Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(47): e2303325, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37490554

RESUMEN

Continuous progress has been made in elucidating the relationship between material property, device design, and body function to develop surgical meshes. However, an unmet need still exists wherein the surgical mesh can handle the body motion and thereby promote the repair process. Here, the hernia mesh design and the advanced polymer properties are tailored to synchronize with the anisotropic abdominal motion through shape configuration. The thermomechanical property of shape configurable polymer enables molding of mesh shape to fit onto the abdominal structure upon temperature shift, followed by shape fixing with the release of the heat energy. The microstructural design of mesh is produced through finite element modeling to handle the abdominal motion efficiently through the anisotropic longitudinal and transverse directions. The design effects are validated through in vitro, ex vivo, and in vivo mechanical analyses using a self-configurable, body motion responsive (BMR) mesh. The regenerative function of BMR mesh leads to effective repair in a rat hernioplasty model by effectively handling the anisotropic abdomen motion. Subsequently, the device-tissue integration is promoted by promoting healthy collagen synthesis with fibroblast-to-myofibroblast differentiation. This study suggests a potential solution to promote hernia repair by fine-tuning the relationship between material property and mesh design.


Asunto(s)
Hernia Abdominal , Ratas , Animales , Hernia Abdominal/cirugía , Herniorrafia , Ensayo de Materiales , Mallas Quirúrgicas , Polímeros
2.
Adv Healthc Mater ; 12(10): e2202631, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36571721

RESUMEN

The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.


Asunto(s)
Sistemas de Liberación de Medicamentos , Impresión Tridimensional , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Factores de Tiempo
3.
ACS Appl Mater Interfaces ; 13(51): 61723-61732, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34913686

RESUMEN

Tunable and reconfigurable materials with autonomic shape transformation in response to the environment have emerged as one of the most promising approaches for a variety of biomedical applications, such as tissue engineering, biosensing, and in vivo biomedical devices. Currently, it is still quite challenging to fabricate soft, microscaled 3D shape-reconfigurable structures due to either complicated microfabrication or limited microscale photopolymerization-based printing approaches to enable adaptive shape transformation. Here, a one-step photo-cross-linking approach has been demonstrated to obtain a 3D-to-3D morphological transformable microhelix from a self-rolled hydrogel microsheet, resulting in chirality conversion. It was enabled by a custom-designed "hard" stripe/"soft" groove topography on the microsheets for introducing, which introduced both in-planar and out-of-planar anisotropies. Both experiment and simulation confirmed that a stripe/groove geometry can effectively control the 3D transformation by activating in-planar or/and out-of-planar mismatch stress within the microsheets, resulting in switching of the rolling direction between perpendicular/parallel to the length of the stripe. Furthermore, versatile 3D microconstructs with the ability to transform between two distinct 3D configurations have been achieved based on controlled rolling of microhelices, demonstrated as "windmill"-to-"T-cross" and "cylinder"-to-"scroll" transformations and dynamic blossoming of biomimetic orchids. In contrast to conventional 2D-to-3D micro-origami, we have successfully demonstrated an approach for fabricating microscale, all-soft-material-based constructs with autonomic 3D-to-3D structural transformation, which presents an opportunity for designing more complex hydrogel-based microrobotics.


Asunto(s)
Materiales Biocompatibles/química , Hidrogeles/química , Impresión Tridimensional , Andamios del Tejido/química , Materiales Biocompatibles/síntesis química , Hidrogeles/síntesis química , Ensayo de Materiales , Microtecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA