiltransferasas/genética , Ratones , Ratones Endogámicos BALB C , Suero
4.
Artículo en Inglés | MEDLINE | ID: mdl-33139282

RESUMEN

Phenotypic screening of inhibitors of the essential Mycobacterium tuberculosis FAS-II dehydratase HadAB led to the identification of GSK3011724A, a compound previously reported to inhibit the condensation step of FAS-II. Whole-cell-based and cell-free assays confirmed the lack of activity of GSK3011724A against the dehydratase despite evidence of cross-resistance between GSK3011724A and HadAB inhibitors. The nature of the resistance mechanisms is suggestive of alterations in the FAS-II interactome reducing access of GSK3011724A to KasA.


Asunto(s)
Mycobacterium tuberculosis , Proteínas Bacterianas/genética , Acido Graso Sintasa Tipo II , Ácidos Micólicos
5.
Exp Cell Res ; 374(2): 342-352, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30553967

RESUMEN

Guanine nucleotide exchange factors (GEFs) are essential for small G proteins to activate their downstream signaling pathways, which are involved in morphogenesis, cell adhesion, and migration. Mutants of Gef26, a PDZ-GEF (PDZ domain-containing guanine nucleotide exchange factor) in Drosophila, exhibit strong defects in wings, eyes, and the reproductive and nervous systems. However, the precise roles of Gef26 in development remain unclear. In the present study, we analyzed the role of Gef26 in synaptic development and function. We identified significant decreases in bouton number and branch length at larval neuromuscular junctions (NMJs) in Gef26 mutants, and these defects were fully rescued by restoring Gef26 expression, indicating that Gef26 plays an important role in NMJ morphogenesis. In addition to the observed defects in NMJ morphology, electrophysiological analyses revealed functional defects at NMJs, and locomotor deficiency appeared in Gef26 mutant larvae. Furthermore, Gef26 regulated NMJ morphogenesis by regulating the level of synaptic Fasciclin II (FasII), a well-studied cell adhesion molecule that functions in NMJ development and remodeling. Finally, our data demonstrate that Gef26-specific small G protein Rap1 worked downstream of Gef26 to regulate the level of FasII at NMJs, possibly through a ßPS integrin-mediated signaling pathway. Taken together, our findings define a novel role of Gef26 in regulating NMJ development and function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Unión Neuromuscular/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Proteínas de Unión a Telómeros/metabolismo , Animales , Adhesión Celular/fisiología , Moléculas de Adhesión Celular Neuronal/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Larva/metabolismo , Terminales Presinápticos/metabolismo , Complejo Shelterina , Transducción de Señal/fisiología , Sinapsis/fisiología
6.
J Biol Chem ; 290(10): 5940-6, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25648887

RESUMEN

Bacterial type II fatty acid synthesis (FASII) is a target for the development of novel therapeutics. Bacteria incorporate extracellular fatty acids into membrane lipids, raising the question of whether pathogens use host fatty acids to bypass FASII and defeat FASII therapeutics. Some pathogens suppress FASII when exogenous fatty acids are present to bypass FASII therapeutics. FASII inhibition cannot be bypassed in many bacteria because essential fatty acids cannot be obtained from the host. FASII antibiotics may not be effective against all bacteria, but a broad spectrum of Gram-negative and -positive pathogens can be effectively treated with FASII inhibitors.


Asunto(s)
Acido Graso Sintasa Tipo II/metabolismo , Ácidos Grasos/metabolismo , Interacciones Huésped-Patógeno/genética , Lípidos de la Membrana/genética , Antibacterianos/uso terapéutico , Bacterias/patogenicidad , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Acido Graso Sintasa Tipo II/genética , Ácidos Grasos/biosíntesis , Humanos , Lipogénesis/genética , Lípidos de la Membrana/metabolismo
7.
J Mol Biol ; : 168711, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019106

RESUMEN

Previous studies on RNase R have highlighted significant effects of this ribonuclease in several processes of Streptococcus pneumoniae biology. In this work we show that elimination of RNase R results in overexpression of most of genes encoding the components of type II fatty acid biosynthesis (FASII) cluster. We demonstrate that RNase R is implicated in the turnover of most of transcripts from this pathway, affecting the outcome of the whole FASII cluster, and ultimately leading to changes in the membrane fatty acid composition. Our results show that the membrane of the deleted strain contains higher proportion of unsaturated and long-chained fatty acids than the membrane of the wild type strain. These alterations render the RNase R mutant more prone to membrane lipid peroxidation and are likely the reason for the increased sensitivity of this strain to detergent lysis and to the action of the bacteriocin nisin. Reprogramming of membrane fluidity is an adaptative cell response crucial for bacterial survival in constantly changing environmental conditions. The data presented here is suggestive of a role for RNase R in the composition of S. pneumoniae membrane , with strong impact on pneumococci adaptation to different stress situations.

8.
Metab Eng Commun ; 17: e00224, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37415783

RESUMEN

Fatty acids are produced by eukaryotes like baker's yeast Saccharomyces cerevisiae mainly using a large multifunctional type I fatty acid synthase (FASI) where seven catalytic steps and a carrier domain are shared between one or two protein subunits. While this system may offer efficiency in catalysis, only a narrow range of fatty acids are produced. Prokaryotes, chloroplasts and mitochondria rely instead on a FAS type II (FASII) where each catalytic step is carried out by a monofunctional enzyme encoded by a separate gene. FASII is more flexible and capable of producing a wider range of fatty acid structures, such as the direct production of unsaturated fatty acids. An efficient FASII in the preferred industrial organism S. cerevisiae could provide a platform for developing sustainable production of specialized fatty acids. We functionally replaced either yeast FASI genes (FAS1 or FAS2) with a FASII consisting of nine genes from Escherichia coli (acpP, acpS and fab -A, -B, -D, -F, -G, -H, -Z) as well as three from Arabidopsis thaliana (MOD1, FATA1 and FATB). The genes were expressed from an autonomously replicating multicopy vector assembled using the Yeast Pathway Kit for in-vivo assembly in yeast. Two rounds of adaptation led to a strain with a maximum growth rate (µmax) of 0.19 h-1 without exogenous fatty acids, twice the growth rate previously reported for a comparable strain. Additional copies of the MOD1 or fabH genes resulted in cultures with higher final cell densities and three times higher lipid content compared to the control.

9.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986522

RESUMEN

Resistance to antimicrobial drugs is currently a serious threat to human health. Consequently, we are facing an urgent need for new antimicrobial drugs acting with original modes of action. The ubiquitous and widely conserved microbial fatty acid biosynthesis pathway, called FAS-II system, represents a potential target to tackle antimicrobial resistance. This pathway has been extensively studied, and eleven proteins have been described. FabI (or InhA, its homologue in mycobacteria) was considered as a prime target by many teams and is currently the only enzyme with commercial inhibitor drugs: triclosan and isoniazid. Furthermore, afabicin and CG400549, two promising compounds which also target FabI, are in clinical assays to treat Staphylococcus aureus. However, most of the other enzymes are still underexploited targets. This review, after presenting the FAS-II system and its enzymes in Escherichia coli, highlights the reported inhibitors of the system. Their biological activities, main interactions formed with their targets and structure-activity relationships are presented as far as possible.

10.
Methods Mol Biol ; 2670: 49-68, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184699

RESUMEN

Acyl carrier proteins (ACPs) are central to many primary and secondary metabolic pathways. In E. coli fatty acid biosynthesis (FAB), the central ACP, AcpP, transports intermediates to a suite of partner proteins (PP) for iterative modification and elongation. The regulatory protein-protein interactions that occur between AcpP and the PP in FAB are poorly understood due to the dynamic and transient nature of these interactions. Solution-state NMR spectroscopy can reveal information at the atomic level through experiments such as the 2D heteronuclear single quantum coherence (HSQC). The following protocol describes NMR HSQC titration experiments that can elucidate biomolecular recognition events.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética
11.
FEBS J ; 289(16): 4963-4980, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35175661

RESUMEN

Comprehending the molecular strategies employed by Mycobacterium tuberculosis (Mtb) in FAS-II regulation is of paramount significance for curbing tuberculosis progression. Mtb employs two sets of dehydratases, namely HadAB and HadBC (ß-hydroxyacyl acyl carrier protein dehydratase), for the regulation of the fatty acid synthase (FAS-II) pathway. We utilized a sequence similarity network to discern the basis for the presence of two copies of the dehydratase gene in Mtb. This analysis groups HadC and HadA in different clusters, which could be attributed to the variability in their physiological role with respect to the acyl chain uptake. Our study reveals structural details pertaining to the crystal structure of the last remaining enzyme of the FAS-II pathway. It also provides insights into the highly flexible hot-dog helix and substrate regulatory loop. Additionally, mutational studies assisted in establishing the role of the C-terminal end in HadC of HadBC in the regulation of acyl carrier protein from Mtb-mediated interactions. Complemented with surface plasmon resonance and molecular dynamics simulation studies, the present study provides the first evidence of the molecular mechanisms involved in the differential binding affinity of the acyl carrier protein from Mtb towards both mtbHadAB and mtbHadBC.


Asunto(s)
Mycobacterium tuberculosis , Ácidos Micólicos , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/metabolismo , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/genética , Acido Graso Sintasa Tipo II/metabolismo , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Hidroliasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo
12.
Antibiotics (Basel) ; 11(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36009907

RESUMEN

Mycobacterium tuberculosis (M.tb.) enoyl-acyl carrier protein (ACP) reductase (InhA) is validated as a useful target for tuberculosis therapy and is considered an attractive enzyme to drug discovery. This study aimed to identify the novel inhibitor of the InhA enzyme, a potential target of M.tb. involved in the type II fatty acid biosynthesis pathway that controls mycobacterial cell envelope synthesis. We compiled 80 active compounds from Ruta graveolens and citrus plants belonging to the Rutaceae family for pharmacokinetics and molecular docking analyses. The chemical structures of the 80 phytochemicals and the 3D structure of the target protein were retrieved from the PubChem database and RCSB Protein Data Bank, respectively. The evaluation of druglikeness was performed based on Lipinski's Rule of Five, while the computed phytochemical properties and molecular descriptors were used to predict the ADMET of the compounds. Amongst these, 11 pharmacokinetically-screened compounds were further examined by performing molecular docking analysis with an InhA target using AutoDock 4.2. The docking results showed that gravacridonediol, a major glycosylated natural alkaloid from Ruta graveolens, might possess a promising inhibitory potential against InhA, with a binding energy (B.E.) of -10.80 kcal/mole and inhibition constant (Ki) of 600.24 nM. These contrast those of the known inhibitor triclosan, which has a B.E. of -6.69 kcal/mole and Ki of 12.43 µM. The binding efficiency of gravacridonediol was higher than that of the well-known inhibitor triclosan against the InhA target. The present study shows that the identified natural compound gravacridonediol possesses drug-like properties and also holds promise in inhibiting InhA, a key target enzyme of M.tb.

13.
Front Microbiol ; 13: 846722, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444621

RESUMEN

The fatty acid synthase type II (FAS-II) multienzyme system is the main target of drugs to inhibit mycolic acid synthesis in mycobacterium. Meromycolate extension acyl carrier protein (AcpM) serves as the carrier of fatty acyl chain shuttling among the individual FAS-II components during the progression of fatty acid elongation. In this paper, MSMEG_5634 in Mycobacterium smegmatis was determined to be a helix-grip structure protein with a deep hydrophobic pocket, preferring to form a complex with acyl-AcpM containing a fatty acyl chain at the C36-52 length, which is the medium product of FAS-II. MSMEG_5634 interacted with FAS-II components and presented relative accumulation at the cellular pole. By forming the MSMEG_5634/acyl-AcpM complex, which is free from FAS-II, MSMEG_5634 could transport acyl-AcpM away from FAS-II. Deletion of the MSMEG_5634 gene in M. smegmatis resulted in a mutant with decreased sensitivity to isoniazid and triclosan, two inhibitors of the FAS-II system. The isoniazid and triclosan sensitivity of this mutant could be restored by the ectopic expression of MSMEG_5634 or Rv0910, the MSMEG_5634 homologous protein in Mycobacterium tuberculosis H37Rv. These results suggest that MSMEG_5634 and its homologous proteins, forming a novel acyl-AcpM-binding protein family in mycobacterium, confer intrinsic sensitivity to FAS-II inhibitors.

14.
ACS Infect Dis ; 8(11): 2315-2326, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36325756

RESUMEN

Alternative mode-of-inhibition of clinically validated targets is an effective strategy for circumventing existing clinical drug resistance. Herein, we report 1,3-diarylpyrazolyl-acylsulfonamides as potent inhibitors of HadAB/BC, a 3-hydroxyl-ACP dehydratase complex required to iteratively elongate the meromycolate chain of mycolic acids in Mycobacterium tuberculosis (Mtb). Mutations in compound 1-resistant Mtb mutants mapped to HadC (Rv0637; K157R), while chemoproteomics confirmed the compound's binding to HadA (Rv0635), HadB (Rv0636), and HadC. The compounds effectively inhibited the HadAB and HadBC enzyme activities and affected mycolic acid biosynthesis in Mtb, in a concentration-dependent manner. Unlike known 3-hydroxyl-ACP dehydratase complex inhibitors of clinical significance, isoxyl and thioacetazone, 1,3-diarylpyrazolyl-acylsulfonamides did not require activation by EthA and thus are not liable to EthA-mediated resistance. Further, the crystal structure of a key compound in a complex with Mtb HadAB revealed unique binding interactions within the active site of HadAB, providing a useful tool for further structure-based optimization of the series.


Asunto(s)
Mycobacterium tuberculosis , Tioacetazona , Proteínas Bacterianas/metabolismo , Ácidos Micólicos/química , Tioacetazona/metabolismo , Tioacetazona/farmacología , Hidroliasas/química , Hidroliasas/metabolismo , Hidroliasas/farmacología
15.
J Biomol Struct Dyn ; 40(5): 1952-1969, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33063633

RESUMEN

Toxoplasma gondii is an opportunistic obligate parasite, ubiquitous around the globe with seropositivity rates that range from 10% to 90% and infection by the parasite of pregnant women causes pre-natal death of the foetus in most cases and severe neurodegenerative syndromes in some. No vaccine is currently available, and since drug-resistance is common among T. gondii strains, discovering lead compounds for drug design using diverse tactics is necessary. In this study, the sole constituent isoform of an enzymatic 3-oxoacyl-[acyl-carrier-protein] reduction step in an apicoplast-located fatty acid biosynthesis pathway was chosen as a possible drug target. FASII is prokaryotic therefore, targeting it would pose fewer side-effects to human hosts. After a homology 3D modelling of TgFabG, a high-throughput virtual screening of 9867 compounds, the elimination of ligands was carried out by a flexible ligand molecular docking and 200 ns molecular dynamics simulations, with additional DCCM and PC plot analyses. Molecular Dynamics and related post-MD analyses of the top 3 TgFabG binders selected for optimal free binding energies, showed that L2 maintained strong H-bonds with TgFabG and facilitated structural reorientation expected of FabGs, namely an expansion of the Rossmann Fold and a flexible lid capping. The most flexible TgFabG sites were the α7 helix (the flexible lid region) and the ß4-α4 and ß5-α6 loops. For TgFabG-L2, the movements of these regions toward the active site enabled greater ligand stability. Thus, L2 ("Skimmine"; PubChem ID: 320361), was ultimately selected as the optimal candidate for the discovery of lead compounds for rational drug design.Communicated by Ramaswamy H. Sarma.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Reductasa , Proteínas Protozoarias , Toxoplasma , 3-Oxoacil-(Proteína Transportadora de Acil) Reductasa/genética , 3-Oxoacil-(Proteína Transportadora de Acil) Reductasa/metabolismo , Femenino , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Embarazo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Toxoplasma/genética
16.
Front Microbiol ; 12: 703059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531837

RESUMEN

Toxoplasma gondii is an obligate intracellular protozoan parasite, which has a worldwide distribution and can infect a large number of warm-blooded animals and humans. T. gondii must colonize and proliferate inside the host cells in order to maintain its own survival by securing essential nutrients for the development of the newly generated tachyzoites. The type II fatty acid biosynthesis pathway (FASII) in the apicoplast is essential for the growth and survival of T. gondii. We investigated whether deletion of genes in the FASII pathway influences the in vitro growth and in vivo virulence of T. gondii. We focused on beta-hydroxyacyl-acyl carrier protein dehydratase (FabZ) and oxidoreductase, short chain dehydrogenase/reductase family proteins ODSCI and ODSCII. We constructed T. gondii strains deficient in FabZ, ODSCI, and ODSCII using CRISPR-Cas9 gene editing technology. The results of immunofluorescence assay, plaque assay, proliferation assay and egress assay showed that in RHΔFabZ strain the apicoplast was partly lost and the growth ability of the parasite in vitro was significantly inhibited, while for RHΔODSCI and RHΔODSCII mutant strains no similar changes were detected. RHΔFabZ exhibited reduced virulence for mice compared with RHΔODSCI and RHΔODSCII, as shown by the improved survival rate. Deletion of FabZ in the PRU strain significantly decreased the brain cyst burden in mice compared with PRUΔODSCI and PRUΔODSCII. Collectively, these findings suggest that FabZ contributes to the growth and virulence of T. gondii, while ODSCI and ODSCII do not contribute to these traits.

17.
mBio ; 12(1)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531402

RESUMEN

Fatty acid biosynthesis (FASII) enzymes are considered valid targets for antimicrobial drug development against the human pathogen Staphylococcus aureus However, incorporation of host fatty acids confers FASII antibiotic adaptation that compromises prospective treatments. S. aureus adapts to FASII inhibitors by first entering a nonreplicative latency period, followed by outgrowth. Here, we used transcriptional fusions and direct metabolite measurements to investigate the factors that dictate the duration of latency prior to outgrowth. We show that stringent response induction leads to repression of FASII and phospholipid synthesis genes. (p)ppGpp induction inhibits synthesis of malonyl-CoA, a molecule that derepresses FapR, a key regulator of FASII and phospholipid synthesis. Anti-FASII treatment also triggers transient expression of (p)ppGpp-regulated genes during the anti-FASII latency phase, with concomitant repression of FapR regulon expression. These effects are reversed upon outgrowth. GTP depletion, a known consequence of the stringent response, also occurs during FASII latency, and is proposed as the common signal linking these responses. We next showed that anti-FASII treatment shifts malonyl-CoA distribution between its interactants FapR and FabD, toward FapR, increasing expression of the phospholipid synthesis genes plsX and plsC during outgrowth. We conclude that components of the stringent response dictate malonyl-CoA availability in S. aureus FASII regulation, and contribute to latency prior to anti-FASII-adapted outgrowth. A combinatory approach, coupling a (p)ppGpp inducer and an anti-FASII, blocks S. aureus outgrowth, opening perspectives for bi-therapy treatment.IMPORTANCEStaphylococcus aureus is a major human bacterial pathogen for which new inhibitors are urgently needed. Antibiotic development has centered on the fatty acid synthesis (FASII) pathway, which provides the building blocks for bacterial membrane phospholipids. However, S. aureus overcomes FASII inhibition and adapts to anti-FASII by using exogenous fatty acids that are abundant in host environments. This adaptation mechanism comprises a transient latency period followed by bacterial outgrowth. Here, we use metabolite sensors and promoter reporters to show that responses to stringent conditions and to FASII inhibition intersect, in that both involve GTP and malonyl-CoA. These two signaling molecules contribute to modulating the duration of latency prior to S. aureus adaptation outgrowth. We exploit these novel findings to propose a bi-therapy treatment against staphylococcal infections.


Asunto(s)
Antibacterianos/farmacología , Ácidos Grasos/antagonistas & inhibidores , Guanosina Pentafosfato/fisiología , Guanosina Trifosfato/fisiología , Malonil Coenzima A/fisiología , Staphylococcus aureus/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Ácidos Grasos/biosíntesis , Humanos , Malonil Coenzima A/análisis , Mupirocina/farmacología , Fosfolípidos/biosíntesis , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/fisiología
18.
ACS Infect Dis ; 6(2): 195-204, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31775512

RESUMEN

Isoxyl (ISO) and thiacetazone (TAC) are two antitubercular prodrugs that abolish mycolic acid biosynthesis and kill Mycobacterium tuberculosis (Mtb) through the inhibition of the essential type II fatty acid synthase (FAS-II) dehydratase HadAB. While mutations preventing ISO and TAC either from being converted to their active form or from covalently modifying their target are the most frequent spontaneous mutations associated with high-level resistance to both drugs, the molecular mechanisms underlying the high-level ISO and TAC resistance of Mtb strains harboring missense mutations in the second, nonessential, FAS-II dehydratase HadBC have remained unexplained. Using a combination of genetic, biochemical, and biophysical approaches and molecular dynamics simulation, we here show that all four reported resistance mutations in the HadC subunit of HadBC alter the stability and/or specific activity of the enzyme, allowing it in two cases (HadBCV85I and HadBCK157R) to compensate for a deficiency in HadAB in whole Mtb bacilli. The analysis of the mycolic acid profiles of Mtb strains expressing the mutated forms of HadC further points to alterations in the activity of the mycolic acid biosynthetic complex and suggests an additional contributing resistance mechanism whereby HadC mutations may reduce the accessibility of HadAB to ISO and TAC. Collectively, our results highlight the importance of developing optimized inhibitors of the dehydration step of FAS-II capable of inhibiting both dehydratases simultaneously, a goal that may be achievable given the structural resemblance of the two enzymes and their reliance on the same catalytic subunit HadB.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/genética , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Bacterianas/genética , Deshidratación , Simulación de Dinámica Molecular , Mutación , Mycobacterium tuberculosis/enzimología , Ácidos Micólicos/análisis
19.
Eur J Med Chem ; 208: 112757, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32883635

RESUMEN

Development of new anti-bacterial agents acting upon underexploited targets and thus evading known mechanisms of resistance is the need of the hour. The highly conserved and distinct bacterial fatty acid biosynthesis pathway (FAS-II), presents a validated and yet relatively underexploited target for drug discovery. FabI and its isoforms (FabL, FabK, FabV and InhA) are essential enoyl-ACP reductases present in several microorganisms. In addition, the components of the FAS-II pathway are distinct from the multi-enzyme FAS-I complex found in mammals. Thus, inhibition of FabI and its isoforms is anticipated to result in broad-spectrum antibacterial activity. Several research groups from industry and academic laboratories have devoted significant efforts to develop effective FabI-targeting antibiotics, which are currently in various stages of clinical development for the treatment of multi-drug resistant bacterial infections. This review summarizes all the natural as well as synthetic inhibitors of gram-positive and gram-negative enoyl ACP reductases (FabI). The knowledge of the reported inhibitors can aid in the development of broad-spectrum antibacterials specifically targeting FabI enzymes from S. aureus, S. epidermidis, B. anthracis, B. cereus, E. coli, P. aeruginosa, P. falciparum and M. tuberculosis.


Asunto(s)
Antibacterianos/farmacología , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Compuestos Orgánicos/farmacología , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Bacterias/enzimología , Línea Celular Tumoral , Enoil-ACP Reductasa (NADH)/química , Inhibidores Enzimáticos/química , Acido Graso Sintasa Tipo II/química , Humanos , Compuestos Orgánicos/química
20.
Front Microbiol ; 9: 813, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867785

RESUMEN

Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA