Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Nanobiotechnology ; 21(1): 291, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612719

RESUMEN

Carmustine (BCNU), a vital type of chloroethylnitrosourea (CENU), inhibits tumor cells growth by inducing DNA damage at O6 position of guanine and eventually forming dG-dC interstrand cross-links (ICLs). However, the clinical application of BCNU is hindered to some extent by the absence of tumor selectivity, poor stability and O6-alkylguanine-DNA alkyltransferase (AGT) mediated drug resistance. In recent years, tumor microenvironment has been widely utilized for advanced drug delivery. In the light of the features of tumor microenvironment, we constructed a multifunctional hypoxia/esterase-degradable nanomicelle with AGT inhibitory activity named HACB NPs for tumor-targeting BCNU delivery and tumor sensitization. HACB NPs was self-assembled from hyaluronic acid azobenzene AGT inhibitor conjugates, in which O6-BG analog acted as an AGT inhibitor, azobenzene acted as a hypoxia-responsive linker and carboxylate ester bond acted as both an esterase-sensitive switch and a connector with hyaluronic acid (HA). The obtained HACB NPs possessed good stability, favorable biosafety and hypoxia/esterase-responsive drug-releasing ability. BCNU-loaded HACB/BCNU NPs exhibited superior cytotoxicity and apoptosis-inducing ability toward the human uterine cervix carcinoma HeLa cells compared with traditional combined medication of BCNU plus O6-BG. In vivo studies further demonstrated that after a selective accumulation in the tumor site, the micelles could respond to hypoxic tumor tissue for rapid drug release to an effective therapeutic dosage. Thus, this multifunctional stimulus-responsive nanocarrier could be a new promising strategy to enhance the anticancer efficacy and reduce the side effects of BCNU and other CENUs.


Asunto(s)
Carcinoma , Carmustina , Femenino , Humanos , Carmustina/farmacología , Células HeLa , Ácido Hialurónico , Microambiente Tumoral
2.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203633

RESUMEN

DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.


Asunto(s)
Transferasas Alquil y Aril , Cisteína , Reparación del ADN , ADN
3.
Biomed Chromatogr ; 34(2): e4750, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31743472

RESUMEN

O6 -benzylguanine (O6 BG) is an inhibitor of O6 -alkylguanine-DNA alkyltransferase (AGT). It binds to AGT by transferring its benzyl moiety to the cysteine residue at the active site of the enzyme. O6 BG synergizes the cytotoxic effects of alkylating agents by halting AGT-mediated DNA repair. O6 -benzyl-8-oxoguanine (8-oxo-O6 BG) is a metabolite of O6 BG, which is an equally potent inhibitor of AGT. In this work, we report the development and validation of an LC-MS/MS method for simultaneous determination of O6 BG and 8-oxo-O6 BG in human plasma. O6 BG and 8-oxo-O6 BG along with the analog internal standard, pCl-O6 BG, were extracted from alkalinized human plasma by liquid-liquid extraction using ethyl acetate, dried under nitrogen and reconstituted in the mobile phase. Reverse-phase chromatographic separation was achieved using isocratic elution with a mobile phase containing 80% acetonitrile and 0.05% formic acid in water at a flow rate of 0.600 ml/min. Quantification was performed using multiple-reaction-monitoring mode with positive ion-spray ionization. The linear calibration ranges of the method for O6 BG and 8-oxo-O6 BG were 1.25-250 ng/ml and 5.00-1.00 × 103 ng/ml, respectively, with acceptable assay accuracy, precision, recovery and matrix factor. This method was applied to the measurement of O6 BG and 8-oxo-O6 BG in patient plasma samples from a prior phase I clinical trial.


Asunto(s)
Cromatografía Liquida/métodos , Guanina/análogos & derivados , Espectrometría de Masas en Tándem/métodos , Guanina/sangre , Guanina/química , Guanina/farmacocinética , Humanos , Límite de Detección , Modelos Lineales , Extracción Líquido-Líquido , Reproducibilidad de los Resultados
4.
Biochem Biophys Res Commun ; 500(3): 698-703, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29684348

RESUMEN

The self-labeling protein tags are robust and versatile tools for studying different molecular aspects of cell biology. In order to be suitable for a wide spectrum of experimental conditions, it is mandatory that these systems are stable after the fluorescent labeling reaction and do not alter the properties of the fusion partner. SsOGT-H5 is an engineered variant alkylguanine-DNA-alkyl-transferase (OGT) of the hyperthermophilic archaeon Sulfolobus solfataricus, and it represents an alternative solution to the SNAP-tag® technology under harsh reaction conditions. Here we present the crystal structure of SsOGT-H5 in complex with the fluorescent probe SNAP-Vista Green® (SsOGT-H5-SVG) that reveals the conformation adopted by the protein upon the trans-alkylation reaction with the substrate, which is observed covalently bound to the catalytic cysteine residue. Moreover, we identify the amino acids that contribute to both the overall protein stability in the post-reaction state and the coordination of the fluorescent moiety stretching-out from the protein active site. We gained new insights in the conformational changes possibly occurring to the OGT proteins upon reaction with modified guanine base bearing bulky adducts; indeed, our structural analysis reveals an unprecedented conformation of the active site loop that is likely to trigger protein destabilization and consequent degradation. Interestingly, the SVG moiety plays a key role in restoring the interaction between the N- and C-terminal domains of the protein that is lost following the new conformation adopted by the active site loop in the SsOGT-H5-SVG structure. Molecular dynamics simulations provide further information into the dynamics of SsOGT-H5-SVG structure, highlighting the role of the fluorescent ligand in keeping the protein stable after the trans-alkylation reaction.


Asunto(s)
Colorantes Fluorescentes/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/química , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Coloración y Etiquetado , Sulfolobus solfataricus/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Colorantes Fluorescentes/química , Metilación , Simulación de Dinámica Molecular , Mutación/genética , Análisis de Componente Principal , Conformación Proteica , Sulfolobus solfataricus/química , Sulfolobus solfataricus/genética
5.
Chembiochem ; 18(23): 2351-2357, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-28980757

RESUMEN

DNA oligomers containing dimethylene and trimethylene intrastrand crosslinks (IaCLs) between the O4 and O6 atoms of neighboring thymidine (T) and 2'-deoxyguanosine (dG) residues were prepared by solid-phase synthesis. UV thermal denaturation (Tm ) experiments revealed that these IaCLs had a destabilizing effect on the DNA duplex relative to the control. Circular dichroism spectroscopy suggested these IaCLs induced minimal structural distortions. Susceptibility to dealkylation by reaction with various O6 -alkylguanine DNA alkyltransferases (AGTs) from human and Escherichia coli was evaluated. It was revealed that only human AGT displayed activity towards the IaCL DNA, with reduced efficiency as the IaCL shortened (from four to two methylene linkages). Changing the site of attachment of the ethylene linkage at the 5'-end of the IaCL to the N3 atom of T had minimal influence on duplex stability and structure, and was refractory to AGT activity.


Asunto(s)
ADN/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Dicroismo Circular , ADN/síntesis química , ADN/química , Reparación del ADN , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Escherichia coli/enzimología , Humanos , Cinética , Modelos Moleculares , Desnaturalización de Ácido Nucleico/efectos de la radiación , Técnicas de Síntesis en Fase Sólida , Especificidad por Sustrato , Timidina/química , Timidina/metabolismo , Rayos Ultravioleta
6.
Bioorg Med Chem ; 24(9): 2097-107, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27041398

RESUMEN

The drug resistance of CENUs induced by O(6)-alkylguanine-DNA alkyltransferase (AGT), which repairs the O(6)-alkylated guanine and subsequently inhibits the formation of dG-dC cross-links, hinders the application of CENU chemotherapies. Therefore, the discovery of CENU analogs with AGT inhibiting activity is a promising approach leading to novel CENU chemotherapies with high therapeutic index. In this study, a new combi-nitrosourea prodrug 3-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)-1-(2-chloroethyl)-1-nitrosourea (6), designed to release a DNA cross-linking agent and an inhibitor of AGT, was synthesized and evaluated for its antitumor activity and ability to induce DNA interstrand cross-links (ICLs). The results indicated that 6 exhibited higher cytotoxicity against mer(+) glioma cells compared with ACNU, BCNU, and their respective combinations with O(6)-benzylguanine (O(6)-BG). Quantifications of dG-dC cross-links induced by 6 were performed using HPLC-ESI-MS/MS. Higher levels of dG-dC cross-link were observed in 6-treated human glioma SF763 cells (mer(+)), whereas lower levels of dG-dC cross-link were observed in 6-treated calf thymus DNA, when compared with the groups treated with BCNU and ACNU. The results suggested that the superiority of 6 might result from the AGT inhibitory moiety, which specifically functions in cells with AGT activity. Molecular docking studies indicated that five hydrogen bonds were formed between the O(6)-BG analogs released from 6 and the five residues in the active pocket of AGT, which provided a reasonable explanation for the higher AGT-inhibitory activity of 6 than O(6)-BG.


Asunto(s)
Antineoplásicos/farmacología , Reactivos de Enlaces Cruzados/química , Inhibidores Enzimáticos/farmacología , Compuestos de Nitrosourea/farmacología , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , Profármacos/farmacología , Humanos
7.
Bioorg Med Chem Lett ; 25(22): 5208-11, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26459209

RESUMEN

O(6)-alkylguanine-DNA-alkyltransferase (hAGT) activity provides resistance to cancer chemotherapeutic agents and its inhibition enhances chemotherapy. We herein present the development of a novel fluorescence assay for the detection of hAGT activity. We designed a dsDNA sequence containing a fluorophore-quencher pair, where the fluorophore was attached to an O(6)-benzylguanine. This precursor was synthesized using the Mitsunobu reaction to introduce the benzyl group. The alkyl-fluorophore group is transferred to the active site during the dealkylation, producing an increase in fluorescence which is correlated to hAGT activity. This assay can be used for the evaluation of potential inhibitors of hAGT in a straightforward manner.


Asunto(s)
Pruebas de Enzimas/métodos , Colorantes Fluorescentes/síntesis química , O(6)-Metilguanina-ADN Metiltransferasa/análisis , Oligonucleótidos/síntesis química , Disparidad de Par Base , Fluoresceínas/química , Colorantes Fluorescentes/química , Humanos , Oligonucleótidos/química
8.
Chembiochem ; 15(3): 353-5, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24436288

RESUMEN

Easier with ethyl: Guengerich and co-workers have developed a powerful new approach to the structure elucidation of hydrolytically stable AGT-DNA crosslinks by reductive desulfurization of the thioether linkage between AGT and DNA to convert cysteine DPCs to the corresponding ethyl-DNA adducts, which can be readily characterized by LC-MSn.


Asunto(s)
Aductos de ADN/química , ADN/química , O(6)-Metilguanina-ADN Metiltransferasa/química , Azufre/química , Cromatografía Líquida de Alta Presión , Cisteína/química , ADN/metabolismo , Guanina/química , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Oxidación-Reducción , Espectrometría de Masa por Ionización de Electrospray
9.
Mol Carcinog ; 53(3): 201-10, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23065697

RESUMEN

MGMT is the primary vehicle for cellular removal of alkyl lesions from the O-6 position of guanine and the O-4 position of thymine. While key to the maintenance of genomic integrity, MGMT also removes damage induced by alkylating chemotherapies, inhibiting the efficacy of cancer treatment. Germline variants of human MGMT are well-characterized, but somatic variants found in tumors were, prior to this work, uncharacterized. We found that MGMT G132R, from a human esophageal tumor, and MGMT G156C, from a human colorectal cancer cell line, are unable to rescue methyltransferase-deficient Escherichia coli as well as wild type (WT) human MGMT after treatment with a methylating agent. Using pre-steady state kinetics, we biochemically characterized these variants as having a reduced rate constant. G132R binds DNA containing an O6 -methylguanine lesion half as tightly as WT MGMT, while G156C has a 40-fold decrease in binding affinity for the same damaged DNA versus WT. Mammalian cells expressing either G132R or G156C are more sensitive to methylating agents than mammalian cells expressing WT MGMT. G132R is slightly resistant to O6 -benzylguanine, an inhibitor of MGMT in clinical trials, while G156C is almost completely resistant to this inhibitor. The impared functionality of expressed variants G132R and G156C suggests that the presence of somatic variants of MGMT in a tumor could impact chemotherapeutic outcomes.


Asunto(s)
Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN/genética , Resistencia a Antineoplásicos/genética , Neoplasias Mamarias Experimentales/genética , Mutación/genética , Proteínas Supresoras de Tumor/genética , Animales , Antineoplásicos/farmacología , Metilasas de Modificación del ADN/antagonistas & inhibidores , Reparación del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Femenino , Guanina/análogos & derivados , Guanina/farmacología , Humanos , Neoplasias Mamarias Experimentales/patología , Ratones , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/antagonistas & inhibidores
10.
Int J Biol Macromol ; 246: 125657, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37399878

RESUMEN

Carmustine (BCNU) is a typical chemotherapy used for treatment of cerebroma and other solid tumors, which exerts antitumor effect by inducing DNA damage at O6 position of guanine. However, the clinical application of BCNU was extremely limited due to the drug resistance mainly mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability. To overcome these limitations, we developed a hypoxia-responsive nanomicelle with AGT inhibitory activity, which was successfully loaded with BCNU. In this nano-system, hyaluronic acid (HA) acts as an active tumor-targeting ligand to bind the overexpressing CD44 receptors on the surface of tumor cells. An azo bond selectively breaks in hypoxic tumor microenvironment to release O6-benzylguanine (BG) as AGT inhibitor and BCNU as DNA alkylating agent. The obtained HA-AZO-BG NPs with shell core structure had an average particle size of 176.98 ± 11.19 nm and exhibited good stability. Meanwhile, HA-AZO-BG NPs possessed a hypoxia-responsive drug release profile. After immobilizing BCNU into HA-AZO-BG NPs, the obtained HA-AZO-BG/BCNU NPs exhibited obvious hypoxia-selectivity and superior cytotoxicity in T98G, A549, MCF-7 and SMMC-7721 cells with IC50 at 189.0, 183.2, 90.1 and 100.1 µm, respectively, under hypoxic condition. Near-infrared imaging in HeLa tumor xenograft models showed that HA-AZO-BG/DiR NPs could effectively accumulate in tumor site at 4 h of post-injection, suggesting its good tumor-targetability. In addition, in vivo anti-tumor efficacy and toxicity evaluation indicated that HA-AZO-BG/BCNU NPs was more effective and less harmful compared to the other groups. After treatment, the tumor weight of HA-AZO-BG/BCNU NPs group was 58.46 % and 63.33 % of the control group and BCNU group, respectively. Overall, HA-AZO-BG/BCNU NPs was expected to be a promising candidate for targeted delivery of BCNU and elimination of chemoresistance.


Asunto(s)
Antineoplásicos Alquilantes , Carmustina , Humanos , Carmustina/farmacología , Micelas , Células Tumorales Cultivadas , Proteínas Portadoras , Hipoxia , Receptores de Hialuranos
11.
Biomed Pharmacother ; 167: 115631, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804814

RESUMEN

Glioma is extremely difficult to be completely excised by surgery due to its invasive nature. Thus, chemotherapy still is the mainstay in the treatment of glioma after surgery. However, the natural blood-brain barrier (BBB) greatly restricts the penetration of chemotherapeutic agents into the central nervous system. As a front-line anti-glioma agent in clinical, carmustine (BCNU) exerts antitumor effect by inducing DNA damage at the O6 position of guanine. However, the therapeutic effect of BCNU was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and insufficient local drug concentrations. To overcome these obstacles, we synthesized a BCNU-loaded hypoxia-responsive nano-micelle with BBB penetrating capacity and AGT inhibitory activity, named as T80-HA-AZO-BG/BCNU NPs. In this nano-system, Tween 80 (T80) serves as a functional coating on the surface of the micelle, promoting transportation across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hydrophobic O6-benzylguanine (BG) analog via a hypoxia-sensitive azo bond. Under hypoxic tumor microenvironment, the azo bond selectively breaks to release O6-BG as AGT inhibitor and BCNU as DNA alkylating agent. The synthesized T80-HA-AZO-BG/BCNU NPs showed good stability, favorable biocompatibility and hypoxia-responsive drug-releasing ability. T80 modification improved the transportation of the micelle across an in vitro BBB model. Moreover, T80-HA-AZO-BG/BCNU NPs exhibited significantly enhanced cytotoxicity against glioma cell lines with high AGT expression compared with traditional combined medication of BCNU plus O6-BG. We expect that the tumor-targeting nano-micelle designed for chloroethylnitrosourea will provide new tools for the development of effective glioma therapy.


Asunto(s)
Carmustina , Glioma , Humanos , Carmustina/farmacología , Carmustina/uso terapéutico , Micelas , Barrera Hematoencefálica , Glioma/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Microambiente Tumoral
12.
Biomed Pharmacother ; 144: 112338, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34678728

RESUMEN

Chloroethylnitrosoureas (CENUs) are an important family of chemotherapies in clinical treatment of cancers, which exert antitumor activity by inducing the formation of DNA interstrand crosslinks (dG-dC ICLs). However, the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability largely decrease the antitumor efficacy of CENUs. In this study, we synthesized an azobenzene-based hypoxia-activated combi-nitrosourea prodrug, AzoBGNU, and evaluated its hypoxic selectivity and antitumor activity. The prodrug was composed of a CENU pharmacophore and an O6-benzylguanine (O6-BG) analog moiety masked by a N,N-dimethyl-4-(phenyldiazenyl)aniline segment as a hypoxia-activated trigger, which was designed to be selectively reduced via azo bond break in hypoxic tumor microenvironment, accompanied with releasing of an O6-BG analog to inhibit AGT and a chloroethylating agent to induce dG-dC ICLs. AzoBGNU exhibited significantly increased cytotoxicity and apoptosis-inducing ability toward DU145 cells under hypoxia compared with normoxia, indicating the hypoxia-responsiveness as expected. Predominant higher cytotoxicity was observed in the cells treated by AzoBGNU than those by traditional CENU chemotherapy ACNU and its combination with O6-BG. The levels of dG-dC ICLs in DU145 cells induced by AzoBGNU was remarkably enhanced under hypoxia, which was approximately 6-fold higher than those in the AzoBGNU-treated groups under normoxia and those in the ACNU-treated groups. The results demonstrated that azobenzene-based combi-nitrosourea prodrug possessed desirable tumor-hypoxia targeting ability and eliminated chemoresistance compared with the conventional CENUs.


Asunto(s)
Antineoplásicos/farmacología , Derivados del Benceno/farmacología , Metilasas de Modificación del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Desarrollo de Medicamentos , Inhibidores Enzimáticos/farmacología , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , Profármacos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Humanos , Masculino , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Esferoides Celulares , Hipoxia Tumoral , Microambiente Tumoral , Proteínas Supresoras de Tumor/metabolismo
13.
Future Med Chem ; 11(4): 269-284, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30560688

RESUMEN

Aim: A hypoxia-activated combi-nitrosourea prodrug, N-(2-chloroethyl)-N'-2-(2-(4-nitrobenzylcarbamate)-O6-benzyl-9-guanine)ethyl-N-nitrosourea (NBGNU), was synthesized and evaluated for its hypoxic selectivity and anticancer activity in vitro. Results: The prodrug was designed as a tripartite molecule consisting of a chloroethylnitrosourea pharmacophore to induce DNA interstrand crosslinks (ICLs) and an O6-benzylguanine analog moiety masked by a 4-nitrobenzylcarbamate group to induce hypoxia-activated inhibition of O6-alkylguanine-DNA alkyltransferase. NBGNU was tested for hypoxic selectivity, cytotoxicity and DNA ICLs ability. The reduction product amounts, cell death rates and DNA ICL levels induced by NBGNU under hypoxic conditions were all significantly higher than those induced by NBGNU under normoxic conditions. Conclusion: The tripartite combi-nitrosourea prodrug exhibits desirable tumor-hypoxia targeting ability and abolished chemoresistance compared with the conventional chloroethylnitrosoureas.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glioma/tratamiento farmacológico , Guanina/farmacología , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , Profármacos/farmacología , Antineoplásicos/química , Hipoxia de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Glioma/metabolismo , Glioma/patología , Guanina/análogos & derivados , Guanina/química , Humanos , Modelos Moleculares , Estructura Molecular , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Profármacos/química , Células Tumorales Cultivadas
14.
Curr Protoc Nucleic Acid Chem ; 76(1): e74, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30657645

RESUMEN

O6 -Alkylguanine DNA-alkyltransferase (AGT), a DNA repair protein, can form crosslinks with DNA. The AGT-DNA crosslinks are known to be mutagenic when AGT is heterologously expressed in Escherichia coli, as well as in mammalian cells. To understand the biological consequences, reliable access to AGT-oligonucleotide crosslinks is needed. This article describes the synthesis and characterization of site-specific AGT-oligonucleotide crosslinks at the N2-position of deoxyguanosine and N6-position of deoxyadenosine. We developed a post-oligomerization strategy for the synthesis of propargyl-modified oligonucleotides. Copper-catalyzed azide-alkyne cycloaddition was used as a key step to obtain the iodoacetamide-linked oligonucleotides, which serve as good electrophiles for the crosslinking reaction with cysteine-145 of the active site of AGT. Trypsinization of AGT and hydrolysis of oligonucleotides, combined with analysis by liquid chromatography-tandem mass spectrometry, was utilized to confirm the nucleobase-adducted peptides. This method provides a useful strategy for the synthesis and characterization of site-specific DNA-protein crosslinks, which can be further used to understand proteolytic degradation-coupled DNA repair mechanisms. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
O(6)-Metilguanina-ADN Metiltransferasa/síntesis química , Oligonucleótidos/química , Catálisis , Dominio Catalítico , Cromatografía Liquida/métodos , Cobre/química , Reactivos de Enlaces Cruzados/química , Escherichia coli/genética , O(6)-Metilguanina-ADN Metiltransferasa/química , O(6)-Metilguanina-ADN Metiltransferasa/genética , Polimerizacion , Espectrometría de Masas en Tándem/métodos , Moldes Genéticos , Tripsina/química
15.
Artículo en Inglés | MEDLINE | ID: mdl-28283089

RESUMEN

Alkylating agents are known to induce the formation of O6-alkylguanine (O6-alkG) and O4-alkylthymine (O4-alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O6-methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O6-ethylguanine. However, the manner by which O4-alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O4-alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding ß-galactosidase. Such AT-to-GC mutations should be induced through the formation of O4-alkT at AT base pairs. As expected, an O6-alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O6-alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O4-alkylthymine. We hypothesize that the MutS protein recognizes the O4-alkT:A base pair more efficiently than O4-alkT:G. Such a distinction would result in misincorporation of G at the O4-alkT site, followed by higher mutation frequencies in wild-type cells, which have MutS protein, compared to MMR-deficient strains.


Asunto(s)
Alquilantes/farmacología , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Escherichia coli/genética , Emparejamiento Base , Mutación
16.
Chem Asian J ; 11(4): 576-83, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26692563

RESUMEN

Oligonucleotides containing an alkylene intrastrand cross-link (IaCL) between the O(6) -atoms of two consecutive 2'-deoxyguanosines (dG) were prepared by solid-phase synthesis. UV thermal denaturation studies of duplexes containing butylene and heptylene IaCL revealed a 20 °C reduction in stability compared to the unmodified duplexes. Circular dichroism profiles of these IaCL DNA duplexes exhibited signatures consistent with B-form DNA. Human O(6) -alkylguanine DNA alkyltransferase (hAGT) was capable of repairing both IaCL containing duplexes with slightly greater efficiency towards the heptylene analog. Interestingly, repair efficiencies of hAGT towards these IaCL were lower compared to O(6) -alkylene linked IaCL lacking the 5'-3'-phosphodiester linkage between the connected 2'-deoxyguanosine residues. These results demonstrate that the proficiency of hAGT activity towards IaCL at the O(6) -atom of dG is influenced by the backbone phosphodiester linkage between the cross-linked residues.


Asunto(s)
Aductos de ADN/metabolismo , Reparación del ADN , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Secuencia de Bases , ADN/química , ADN/metabolismo , Aductos de ADN/química , Daño del ADN , Humanos , Desnaturalización de Ácido Nucleico/efectos de la radiación , Temperatura , Rayos Ultravioleta
17.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1033-1034: 138-146, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27544051

RESUMEN

The repair of DNA mediated by O(6)-alkylguanine-DNA alkyltransferase (AGT) provides protection against DNA damage from endogenous or exogenous alkylation of the O(6) position of guanine. However, this repair acts as a double-edged sword in cancer treatment, as it not only protects normal cells from chemotherapy-associated toxicities, but also results in cancer cell resistance to guanine O(6)-alkylating antitumour agents. Thus, AGT plays an important role in predicting the individual susceptibility to guanine O(6)-alkylating carcinogens and chemotherapies. Accordingly, it is necessary to establish a quantitative method for determining AGT activity with high accuracy, sensitivity and practicality. Here, we describe a novel nonradioactive method for measuring AGT activity using stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). This method is based on the irreversibility of the removal of the O(6)-alkyl group from guanine by AGT and on the high affinity of O(6)-benzylguanine (O(6)-BG) as an AGT substrate. HPLC-ESI-MS/MS was used to measure the AGT activities in cell protein extracts from eight tumour lines, demonstrating that AGT activity was quite variable among different cell lines, ranging from nondetectable to 1021 fmol/mg protein. The experiments performed in intact tumour cells yielded similar results but exhibited slightly higher activities than those observed in cell protein extracts. The accuracy of this method was confirmed by an examination of AGT expression levels using western blotting analysis. To our knowledge, this method is the first mass spectrometry-based AGT activity assay, and will likely provide assistance in the screening of cancer risk or the application of chemotherapies.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Marcaje Isotópico/métodos , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Espectrometría de Masas en Tándem/métodos , Línea Celular Tumoral , Guanina/análisis , Guanina/química , Guanina/metabolismo , Humanos , Límite de Detección , Modelos Lineales , O(6)-Metilguanina-ADN Metiltransferasa/análisis , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray
18.
DNA Repair (Amst) ; 20: 14-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24553127

RESUMEN

The O(6)-alkylguanine DNA alkyltransferase (AGT) is a highly conserved protein responsible for direct repair of alkylated guanine and to a lesser degree thymine bases. While specific DNA lesion-bound complexes in crystal structures consist of monomeric AGT, several solution studies have suggested that cooperative DNA binding plays a role in the physiological activities of AGT. Cooperative AGT-DNA complexes have been described by theoretical models, which can be tested by atomic force microscopy (AFM). Direct access to structural features of AGT-DNA complexes at the single molecule level by AFM imaging revealed non-specifically bound, cooperative complexes with limited cluster length. Implications of cooperative binding in AGT-DNA interactions are discussed.


Asunto(s)
ADN/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , ADN/química , Reparación del ADN , Humanos , Microscopía de Fuerza Atómica , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , O(6)-Metilguanina-ADN Metiltransferasa/química , Unión Proteica
19.
J Cancer Ther ; 4(4): 919-931, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23946891

RESUMEN

The tumor selectivity of alkylating agents that produce guanine O6-chloroethyl (laromustine and carmustine) and O6-methyl (temozolomide) lesions, depends upon O6-methylguanine-DNA methyltransferase (MGMT) activity being lower in tumor than in host tissue. Despite the established role of MGMT as a tumor resistance factor, consensus on how to assess MGMT expression in clinical samples is unsettled. The aim of this study is to examine the relationship between the values derived from distinctive MGMT measurements in 13, 12, 6 and 2 pairs of human tumors and matched normal adjacent tissue from the colon, kidney, lung and liver, respectively, and in human cell lines. The MGMT measurements included (a) alkyl-transfer assays using [benzene-3H]O6-benzylguanine as a substrate to assess functional MGMT activity, (b) methylation-specific PCR (MSP) to probe MGMT gene promoter CpG methylations as a measure of gene silencing, and (c) western immunoblots to analyze the MGMT protein. In human cell lines, a strict negative correlation existed between MGMT activity and the extent of promoter methylation. In tissue specimens, by contrast, the correlation between these two variables was low. Moreover, alkyl-transfer assays identified 3 pairs of tumors and normal tissue with tumor-selective reduction in MGMT activity in the absence of promoter methylation. Cell line MGMT migrated as a single band in western analyses, whereas tissue MGMT was heterogeneous around its molecular size and at much higher molecular masses, indicative of multi-layered post-translational modifications. Malignancy is occasionally associated with a mobility shift in MGMT. Contrary to the prevalent expectation that MGMT expression is governed at the level of gene silencing, these data suggest that other mechanisms that can lead to tumor-selective reduction in MGMT activity exist in human tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA