Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(14): e2104496119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344428

RESUMEN

SignificancePhysical and chemical properties of individual atmospheric particles determine their climate impacts. Hygroscopic inorganic salt particles mixed with trace amounts of organic material are predicted to be liquid under typical tropospheric conditions in the summertime Arctic. Yet, we unexpectedly observed a significant concentration of solid particles composed of ammonium sulfate with an organic coating under conditions of high relative humidity and low temperature. These particle properties are consistent with marine biogenic-derived new particle formation and growth, with particle collision hypothesized to result in the solid phase. This particle source is predicted to have increasing relevance in the context of declining Arctic sea ice and increasing open water, with impacts on clouds, and therefore climate.

2.
Environ Sci Technol ; 57(42): 15945-15955, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37823561

RESUMEN

Air quality in China has continuously improved during the Three-Year Action Plan (2018-2020); however, the changes in aerosol composition, properties, and sources in Beijing summer remain poorly understood. Here, we conducted real-time measurements of aerosol composition in five summers from 2018 to 2022 along with WRF-Community Multiscale Air Quality simulations to characterize the changes in aerosol chemistry and the roles of meteorology and emission reductions. Largely different from winter, secondary inorganic aerosol and photochemical-related secondary organic aerosol (SOA) showed significant decreases by 55-67% in summer, and the most decreases occurred in 2021. Comparatively, the decreases in the primary aerosol species and gaseous precursors were comparably small. While decreased atmospheric oxidation capacity as indicated by ozone changes played an important role in changing SOA composition, the large decrease in aerosol liquid water and small increase in particle acidity were critical for nitrate changes by decreasing gas-particle partitioning substantially (∼28%). Analysis of meteorological influences demonstrated clear and similar transitions in aerosol composition and formation mechanisms at a relative humidity of 50-60% in five summers. Model simulations revealed that emission controls played the decisive role in reducing sulfate, primary OA, and anthropogenic SOA during the Three-Year Action Plan, while meteorology affected more nitrate and biogenic SOA.


Asunto(s)
Contaminantes Atmosféricos , Beijing , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Nitratos , Monitoreo del Ambiente , Aerosoles/análisis
3.
Environ Sci Technol ; 57(36): 13559-13568, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37647604

RESUMEN

Mineral dust serves as a significant source of sulfate aerosols by mediating heterogeneous sulfur dioxide (SO2) oxidation in the atmosphere. Given that a considerable proportion of small organic acids are deposited onto mineral dust via long-range transportation, understanding their impact on atmospheric SO2 transformation and sulfate formation is of great importance. This study investigates the effect of oxalate on heterogeneous SO2 uptake and oxidation phenomenon by in situ FTIR, theoretical calculation, and continuous stream experiments, exploiting hematite (Fe2O3) as an environmental indicator. The results highlight the critical role of naturally deposited oxalate in mononuclear monodentate coordinating surface Fe atoms of Fe2O3 that enhances the activation of O2 for oxidizing SO2 into sulfate. Meanwhile, oxalate increases the hygroscopicity of Fe2O3, facilitating H2O dissociation into reactive hydroxyl groups and further augmenting the SO2 uptake capacity of Fe2O3. More importantly, other conventional iron minerals, such as goethite and magnetite, as well as authentic iron-containing mineral dust, exhibit similar oxalate-promoted sulfate accumulation behaviors. Our findings suggest that oxalate-assisted SO2 oxidation on iron minerals is one of the important contributors to secondary sulfate aerosols, especially during the nighttime with high relative humidity.


Asunto(s)
Hierro , Oxalatos , Sulfatos , Minerales , Oxidación-Reducción , Óxidos de Azufre , Aerosoles
4.
Atmos Environ (1994) ; 3102023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37637474

RESUMEN

In this study, the water-solubility and sources of metals and trace elements in both fine and coarse particulate matter (PM) were investigated in Central Los Angeles. Sampling was performed in the winter, spring, and summer of 2022 at the Particle Instrumentation Unit (PIU) of the University of Southern California located in the proximity of I-110 freeway. Both fine and coarse PM samples were collected using Personal Cascade Impactors (PCIS) and chemically analyzed to determine their water-soluble and water-insoluble metal content. Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) were used to determine the sources of soluble and insoluble metals and obtain their contributions to total metal concentration. Our results indicate that the water-solubility of most of the metals is higher in the fine size fraction compared to the coarse fraction. Seasonal variations in the water solubility of selected metals for both coarse and fine fractions were observed, with higher water-soluble metal concentrations in summer for several species (e.g., Fe, S, Pb, Cu, La, Ni, and Al), possibly due to higher photochemical processing, while in winter, almost all species exhibited higher insoluble fraction concentrations. The PCA and MLR analyses results showed that tire and brake wear was the most significant contributor to the total metals for both fine soluble and insoluble portions, accounting for 35% and 75% of the total metals, respectively. Combustion sources also contributed substantially to water-soluble metals for fine and coarse size ranges, representing 40% and 32% of the total metal mass, respectively. In addition, mineral dust and soil and re-suspended dust were identified as the highest contributors to coarse metals. The MLR analysis also revealed that secondary aerosols contributed 11% to the fine water-soluble metals. Our results suggest that non-tailpipe emissions significantly contribute to both coarse and fine PM metals in the Central Los Angeles region.

5.
J Environ Sci (China) ; 114: 503-513, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35459512

RESUMEN

Air pollution in China is complex, and the formation mechanism of chemical components in particulate matter is still unclear. This study selected three consecutive heavy haze pollution episodes (HPEs) during winter in Beijing for continuous field observation, including an episode with heavy air pollution under red alert. Clean days during the observation period were selected for comparison. The HPE characteristics of Beijing in winter were: under the influence of adverse meteorological conditions such as high relative humidity, temperature inversion and low wind speed; and strengthening of secondary transformation reactions, which further intensified the accumulation of secondary aerosols and other pollutants, promoting the explosive growth of PM2.5. PM2.5/CO values, as indicators of the contribution of secondary transformation in PM2.5, were approximately 2 times higher in the HPEs than the average PM2.5/CO during the clean period. The secondary inorganic aerosols (sulfate nitrate and ammonium salt) were significantly enhanced during the HPEs, and the conversion coefficients were remarkably improved. In addition, it is interesting to observe that the production of sulfate tended to exceed that of nitrate in the late stage of all three HPEs. The existence of aqueous phase reactions led to the explosive growth sulfur oxidation ratio (SOR) and rapid generation of sulfate under high relative humidity (RH>70%).


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , China , Monitoreo del Ambiente , Nitratos/análisis , Óxidos de Nitrógeno/análisis , Material Particulado/análisis , Estaciones del Año , Sulfatos/análisis
6.
Environ Sci Technol ; 55(20): 13625-13637, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34591460

RESUMEN

Severe and persistent haze events in northern China, characterized by high loading of fine aerosol especially of secondary origin, negatively impact human health and the welfare of ecosystems. However, current knowledge cannot fully explain the formation of this haze pollution. Despite field observations of elevated levels of reactive halogen species (e.g., BrCl, ClNO2, Cl2, HBr) at several sites in China, the influence of halogens (particularly bromine) on haze pollution is largely unknown. Here, for the first time, we compile an emission inventory of anthropogenic bromine and quantify the collective impact of halogens on haze pollution in northern China. We utilize a regional model (WRF-Chem), revised to incorporate updated halogen chemistry and anthropogenic chlorine and bromine emissions and validated by measurements of atmospheric pollutants and halogens, to show that halogens enhance the loading of fine aerosol in northern China (on average by 21%) and especially its secondary components (∼130% for secondary organic aerosol and ∼20% for sulfate, nitrate, and ammonium aerosols). Such a significant increase is attributed to the enhancement of atmospheric oxidants (OH, HO2, O3, NO3, Cl, and Br) by halogen chemistry, with a significant contribution from previously unconsidered bromine. These results show that higher recognition of the impact of anthropogenic halogens shall be given in haze pollution research and air quality regulation.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , China , Ecosistema , Monitoreo del Ambiente , Halógenos , Humanos , Material Particulado/análisis
7.
Environ Sci Technol ; 55(14): 9784-9793, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34232022

RESUMEN

Photocatalytic materials are proved to effectively eliminate gaseous pollutants and are widely used in the environment. However, as one of the rare experiments focusing on their influence on secondary aerosol formation generated in the gas phase (SAg), our study demonstrated the high-yield SAg formation in the photocatalysis process. In this study, the photodegradation of SO2 by TiO2 under various relative humidity (RH) conditions was deeply explored with multiple methods. Unexpectedly, H2SO4 aerosols (SAg-H2SO4) in yields of 10.10-32.64% were observed under the studied RH conditions for the first time. Gaseous •OH and H2O2 generated from the oxidation of H2O and reduction of O2 by TiO2 were directly detected in the photocatalysis process, and they were identified as the determining factor for SAg-H2SO4 formation. The formation of SAg-H2SO4 was also influenced by RH, the heterogeneous reaction of SO2, and the uptake of H2SO4. The role of the released gaseous •OH and H2O2 on atmospheric chemistry was proved to be unignorable by adopting the obtained parameters into the real environment. These findings provided direct experimental evidence of secondary pollution in the photocatalysis process and are of great significance to the field of atmospheric environment and photocatalytic materials.


Asunto(s)
Contaminantes Atmosféricos , Gases , Aerosoles , Contaminantes Atmosféricos/análisis , Peróxido de Hidrógeno , Oxidación-Reducción , Especies Reactivas de Oxígeno , Titanio
8.
Environ Sci Technol ; 55(17): 11557-11567, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34431667

RESUMEN

The lockdown due to COVID-19 created a rare opportunity to examine the nonlinear responses of secondary aerosols, which are formed through atmospheric oxidation of gaseous precursors, to intensive precursor emission reductions. Based on unique observational data sets from six supersites in eastern China during 2019-2021, we found that the lockdown caused considerable decreases (32-61%) in different secondary aerosol components in the study region because of similar-degree precursor reductions. However, due to insufficient combustion-related volatile organic compound (VOC) reduction, odd oxygen (Ox = O3 + NO2) concentration, an indicator of the extent of photochemical processing, showed little change and did not promote more decreases in secondary aerosols. We also found that the Chinese provinces and international cities that experienced reduced Ox during the lockdown usually gained a greater simultaneous PM2.5 decrease than other provinces and cities with an increased Ox. Therefore, we argue that strict VOC control in winter, which has been largely ignored so far, is critical in future policies to mitigate winter haze more efficiently by reducing Ox simultaneously.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , China , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Oxígeno , Material Particulado/análisis , SARS-CoV-2
9.
Environ Sci Technol ; 55(12): 7794-7807, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34044541

RESUMEN

Mixing of anthropogenic gaseous pollutants and biogenic volatile organic compounds impacts the formation of secondary aerosols, but still in an unclear manner. The present study explores secondary aerosol formation via the interactions between ß-pinene, O3, NO2, SO2, and NH3 under dark conditions. Results showed that aerosol yield can be largely enhanced by more than 330% by NO2 or SO2 but slightly enhanced by NH3 by 39% when the ratio of inorganic gases to ß-pinene ranged from 0 to 1.3. Joint effects of NO2 and SO2 and SO2 and NH3 existed as aerosol yields increased with NO2 but decreased with NH3 when SO2 was kept constant. Infrared spectra showed nitrogen-containing aerosol components derived from NO2 and NH3 and sulfur-containing species derived from SO2. Several particulate organic nitrates (MW 215, 229, 231, 245), organosulfates (MW 250, 264, 280, 282, 284), and nitrooxy organosulfates (MW 295, 311, 325, 327, and 343) were identified using high-resolution orbitrap mass spectrometry in NO2 and SO2 experiments, and their formation mechanism is discussed. Most of these nitrogen- and sulfur-containing species have been reported in ambient particles. Our results suggest that the complex interactions among ß-pinene, O3, NO2, SO2, and NH3 during the night might serve as a potential pathway for the formation of particulate nitrogen- and sulfur-containing organics, especially in polluted regions with both anthropogenic and biogenic influences.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles , Contaminantes Atmosféricos/análisis , Monoterpenos Bicíclicos , Nitrógeno , Azufre
10.
Adv Atmos Sci ; 38(7): 1101-1114, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33840873

RESUMEN

A better knowledge of aerosol properties is of great significance for elucidating the complex mechanisms behind frequently occurring haze pollution events. In this study, we examine the temporal and spatial variations in both PM1 and its major chemical constituents using three-year field measurements that were collected in six representative regions in China between 2012 and 2014. Our results show that both PM1 and its chemical compositions varied significantly in space and time, with high PM1 loadings mainly observed in the winter. By comparing chemical constituents between clean and polluted episodes, we find that the elevated PM1 mass concentration during pollution events should be largely attributable to significant increases in organic matter (OM) and inorganic aerosols like sulfate, nitrate, and ammonium (SNA), indicative of the critical role of primary emissions and secondary aerosols in elevating PM1 pollution levels. The ratios of PM1/PM2.5 are found to be generally high in Shanghai and Guangzhou, while relatively low ratios are seen in Xi'an and Chengdu, indicating anthropogenic emissions were more likely to accumulate in forms of finer particles. With respect to the relative importance of chemical components and meteorological factors quantified via statistical modeling practices, we find that primary emissions and secondary aerosols were the two leading factors contributing to PM1 variations, though meteorological factors also played important roles in regulating the dispersion of atmospheric PM.

11.
Artículo en Inglés | MEDLINE | ID: mdl-29652205

RESUMEN

The social acceptance of biogas is often hampered by environmental and health concerns. In this study, the current knowledge about the impact of biogas technology is presented and discussed. The survey reports the emission rate estimates of the main greenhouse gases (GHG), namely CO2, CH4 and N2O, according to several case studies conducted over the world. Direct emissions of gaseous pollutants are then discussed, with a focus on nitrogen oxides (NOx); evidences of the importance of suitable biomass and digestate storages are also reported. The current knowledge on the environmental impact induced by final use of digestate is critically discussed, considering both soil fertility and nitrogen release into atmosphere and groundwater; several case studies are reported, showing the importance of NH3 emissions with regards to secondary aerosol formation. The biogas upgrading to biomethane is also included in the study: with this regard, the methane slip in the off-gas can significantly reduce the environmental benefits.


Asunto(s)
Biocombustibles , Ambiente , Animales , Biocombustibles/estadística & datos numéricos , Biocombustibles/provisión & distribución , Biocombustibles/toxicidad , Biomasa , Dióxido de Carbono/análisis , Conservación de los Recursos Energéticos , Monitoreo del Ambiente , Gases/provisión & distribución , Gases/toxicidad , Humanos , Metano/metabolismo , Nitrógeno/metabolismo , Suelo
12.
J Environ Sci (China) ; 66: 348-357, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29628104

RESUMEN

Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Modelos Químicos , Emisiones de Vehículos/análisis , Aerosoles/química , Contaminantes Atmosféricos/química , China , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
13.
Mar Pollut Bull ; 204: 116556, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850756

RESUMEN

The Yellow Sea, characterized by an influx of both natural marine and anthropogenic pollutants, coupled with favorable photochemical conditions, serve as key sites for potential interactions between atmospheric gases and aerosols. A recent air monitoring campaign in the Yellow Sea revealed aerosol contributions from four sources, with the highest mass concentrations and dominance of NO3- (38.1 ± 0.37 %) during winds from China. Indications of potential secondary aerosol formation were observed through the presence of hydrolysis and oxidation products of nitrate and volatile organic compounds. Correlations between time series distributions of biomass burning organic aerosols and particle number counts (Dp 100-500 nm, R2 = 0.94) further suggest potential size growth through adsorption and scavenging processes. The results from this study provide observational evidence of a shift in atmospheric compositions from sulfate to nitrate, leading to an increased atmospheric nitrogen deposition in the Yellow Sea.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Nitratos/análisis , Atmósfera/química , Compuestos Orgánicos Volátiles/análisis , Océanos y Mares , Sulfatos/análisis
14.
Environ Pollut ; 347: 123665, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38432344

RESUMEN

Vehicular emissions deteriorate air quality in urban areas notably. The aim of this study was to conduct an in-depth characterization of gaseous and particle emissions, and their potential to form secondary aerosol emissions, of the cars meeting the most recent emission Euro 6d standards, and to investigate the impact of fuel as well as engine and aftertreatment technologies on pollutants at warm and cold ambient temperatures. Studied vehicles were a diesel car with a diesel particulate filter (DPF), two gasoline cars (with and without a gasoline particulate filter (GPF)), and a car using compressed natural gas (CNG). The impact of fuel aromatic content was examined for the diesel car and the gasoline car without the GPF. The results showed that the utilization of exhaust particulate filter was important both in diesel and gasoline cars. The gasoline car without the GPF emitted relatively high concentrations of particles compared to the other technologies but the implementation of the GPF decreased particle emissions, and the potential to form secondary aerosols in atmospheric processes. The diesel car equipped with the DPF emitted low particle number concentrations except during the DPF regeneration events. Aromatic-free gasoline and diesel fuel efficiently reduced exhaust particles. Since the renewal of vehicle fleet is a relatively slow process, changing the fuel composition can be seen as a faster way to affect traffic emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Gasolina , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , Automóviles , Polvo , Aerosoles , Vehículos a Motor , Material Particulado/análisis
15.
J Hazard Mater ; 467: 133728, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335619

RESUMEN

Cities in Northeast China, e.g., Harbin, were brought to the forefront of air pollution control by a national-level policy promulgated in 2021, i.e., the Circular on Further Promoting the Pollution Prevention and Control Battle (the FP3CB Circular) which aimed at eliminating heavy or severe air pollution events. In this study, we explored the response of Harbin aerosol to the FP3CB Circular, based on observational results from two campaigns conducted during 2020-2021 and 2021-2022. A clear decreasing trend was identified for the impact of domestic biomass burning between the two winters, presumably driven by the clean heating actions. The 2021-2022 winter was also characterized by reduced formation of secondary organic aerosol but enhanced production of nitrate, which could be attributed to the less humid conditions but higher temperatures, respectively, compared to the 2020-2021 winter. The overall effect of these changes was a decrease in the contribution of organic species to wintertime aerosol in Harbin. In addition, the number of heavy or severe pollution days rebounded in the 2021-2022 winter compared to 2020-2021 (5 vs. 3), indicating that the emissions of primary particles and gaseous precursors must be further reduced to achieve the ambitious goals of the FP3CB Circular.

16.
Sci Total Environ ; 859(Pt 1): 160290, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36410489

RESUMEN

Refractory black carbon (rBC) aerosols emitted from incomplete combustion are important climate forcers. Understanding the chemical characteristics and evolution of rBC-related components is particularly crucial to assess rBC environmental impacts. Here, we explored the chemical components of rBC in Shenzhen, China, using a soot-particle aerosol mass spectrometer (SP-AMS). The observations showed that the rBC coating was mainly composed of secondary aerosols with an average mass contribution of 84.7 %. Among them, secondary organic coating occupied ∼57.7 % of the total coating mass. Exploration of the relationship between secondary organic aerosol (SOA) coating and Ox (=NO2 + O3, an indicator of the extent of photochemical processing) showed that SOA coating was generated mainly through photochemical oxidation during the day. Similarly, sulfate coating, with a small mass fraction of 0.9 %, was also dominated by photochemical oxidation. In contrast, nitrate coating responded positively to ambient relative humidity, especially at night, indicating that it was driven by heterogeneous reactions. In addition, the increased ratio of nitrate on rBC to bulk nitrate at night suggested that black carbon surface could facilitate nocturnal nitrate formation.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Nitratos , Aerosoles/análisis , Hollín/análisis , Compuestos Orgánicos/análisis , China , Carbono/análisis , Material Particulado/análisis
17.
Environ Pollut ; 335: 122362, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37567407

RESUMEN

Fine particulate matter (PM2.5) in Northeast China was targeted by national-level clean air policy for the first time in 2022, with the release of Action Plan to eliminate heavy air pollution events. In this study, we investigated sources of PM2.5 during three successive winters in Harbin, a megacity in Northeast China, based on observational results from several recent campaigns in 2018-2021. During the 2020-2021 campaign, daytime and nighttime samples were collected in specific months in addition to 24-h integrated measurements, and the two sets of samples were combined in different ways to run a positive matrix factorization model. The source apportionment results suggested that the resolved secondary organic carbon (SOCPMF) had an uncertainty of ∼12%. Secondary aerosols were found to show the following features for the typical winters without agricultural fires. First, SOCPMF could be properly constrained by results from another widely-used approach for SOC estimation, the elemental carbon-tracer method. Second, secondary PM2.5 calculated using SOCPMF and secondary inorganic ions were generally in line with the independent estimations based on air quality data. Third, secondary components accounted for more than 50% of PM2.5 on average and contributed even more significantly during severe haze episodes, which were the focus of the latest Action Plan. This study also found that the wintertime PM2.5 decreased more slowly during 2017-2021 compared to 2013-2017, by ∼1 and 10 µg/m3 per year, respectively, for the metropolitan area where Harbin is located at. Our results highlighted the importance of secondary aerosols for further improving air quality in Northeast China, and for avoiding heavy pollution as required by the latest Action Plan.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Contaminación del Aire/análisis , China , Estaciones del Año , Aerosoles/análisis , Carbono/análisis
18.
Sci Total Environ ; 895: 165114, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379922

RESUMEN

The PM2.5-bound visibility improvement remains challenging in China despite vigorous control on anthropogenic emissions in recent years. One critical issue could exist in the distinct physicochemical properties especially of secondary aerosol components. Taken the COVID-19 lockdown as an extreme case, we focus on the relationship between visibility, emission cuts, and secondary formation of inorganics with changing optical and hygroscopic behaviors in Chongqing, a representative city characterized with humid weather and poor diffusion conditions in Sichuan Basin, southwest of China. It is found that the increased secondary aerosol abundance (e.g., PM2.5/CO and PM2.5/PM10 as a proxy) with enhanced atmospheric oxidative capacity (e.g., O3/Ox, Ox = O3 + NO2), combined with insignificant meteorological dilution effect, might partly offset the benefit on the improved visibility from substantial reduction in anthropogenic emissions during the COVID-19 lockdown. This is in line with the efficient oxidation rates of sulfur and nitrogen (i.e., SOR, NOR), increasing more significantly with PM2.5 and relative humidity (RH) in comparison to O3/Ox. The resulted larger fraction of nitrate and sulfate (i.e., fSNA) would promote the optical enhancement (i.e., f(RH)) and mass extinction efficiency (MEE) of PM2.5, especially under highly humid conditions (e.g., RH > 80 %, with approximately half of the occurrence frequency). This could further facilitate secondary aerosol formation via aqueous-phase reaction and heterogeneous oxidation, likely due to enhanced water uptake and enlarged size/surface area upon hydration. In combination of gradually increased atmospheric oxidative capacity, this positive feedback would in turn inhibit the visibility improvement particularly at high RH environment. Considering the current air pollution complex status over China, further work on the formation mechanisms of major secondary species (e.g., sulfate, nitrate, and secondary organics), size-resolved chemical and hygroscopic properties, together with their interactions are highly recommended. Our results are hoping to assist in the atmospheric pollution complex mitigation and prevention in China.

19.
Huan Jing Ke Xue ; 44(5): 2421-2429, 2023 May 08.
Artículo en Zh | MEDLINE | ID: mdl-37177917

RESUMEN

The secondary component is an important factor causing PM2.5 pollution in the Beijing-Tianjin-Hebei urban agglomeration in winter. In this study, the CO tracer method was used to estimate the secondary PM2.5 concentration of the Beijing-Tianjin-Hebei urban agglomeration in the winter of 2017-2021. The temporal and spatial distribution characteristics were analyzed, and the influencing factors of regional secondary PM2.5 were discussed. The results showed that the decreasing trend of PM2.5 concentration in the Beijing-Tianjin-Hebei Region in the winter of 2017-2021 was obvious, and the cities with the largest decline were located in the central and southern part of Hebei Province, mainly contributed by primary PM2.5. There was a good correlation between secondary PM2.5 and PM2.5 in all cities of the Beijing-Tianjin-Hebei urban agglomeration, and the proportion of secondary PM2.5 in Beijing and Tianjin was significantly higher than that in other cities. With the aggravation of pollution degree, the mass concentration of primary PM2.5 and secondary PM2.5 increased in varying degrees, and the proportion of secondary PM2.5 increased significantly. Compared with the direct measurement results, the estimated value obtained by this method was lower as a whole. The selection of appropriate primary aerosol reference value was the key to improving this method and estimating the secondary PM2.5 concentration.

20.
Artículo en Inglés | MEDLINE | ID: mdl-35805613

RESUMEN

In order to evaluate the pollution characterization of PM2.5 (particles with aerodynamic diameters less than or equal to 2.5 µm) and secondary aerosol formation under the different photochemical activity levels, CO was used as a tracer for primary aerosol, and hourly maximum of O3 (O3,max) was used as an index for photochemical activity. Results showed that under the different photochemical activity levels of L, M, LH and H, the mass concentration of PM2.5 were 29.8 ± 17.4, 32.9 ± 20.4, 39.4 ± 19.1 and 42.2 ± 18.9 µg/m3, respectively. The diurnal patterns of PM2.5 were similar under the photochemical activity and they increased along with the strengthening of photochemical activity. Especially, the ratios of estimated secondary aerosol to the observed PM2.5 were more than 58.6% at any hour under the photochemical activity levels of LH and H. The measured chemical composition included water soluble inorganic ions, organic carbon (OC), and element carbon (EC), which accounted for 73.5 ± 14.9%, 70.3 ± 24.9%, 72.0 ± 21.9%, and 65.8 ± 21.2% in PM2.5 under the photochemical activities of L, M, LH, and H, respectively. Furthermore, the sulfate (SO42-) and nitrate (NO3-) were nearly neutralized by ammonium (NH4+) with the regression slope of 0.71, 0.77, 0.77, and 0.75 between [NH4+] and 2[SO42-] + [NO3-]. The chemical composition of PM2.5 was mainly composed of SO42-, NO3-, NH4+ and secondary organic carbon (SOC), indicating that the formation of secondary aerosols significantly contributed to the increase in PM2.5. The formation mechanism of sulfate in PM2.5 was the gas-phase oxidation of SO2 to H2SO4. Photochemical production of nitric acid was intense during daytime, but particulate nitrate concentration was low in the afternoon due to high temperature.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono , China , Monitoreo del Ambiente , Nitratos , Compuestos Orgánicos , Material Particulado/análisis , Estaciones del Año , Sulfatos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA