Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.287
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(32): e2407295121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39083416

RESUMEN

Over the last decade, an increasing body of evidence has emerged, supporting the existence of a metastable liquid-liquid critical point in supercooled water whereby two distinct liquid phases of different densities coexist. Analyzing long molecular dynamics simulations performed using deep neural-network force fields trained to accurate quantum mechanical data, we demonstrate that the low-density liquid phase displays a strong propensity toward spontaneous polarization, as witnessed by large and long-lived collective dipole fluctuations. Our findings suggest that the dynamical stability of the low-density phase, and hence the transition from high-density to low-density liquid, is triggered by a collective process involving an accumulation of rotational angular jumps, which could ignite large dipole fluctuations. This dynamical transition involves subtle changes in the electronic polarizability of water molecules which affects their rotational mobility within the two phases. These findings hold the potential for catalyzing activity in the search for dielectric-based probes of the putative second critical point.

2.
Proc Natl Acad Sci U S A ; 120(8): e2217150120, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791101

RESUMEN

We have structurally characterized the liquid crystal (LC) phase that can appear as an intermediate state when a dielectric nematic, having polar disorder of its molecular dipoles, transitions to the almost perfectly polar-ordered ferroelectric nematic. This intermediate phase, which fills a 100-y-old void in the taxonomy of smectic LCs and which we term the "smectic ZA," is antiferroelectric, with the nematic director and polarization oriented parallel to smectic layer planes, and the polarization alternating in sign from layer to layer with a 180 Å period. A Landau free energy, originally derived from the Ising model of ferromagnetic ordering of spins in the presence of dipole-dipole interactions, and applied to model incommensurate antiferroelectricity in crystals, describes the key features of the nematic-SmZA-ferroelectric nematic phase sequence.

3.
Proc Natl Acad Sci U S A ; 120(13): e2213650120, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36940334

RESUMEN

Misfit dislocations at a heteroepitaxial interface produce huge strain and, thus, have a significant impact on the properties of the interface. Here, we use scanning transmission electron microscopy to demonstrate a quantitative unit-cell-by-unit-cell mapping of the lattice parameters and octahedral rotations around misfit dislocations at the BiFeO3/SrRuO3 interface. We find that huge strain field is achieved near dislocations, i.e., above 5% within the first three unit cells of the core, which is typically larger than that achieved from the regular epitaxy thin-film approach, thus significantly altering the magnitude and direction of the local ferroelectric dipole in BiFeO3 and magnetic moments in SrRuO3 near the interface. The strain field and, thus, the structural distortion can be further tuned by the dislocation type. Our atomic-scale study helps us to understand the effects of dislocations in this ferroelectricity/ferromagnetism heterostructure. Such defect engineering allows us to tune the local ferroelectric and ferromagnetic order parameters and the interface electromagnetic coupling, providing new opportunities to design nanosized electronic and spintronic devices.

4.
Proc Natl Acad Sci U S A ; 119(47): e2210062119, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375062

RESUMEN

We report the observation of the smectic AF, a liquid crystal phase of the ferroelectric nematic realm. The smectic AF is a phase of small polar, rod-shaped molecules that form two-dimensional fluid layers spaced by approximately the mean molecular length. The phase is uniaxial, with the molecular director, the local average long-axis orientation, normal to the layer planes, and ferroelectric, with a spontaneous electric polarization parallel to the director. Polarization measurements indicate almost complete polar ordering of the ∼10 Debye longitudinal molecular dipoles, and hysteretic polarization reversal with a coercive field ∼2 × 105 V/m is observed. The SmAF phase appears upon cooling in two binary mixtures of partially fluorinated mesogens: 2N/DIO, exhibiting a nematic (N)-smectic ZA (SmZA)-ferroelectric nematic (NF)-SmAF phase sequence, and 7N/DIO, exhibiting an N-SmZA-SmAF phase sequence. The latter presents an opportunity to study a transition between two smectic phases having orthogonal systems of layers.

5.
Proc Natl Acad Sci U S A ; 119(32): e2207858119, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914148

RESUMEN

We investigated the electrostatic behavior of ferroelectric liquid droplets exposed to the pyroelectric field of a lithium niobate ferroelectric crystal substrate. The ferroelectric liquid is a nematic liquid crystal, in which almost complete polar ordering of the molecular dipoles generates an internal macroscopic polarization locally collinear to the mean molecular long axis. Upon entering the ferroelectric phase by reducing the temperature from the nematic phase, the liquid crystal droplets become electromechanically unstable and disintegrate by the explosive emission of fluid jets. These jets are mostly interfacial, spreading out on the substrate surface, and exhibit fractal branching out into smaller streams to eventually disrupt, forming secondary droplets. We understand this behavior as a manifestation of the Rayleigh instability of electrically charged fluid droplets, expected when the electrostatic repulsion exceeds the surface tension of the fluid. In this case, the charges are due to the bulk polarization of the ferroelectric fluid, which couples to the pyroelectric polarization of the underlying lithium niobate substrate through its fringing field and solid-fluid interface coupling. Since the ejection of fluid does not neutralize the droplet surfaces, they can undergo multiple explosive events as the temperature decreases.

6.
Proc Natl Acad Sci U S A ; 119(41): e2211059119, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191201

RESUMEN

All-solid-state Li-metal batteries (ASSLBs) are highly desirable, due to their inherent safety and high energy density; however, the irregular and uncontrolled growth of Li filaments is detrimental to interfacial stability and safety. Herein, we report on the incorporation of piezo-/ferroelectric BaTiO3 (BTO) nanofibers into solid electrolytes and determination of electric-field distribution due to BTO inclusion that effectively regulates the nucleation and growth of Li dendrites. Theoretical simulations predict that the piezoelectric effect of BTO embedded in solid electrolyte reduces the driving force of dendrite growth at high curvatures, while its ferroelectricity reduces the overpotential, which helps to regularize Li deposition and Li+ flux. Polarization reversal of soft solid electrolytes was identified, confirming a regular deposition and morphology alteration of Li. As expected, the ASSLBs operating with LiFePO4/Li and poly(ethylene oxide) (PEO)/garnet solid electrolyte containing 10% BTO additive showed a steady and long cycle life with a reversible capacity of 103.2 mAh g-1 over 500 cycles at 1 C. Furthermore, the comparable cyclability and flexibility of the scalable pouch cells prepared and the successful validation in the sulfide electrolytes, demonstrating its universal and promising application for the integration of Li metal anodes in solid-state batteries.

7.
Proc Natl Acad Sci U S A ; 119(30): e2122436119, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862455

RESUMEN

Mechanistic studies on lead halide perovskites (LHPs) in recent years have suggested charge carrier screening as partially responsible for long carrier diffusion lengths and lifetimes that are key to superior optoelectronic properties. These findings have led to the ferroelectric large polaron proposal, which attributes efficient charge carrier screening to the extended ordering of dipoles from symmetry-breaking unit cells that undergo local structural distortion and break inversion symmetry. It remains an open question whether this proposal applies in general to semiconductors with LHP-like anharmonic and dynamically disordered phonons. Here, we study electron-phonon coupling in Bi2O2Se, a semiconductor which bears resemblance to LHPs in ionic bonding, spin-orbit coupling, band transport with long carrier diffusion lengths and lifetimes, and phonon disorder as revealed by temperature-dependent Raman spectroscopy. Using coherent phonon spectroscopy, we show the strong coupling of an anharmonic phonon mode at 1.50 THz to photo-excited charge carriers, while the Raman excitation of this mode is symmetry-forbidden in the ground-state. Density functional theory calculations show that this mode, originating from the A1g phonon of out-of-plane Bi/Se motion, gains oscillator strength from symmetry-lowering in polaron formation. Specifically, lattice distortion upon ultrafast charge localization results in extended ordering of symmetry-breaking unit cells and a planar polaron wavefunction, namely a two-dimensional polaron in a three-dimensional lattice. This study provides experimental and theoretical insights into charge interaction with anharmonic phonons in Bi2O2Se and suggests ferroelectric polaron formation may be a general principle for efficient charge carrier screening and for defect-tolerant semiconductors.

8.
Nano Lett ; 24(33): 10331-10336, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39133234

RESUMEN

We study the temperature dependent elastic properties of Ba0.8Sr0.2TiO3 freestanding membranes across the ferroelectric-to-paraelectric phase transition using an atomic force microscope. The bending rigidity of thin membranes can be stiffer compared to stretching due to strain gradient elasticity (SGE). We measure the Young's modulus of freestanding Ba0.8Sr0.2TiO3 drumheads in bending and stretching dominated deformation regimes on a variable temperature platform, finding a peak in the difference between the two Young's moduli obtained at the phase transition. This demonstrates a dependence of SGE on the dielectric properties of a material and alludes to a flexoelectric origin of an effective SGE.

9.
Nano Lett ; 24(22): 6683-6688, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767925

RESUMEN

Two-dimensional (2D) ferroelectrics promise ultrathin flexible nanoelectronics, typically utilizing a metal-ferroelectric-metal sandwich structure. Electrodes can either contribute free carriers to screen the depolarization field, enhancing nanoscale ferroelectricity, or induce charge doping, disrupting the long-range crystalline order. We explore electrodes' dual roles in 2D ferroelectric capacitors, supported by first-principles calculations covering a range of electrode work functions. Our results reveal volcano-type relationships between ferroelectric-electrode binding affinity and work function, which are further unified by a quadratic scaling between the binding energy and the transferred interfacial charge. At the monolayer limit, charge transfer dictates the ferroelectric stability and switching properties. This general characteristic is confirmed in various 2D ferroelectrics including α-In2Se3, CuInP2S6, and SnTe. As the ferroelectric layer's thickness increases, the capacitor stability evolves from a charge-transfer-dominated state to a screening-dominated state. The delicate interplay between these two effects has important implications for 2D ferroelectric capacitor applications.

10.
Nano Lett ; 24(3): 975-982, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38189647

RESUMEN

Ferroelectric memristors hold immense promise for advanced memory and neuromorphic computing. However, they face limitations due to low readout current density in conventional designs with low-conductive ferroelectric channels, especially at the nanoscale. Here, we report a ferroelectric-mediated memristor utilizing a 2D MoS2 nanoribbon channel with an ultrascaled cross-sectional area of <1000 nm2, defined by a ferroelectric BaTiO3 nanoribbon stacked on top. Strikingly, the Schottky barrier at the MoS2 contact can be effectively tuned by the charge transfers coupled with quasi-zero-dimensional polarization charges formed at the two ends of the nanoribbon, which results in distinctive resistance switching accompanied by multiple negative differential resistance showing the high-current density of >104 A/cm2. The associated space charges in BaTiO3 are minimized to ∼3.7% of the polarization charges, preserving nonvolatile polarization. This achievement establishes ferroelectric-mediated nanoscale semiconductor memristors with high readout current density as promising candidates for memory and highly energy-efficient in-memory computing applications.

11.
Nano Lett ; 24(6): 2118-2124, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305203

RESUMEN

Ferroelectric two-dimensional (2D) materials with a high transition temperature are highly desirable for new physics and next-generation memory electronics. However, the long-range polar order of ferroelectrics will barely persist when the thickness reaches the nanoscale. In this work, we synthesized 2D CuCrS2 nanosheets with thicknesses down to one unit cell via van der Waals epitaxy in a chemical vapor deposition system. A combination of transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements confirms the R3m space group and noncentrosymmetric structure. Switchable ferroelectric domains and obvious ferroelectric hysteresis loops were created and visualized by piezoresponse force microscopy. Theoretical calculation helps us understand the mechanism of ferroelectric switching in CuCrS2 nanosheets. Finally, we fabricated a ferroelectric memory device that achieves an on/off ratio of ∼102 and remains stable after 2000 s, indicating its applicability in novel nanoelectronics. Overall, 2D CuCrS2 nanosheets exhibit excellent ferroelectric properties at the nanoscale, showing great promise for next-generation devices.

12.
Nano Lett ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150250

RESUMEN

Engineering the valley index is essential and highly sought for valley physics, but currently, it is exclusively based on the paradigm of the challenging ferrovalley with spin-orientation reversal under a magnetic field. Here, an alternative strategy, i.e., the so-called ferroelectrovalley, is proposed to tackle the insurmountable spin-orientation reversal, which reverses the valley index with the feasible ferroelectricity. Using symmetry arguments and the tight-binding model, the C2z rotation is unveiled to be able to take the place of time reversal for operating the valley index in two-dimensional multiferroic kagome lattices, which enables a ferroelectricity-engineered valley index, thereby generating the concept of a ferroelectrovalley. Based on first-principles calculations, this concept is further demonstrated in the breathing kagome lattice of single-layer Ti3Br8, wherein ferroelectricity couples with the breathing process. These findings open a new direction for valleytronics and 2D materials research.

13.
Nano Lett ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825790

RESUMEN

The core task of neuromorphic devices is to effectively simulate the behavior of neurons and synapses. Based on the functionality of ferroelectric domains with the advantages of low power consumption and high-speed response, great progress has been made in realizing neuromimetic behaviors such as ferroelectric synaptic devices. However, the correlation between the ferroelectric domain dynamics and neuromimetic behavior remains unclear. Here, we reveal the correlation between domain/domain wall dynamics and neuromimetic behaviors from a microscopic perspective in real-time by using high temporal and spatial resolution in situ transmission electron microscopy. Furthermore, we propose utilizing ferroelectric microstructures for the simultaneous simulation of neuronal and synaptic plasticity, which is expected to improve the integration and performance of ferroelectric neuromorphic devices. We believe that this work to study neuromimetic behavior from the perspective of domain dynamics is instructive for the development of ferroelectric neuromorphic devices.

14.
Nano Lett ; 24(17): 5189-5196, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636084

RESUMEN

The development of large-scale, high-quality ferroelectric semiconductor nanowire arrays with interesting light-emitting properties can address limitations in traditional wide-bandgap ferroelectrics, thus serving as building blocks for innovative device architectures and next-generation high-density optoelectronics. Here, we investigate the optical properties of ferroelectric CsGeX3 (X = Br, I) halide perovskite nanowires that are epitaxially grown on muscovite mica substrates by vapor phase deposition. Detailed structural characterizations reveal an incommensurate heteroepitaxial relationship with the mica substrate. Furthermore, photoluminescence that can be tuned from yellow-green to red emissions by varying the halide composition demonstrates that these nanowire networks can serve as platforms for future optoelectronic applications. In addition, the room-temperature ferroelectricity and ferroelectric domain structures of these nanowires are characterized using second harmonic generation (SHG) polarimetry. The combination of room-temperature ferroelectricity with photoluminescence in these nanowire arrays unlocks new avenues for the design of novel multifunctional materials.

15.
Nano Lett ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171725

RESUMEN

Logic-in-memory (LIM) architecture holds great potential to break the von Neumann bottleneck. Despite the extensive research on novel devices, challenges persist in developing suitable engineering building blocks for such designs. Herein, we propose a reconfigurable strategy for efficient implementation of Boolean logics based on a hafnium oxide-based ferroelectric field effect transistor (HfO2-based FeFET). The logic results are stored within the device itself (in situ) during the computation process, featuring the key characteristics of LIM. The fast switching speed and low power consumption of a HfO2-based FeFET enable the execution of Boolean logics with an ultralow energy of lower than 8 attojoule (aJ). This represents a significant milestone in achieving aJ-level computing energy consumption. Furthermore, the system demonstrates exceptional reliability with computing endurance exceeding 108 cycles and retention properties exceeding 1000 s. These results highlight the remarkable potential of a FeFET for the realization of high performance beyond the von Neumann LIM computing architectures.

16.
Nano Lett ; 24(1): 82-88, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38109843

RESUMEN

The ferroelectric semiconductor α-SnTe has been regarded as a topological crystalline insulator, and the dispersion of its surface states has been intensively measured with angle-resolved photoemission spectroscopy (ARPES) over the past decade. However, much less attention has been given to the impact of the ferroelectric transition on its electronic structure, and in particular on its bulk states. Here, we investigate the low-energy electronic structure of α-SnTe with ARPES and follow the evolution of the bulk-state Rashba splitting as a function of temperature, across its ferroelectric critical temperature of about Tc ≈ 110 K. Unexpectedly, we observe a persistent band splitting up to room temperature, which is consistent with an order-disorder contribution of local dipoles to the phase transition that requires the presence of fluctuating dipoles above Tc. We conclude that no topological surface state can occur under these conditions at the (111) surface of SnTe, at odds with recent literature.

17.
Nano Lett ; 24(22): 6585-6591, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38785400

RESUMEN

The gallium-doped hafnium oxide (Ga-HfO2) films with different Ga doping concentrations were prepared by adjusting the HfO2/Ga2O3 atomic layer deposition cycle ratio for high-speed and low-voltage operation in HfO2-based ferroelectric memory. The Ga-HfO2 ferroelectric films reveal a finely modulated coercive field (Ec) from 1.1 (HfO2/Ga2O3 = 32:1) to an exceptionally low 0.6 MV/cm (HfO2/Ga2O3 = 11:1). This modulation arises from the competition between domain nucleation and propagation speed during polarization switching, influenced by the intrinsic domain density and phase dispersion in the film with specific Ga doping concentrations. Higher Ec samples exhibit a nucleation-dominant switching mechanism, while lower Ec samples undergo a transition from a nucleation-dominant to a propagation-dominant reversal mechanism as the electric field increases. This work introduces Ga as a viable dopant for low Ec and offers insights into material design strategies for HfO2-based ferroelectric memory applications.

18.
Nano Lett ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158148

RESUMEN

A novel antiferroelectric material, PbSnO3 (PSO), was introduced into a resistive random access memory (RRAM) to reveal its resistive switching (RS) properties. It exhibits outstanding electrical performance with a large memory window (>104), narrow switching voltage distribution (±2 V), and low power consumption. Using high-resolution transmission electron microscopy, we observed the antiferroelectric properties and remanent polarization of the PSO thin films. The in-plane shear strains in the monoclinic PSO layer are attributed to oxygen octahedral tilts, resulting in misfit dislocations and grain boundaries at the PSO/SRO interface. Furthermore, the incoherent grain boundaries between the orthorhombic and monoclinic phases are assumed to be the primary paths of Ag+ filaments. Therefore, the RS behavior is primarily dominated by antiferroelectric polarization and defect mechanisms for the PSO structures. The RS behavior of antiferroelectric heterostructures controlled by switching spontaneous polarization and strain, defects, and surface chemistry reactions can facilitate the development of new antiferroelectric device systems.

19.
Nano Lett ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166958

RESUMEN

Achieving higher-order multistates with mutual interstate switching at the nanoscale is essential for high-density storage devices; yet, it remains a significant challenge. Here, we demonstrate that integrating A-type antiferromagnetic semiconductors sandwiched between ferroelectric layers is an effective strategy to achieve high-performance multistate data storage. Taking the Sc2CO2/VSi2P4 bilayer (bi-VSi2P4)/Sc2CO2 van der Waals multiferroic heterostructure as an example, our first-principles calculations show that by switching the polarization direction of the upper and bottom ferroelectric Sc2CO2 layers, antiferromagnetic bi-VSi2P4 can exhibit four distinct states with different band structures. The intriguing band structure engineering stems from the polarization-field-induced band shift and interface charge transfer. Accordingly, the proposed Sc2CO2/bi-VSi2P4/Sc2CO2-based multiferroic device can achieve four different resistance states, accompanied by fully spin-polarized currents and giant tunneling electroresistance ratios. Our results propose a viable strategy for realizing nonvolatile electrical control of antiferromagnets at the nanoscale and provide insights into the development of advanced memories.

20.
Nano Lett ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186248

RESUMEN

Ferroelectric catalysts are known for altering surface catalytic activities by changing the direction of their electric polarizations. This study demonstrates polarization-switchable electrochemistry using layered bismuth oxyselenide (L-Bi2O2Se) bifunctional microreactors through ferroelectric modulation. A selective-area ionic liquid gating is developed with precise control over the spatial distribution of the dipole orientation of L-Bi2O2Se. On-chip microreactors with upward polarization favor the oxygen evolution reaction, whereas those with downward polarization prefer the hydrogen evolution reaction. The microscopic origin behind polarization-switchable electrochemistry primarily stems from enhanced surface adsorption and reduced energy barriers for reactions, as examined by nanoscale scanning electrochemical cell microscopy. Integrating a pair of L-Bi2O2Se microreactors consisting of upward or downward polarizations demonstrates overall water splitting in a full-cell configuration based on a bifunctional catalyst. The ability to modulate surface polarizations on a single catalyst via ferroelectric polarization switching offers a pathway for designing catalysts for water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA