Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 170(4): 774-786.e19, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802045

RESUMEN

Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states.


Asunto(s)
Replicación del ADN , Transcripción Genética , Daño del ADN , Momento de Replicación del ADN , Inestabilidad Genómica , Células HEK293 , Humanos , Plásmidos
2.
Mol Cell ; 84(2): 221-233.e6, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38151016

RESUMEN

DNA replication produces a global disorganization of chromatin structure that takes hours to be restored. However, how these chromatin rearrangements affect the regulation of gene expression and the maintenance of cell identity is not clear. Here, we use ChOR-seq and ChrRNA-seq experiments to analyze RNA polymerase II (RNAPII) activity and nascent RNA synthesis during the first hours after chromatin replication in human cells. We observe that transcription elongation is rapidly reactivated in nascent chromatin but that RNAPII abundance and distribution are altered, producing heterogeneous changes in RNA synthesis. Moreover, this first wave of transcription results in RNAPII blockages behind the replication fork, leading to changes in alternative splicing. Altogether, our results deepen our understanding of how transcriptional programs are regulated during cell division and uncover molecular mechanisms that explain why chromatin replication is an important source of gene expression variability.


Asunto(s)
Empalme Alternativo , Cromatina , Humanos , Cromatina/genética , Transcripción Genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN/metabolismo , Empalme del ARN , Replicación del ADN
3.
Annu Rev Biochem ; 85: 291-317, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27023844

RESUMEN

Genomes undergo different types of sporadic alterations, including DNA damage, point mutations, and genome rearrangements, that constitute the basis for evolution. However, these changes may occur at high levels as a result of cell pathology and trigger genome instability, a hallmark of cancer and a number of genetic diseases. In the last two decades, evidence has accumulated that transcription constitutes an important natural source of DNA metabolic errors that can compromise the integrity of the genome. Transcription can create the conditions for high levels of mutations and recombination by its ability to open the DNA structure and remodel chromatin, making it more accessible to DNA insulting agents, and by its ability to become a barrier to DNA replication. Here we review the molecular basis of such events from a mechanistic perspective with particular emphasis on the role of transcription as a genome instability determinant.


Asunto(s)
Reparación del ADN , Inestabilidad Genómica , Mutagénesis , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Transcripción Genética , Ensamble y Desensamble de Cromatina , ADN/genética , ADN/metabolismo , Roturas del ADN de Cadena Simple , Replicación del ADN , Genoma Humano , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Conformación de Ácido Nucleico , Recombinación Genética
4.
Annu Rev Genet ; 57: 157-179, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37552891

RESUMEN

Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.


Asunto(s)
Replicación del ADN , Transcripción Genética , Animales , Replicación del ADN/genética , Inestabilidad Genómica/genética , Eucariontes/genética , Daño del ADN/genética , Mamíferos
5.
Mol Cell ; 83(13): 2357-2366.e8, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37295432

RESUMEN

DNA replication preferentially initiates close to active transcription start sites (TSSs) in the human genome. Transcription proceeds discontinuously with an accumulation of RNA polymerase II (RNAPII) in a paused state near the TSS. Consequently, replication forks inevitably encounter paused RNAPII soon after replication initiates. Hence, dedicated machinery may be needed to remove RNAPII and facilitate unperturbed fork progression. In this study, we discovered that Integrator, a transcription termination machinery involved in the processing of RNAPII transcripts, interacts with the replicative helicase at active forks and promotes the removal of RNAPII from the path of the replication fork. Integrator-deficient cells have impaired replication fork progression and accumulate hallmarks of genome instability including chromosome breaks and micronuclei. The Integrator complex resolves co-directional transcription-replication conflicts to facilitate faithful DNA replication.


Asunto(s)
Replicación del ADN , ARN Polimerasa II , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Inestabilidad Genómica
6.
Mol Cell ; 82(18): 3382-3397.e7, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36002001

RESUMEN

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.


Asunto(s)
Replicación del ADN , Mitosis , Afidicolina/farmacología , Proteína BRCA2/genética , Sitios Frágiles del Cromosoma/genética , ADN/genética , Daño del ADN , Inestabilidad Genómica , Humanos , Mitosis/genética
7.
Mol Cell ; 82(16): 2952-2966.e6, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35839782

RESUMEN

Cellular homeostasis requires the coordination of several machineries concurrently engaged in the DNA. Wide-spread transcription can interfere with other processes, and transcription-replication conflicts (TRCs) threaten genome stability. The conserved Sen1 helicase not only terminates non-coding transcription but also interacts with the replisome and reportedly resolves genotoxic R-loops. Sen1 prevents genomic instability, but how this relates to its molecular functions remains unclear. We generated high-resolution, genome-wide maps of transcription-dependent conflicts and R-loops using a Sen1 mutant that has lost interaction with the replisome but is termination proficient. We show that, under physiological conditions, Sen1 removes RNA polymerase II at TRCs within genes and the rDNA and at sites of transcription-transcription conflicts, thus qualifying as a "key regulator of conflicts." We demonstrate that genomic stability is affected by Sen1 mutation only when in addition to its role at the replisome, the termination of non-coding transcription or R-loop removal are additionally compromised.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN/genética , Inestabilidad Genómica , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
8.
EMBO J ; 42(23): e113104, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855233

RESUMEN

R-loops represent a major source of replication stress, but the mechanism by which these structures impede fork progression remains unclear. To address this question, we monitored fork progression, arrest, and restart in Saccharomyces cerevisiae cells lacking RNase H1 and H2, two enzymes responsible for degrading RNA:DNA hybrids. We found that while RNase H-deficient cells could replicate their chromosomes normally under unchallenged growth conditions, their replication was impaired when exposed to hydroxyurea (HU) or methyl methanesulfonate (MMS). Treated cells exhibited increased levels of RNA:DNA hybrids at stalled forks and were unable to generate RPA-coated single-stranded (ssDNA), an important postreplicative intermediate in resuming replication. Similar impairments in nascent DNA resection and ssDNA formation at HU-arrested forks were observed in human cells lacking RNase H2. However, fork resection was fully restored by addition of triptolide, an inhibitor of transcription that induces RNA polymerase degradation. Taken together, these data indicate that RNA:DNA hybrids not only act as barriers to replication forks, but also interfere with postreplicative fork repair mechanisms if not promptly degraded by RNase H.


Asunto(s)
Replicación del ADN , ARN , Humanos , ARN/genética , Ribonucleasas/genética , ADN/metabolismo , Hidroxiurea/farmacología , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(34): e2203208119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969748

RESUMEN

Preserving a high degree of genome integrity and stability in germ cells is of utmost importance for reproduction and species propagation. However, the regulatory mechanisms of maintaining genome stability in the developing primordial germ cells (PGCs), in which rapid proliferation is coupled with global hypertranscription, remain largely unknown. Here, we find that mouse PGCs encounter a constitutively high frequency of transcription-replication conflicts (TRCs), which lead to R-loop accumulation and impose endogenous replication stress on PGCs. We further demonstrate that the Fanconi anemia (FA) pathway is activated by TRCs and has a central role in the coordination between replication and transcription in the rapidly proliferating PGCs, as disabling the FA pathway leads to TRC and R-loop accumulation, replication fork destabilization, increased DNA damage, dramatic loss of mitotically dividing mouse PGCs, and consequent sterility of both sexes. Overall, our findings uncover the unique source and resolving mechanism of endogenous replication stress during PGC proliferation, provide a biological explanation for reproductive defects in individuals with FA, and improve our understanding of the monitoring strategies for genome stability during germ cell development.


Asunto(s)
Anemia de Fanconi , Animales , Daño del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Femenino , Inestabilidad Genómica , Células Germinativas/metabolismo , Masculino , Ratones , Estructuras R-Loop
10.
Mol Cancer ; 23(1): 84, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678239

RESUMEN

The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.


Asunto(s)
Ciclo Celular , Daño del ADN , Estructuras R-Loop , Humanos , Ciclo Celular/genética , Animales , Inestabilidad Genómica , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Mutación
11.
Yeast ; 41(4): 171-185, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38196235

RESUMEN

Transcription presents challenges to genome stability both directly, by altering genome topology and exposing single-stranded DNA to chemical insults and nucleases, and indirectly by introducing obstacles to the DNA replication machinery. Such obstacles include the RNA polymerase holoenzyme itself, DNA-bound regulatory factors, G-quadruplexes and RNA-DNA hybrid structures known as R-loops. Here, we review the detrimental impacts of transcription on genome stability in budding yeast, as well as the mitigating effects of transcription-coupled nucleotide excision repair and of systems that maintain DNA replication fork processivity and integrity. Interactions between DNA replication and transcription have particular potential to induce mutation and structural variation, but we conclude that such interactions must have only minor effects on DNA replication by the replisome with little if any direct mutagenic outcome. However, transcription can significantly impair the fidelity of replication fork rescue mechanisms, particularly Break Induced Replication, which is used to restart collapsed replication forks when other means fail. This leads to de novo mutations, structural variation and extrachromosomal circular DNA formation that contribute to genetic heterogeneity, but only under particular conditions and in particular genetic contexts, ensuring that the bulk of the genome remains extremely stable despite the seemingly frequent interactions between transcription and DNA replication.


Asunto(s)
Heterogeneidad Genética , Saccharomycetales , Saccharomycetales/genética , Replicación del ADN , Reparación del ADN , ADN , Inestabilidad Genómica , Transcripción Genética
12.
BMC Biol ; 21(1): 174, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580696

RESUMEN

BACKGROUND: The maintenance of genome stability in primordial germ cells (PGCs) is crucial for the faithful transmission of genetic information and the establishment of reproductive reserve. Numerous studies in recent decades have linked the Fanconi anemia (FA) pathway with fertility, particularly PGC development. However, the role of FAAP100, an essential component of the FA core complex, in germ cell development is unexplored. RESULTS: We find that FAAP100 plays an essential role in R-loop resolution and replication fork protection to counteract transcription-replication conflicts (TRCs) during mouse PGC proliferation. FAAP100 deletion leads to FA pathway inactivation, increases TRCs as well as cotranscriptional R-loops, and contributes to the collapse of replication forks and the generation of DNA damage. Then, the activated p53 signaling pathway triggers PGC proliferation defects, ultimately resulting in insufficient establishment of reproductive reserve in both sexes of mice. CONCLUSIONS: Our findings suggest that FAAP100 is required for the resolution of TRCs in PGCs to safeguard their genome stability.


Asunto(s)
Núcleo Celular , Proteínas de Unión al ADN , Células Germinativas , Animales , Femenino , Masculino , Ratones , Diferenciación Celular , Fertilidad , Reproducción
13.
Biochem Soc Trans ; 49(6): 2727-2736, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34821364

RESUMEN

DNA replication ensures the correct copying of the genome and the faithful transfer of the genetic information to the offspring. However, obstacles to replication fork (RF) progression cause RF stalling and compromise efficient genome duplication. Since replication uses the same DNA template as transcription, both transcription and replication must be coordinated to prevent Transcription-Replication Conflicts (TRCs) that could stall RF progression. Several factors contribute to limit the occurrence of such conflicts and their harmful impact on genome integrity. Increasing evidence indicates that chromatin homeostasis plays a key role in the cellular response to TRCs as well as in the preservation of genome integrity. Indeed, chromatin regulating enzymes are frequently mutated in cancer cells, a common characteristic of which is genome instability. Therefore, understanding the role of chromatin in TRC occurrence and resolution may help identify the molecular mechanism by which chromatin protects genome integrity, and the causes and physiological relevance of the high mutation rates of chromatin regulating factors in cancer. Here we review the current knowledge in the field, as well as the perspectives and future applications.


Asunto(s)
Cromatina/fisiología , Genoma , Transcripción Genética/fisiología , Replicación del ADN
14.
Proc Natl Acad Sci U S A ; 115(43): 11024-11029, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301808

RESUMEN

R loops are nucleic acid structures comprising an DNA-RNA hybrid and a displaced single-stranded DNA. These structures may occur transiently during transcription, playing essential biological functions. However, persistent R loops may become pathological as they are important drivers of genome instability and have been associated with human diseases. The mitochondrial degradosome is a functionally conserved complex from bacteria to human mitochondria. It is composed of the ATP-dependent RNA and DNA helicase SUV3 and the PNPase ribonuclease, playing a central role in mitochondrial RNA surveillance and degradation. Here we describe a new role for the mitochondrial degradosome in preventing the accumulation of pathological R loops in the mitochondrial DNA, in addition to preventing dsRNA accumulation. Our data indicate that, similar to the molecular mechanisms acting in the nucleus, RNA surveillance mechanisms in the mitochondria are crucial to maintain its genome integrity by counteracting pathological R-loop accumulation.


Asunto(s)
Endorribonucleasas/genética , Genoma Mitocondrial/genética , Inestabilidad Genómica/genética , Mitocondrias/genética , Complejos Multienzimáticos/genética , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Helicasas/genética , Línea Celular Tumoral , ARN Helicasas DEAD-box/metabolismo , ADN Mitocondrial/genética , ADN de Cadena Simple/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo , Estabilidad del ARN/genética , ARN Bicatenario/genética , Ribonucleasas/metabolismo
15.
Genes Dev ; 27(22): 2445-58, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24240235

RESUMEN

Transcription is a major obstacle for replication fork (RF) progression and a cause of genome instability. Part of this instability is mediated by cotranscriptional R loops, which are believed to increase by suboptimal assembly of the nascent messenger ribonucleoprotein particle (mRNP). However, no clear evidence exists that heterogeneous nuclear RNPs (hnRNPs), the basic mRNP components, prevent R-loop stabilization. Here we show that yeast Npl3, the most abundant RNA-binding hnRNP, prevents R-loop-mediated genome instability. npl3Δ cells show transcription-dependent and R-loop-dependent hyperrecombination and genome-wide replication obstacles as determined by accumulation of the Rrm3 helicase. Such obstacles preferentially occur at long and highly expressed genes, to which Npl3 is preferentially bound in wild-type cells, and are reduced by RNase H1 overexpression. The resulting replication stress confers hypersensitivity to double-strand break-inducing agents. Therefore, our work demonstrates that mRNP factors are critical for genome integrity and opens the option of using them as therapeutic targets in anti-cancer treatment.


Asunto(s)
Replicación del ADN/genética , Inestabilidad Genómica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética , Región de Flanqueo 3' , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Eliminación de Gen , Genoma Fúngico , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Mutágenos/farmacología , Saccharomyces cerevisiae/efectos de los fármacos
16.
J Biol Chem ; 294(44): 16255-16265, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31519754

RESUMEN

Sequential activation of DNA replication origins is precisely programmed and critical to maintaining genome stability. RecQL4, a member of the conserved RecQ family of helicases, plays an essential role in the initiation of DNA replication in mammalian cells. Here, we showed that RecQL4 protein tethered on the pre-replicative complex (pre-RC) induces early activation of late replicating origins during S phase. Tethering of RecQL4 or its N terminus on pre-RCs via fusion with Orc4 protein resulted in the recruitment of essential initiation factors, such as Mcm10, And-1, Cdc45, and GINS, increasing nascent DNA synthesis in late replicating origins during early S phase. In this origin activation process, tethered RecQL4 was able to recruit Cdc45 even in the absence of cyclin-dependent kinase (CDK) activity, whereas CDK phosphorylation of RecQL4 N terminus was required for interaction with and origin recruitment of And-1 and GINS. In addition, forced activation of replication origins by RecQL4 tethering resulted in increased replication stress and the accumulation of ssDNAs, which can be recovered by transcription inhibition. Collectively, these results suggest that recruitment of RecQL4 to replication origins is an important step for temporal activation of replication origins during S phase. Further, perturbation of replication timing control by unscheduled origin activation significantly induces replication stress, which is mostly caused by transcription-replication conflicts.


Asunto(s)
Replicación del ADN , RecQ Helicasas/metabolismo , Origen de Réplica , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Complejo de Reconocimiento del Origen/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , RecQ Helicasas/genética , Fase S , Activación Transcripcional
17.
Transcription ; 15(1-2): 22-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38378467

RESUMEN

DNA replication and RNA transcription both utilize DNA as a template and therefore need to coordinate their activities. The predominant theory in the field is that in order for the replication fork to proceed, transcription machinery has to be evicted from DNA until replication is complete. If that does not occur, these machineries collide, and these collisions elicit various repair mechanisms which require displacement of one of the enzymes, often RNA polymerase, in order for replication to proceed. This model is also at the heart of the epigenetic bookmarking theory, which implies that displacement of RNA polymerase during replication requires gradual re-building of chromatin structure, which guides recruitment of transcriptional proteins and resumption of transcription. We discuss these theories but also bring to light newer data that suggest that these two processes may not be as detrimental to one another as previously thought. This includes findings suggesting that these processes can occur without fork collapse and that RNA polymerase may only be transiently displaced during DNA replication. We discuss potential mechanisms by which RNA polymerase may be retained at the replication fork and quickly rebind to DNA post-replication. These discoveries are important, not only as new evidence as to how these two processes are able to occur harmoniously but also because they have implications on how transcriptional programs are maintained through DNA replication. To this end, we also discuss the coordination of replication and transcription in light of revising the current epigenetic bookmarking theory of how the active gene status can be transmitted through S phase.


Asunto(s)
Replicación del ADN , ARN Polimerasas Dirigidas por ADN , Epigénesis Genética , Transcripción Genética , Animales , Cromatina/metabolismo , Cromatina/genética , ADN/metabolismo , ADN/genética , Replicación del ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Transcripción Genética/genética , Eucariontes/genética , Eucariontes/metabolismo
18.
Methods Cell Biol ; 182: 199-219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38359977

RESUMEN

Transcription-replication conflicts (TRCs) represent a potent endogenous source of replication stress. Besides the spatial and temporal coordination of replication and transcription programs, cells employ many additional mechanisms to resolve TRCs in a timely manner, thereby avoiding replication fork stalling and genomic instability. Proximity ligation assays (PLA) using antibodies against actively elongating RNA Polymerase II (RNAPIIpS2) and PCNA to detect proximity (<40nm) between transcribing RNA polymerases and replication forks can be used to assess and quantify TRC levels in cells. A complementary fluorescence microscopy approach to assess the spatial coordination of transcription and replication activities in the nucleus is to quantify the colocalization (200-400nm) between active transcription and ongoing replication using immunofluorescence staining with an antibody against elongating RNA Polymerase II (RNAPIIpS2) and EdU-Click-it pulse-labelling, respectively. Despite significant efforts to automate image analysis, the need for manual verification, correction, and complementation of automated processes creates a bottleneck for efficient, high-throughput and large-scale imaging. Here, we describe an automated Fiji image analysis macro that allows the user to automate the measurement of RNAPIIpS2 and EdU levels and extract the key parameters such as transcription-replication (TR) colocalization and TRC-PLA foci count from single cells in a high throughput manner. While we showcase the usability of this analysis pipeline for quantifying TR colocalization and TRC-PLA in mouse embryonic stem cells (mESCs), the analysis pipeline is designed as a generally applicable tool allowing the quantification of nuclear signals, colocalization and foci count in various model systems and cell types.


Asunto(s)
Replicación del ADN , ARN Polimerasa II , Animales , Ratones , ARN Polimerasa II/genética , Replicación del ADN/genética , Mamíferos
19.
Biology (Basel) ; 13(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38666870

RESUMEN

The MCM2-7 complex is a hexameric protein complex that serves as a DNA helicase. It unwinds the DNA double helix during DNA replication, thereby providing the single-stranded replication template. In recent years, it has become clear that the MCM2-7 complex has additional functions that extend well beyond its role in DNA replication. Through physical and functional interactions with different pathways, it impacts other nuclear events and activities, including folding of the genome, histone inheritance, chromosome segregation, DNA damage sensing and repair, and gene transcription. Collectively, the diverse roles of the MCM2-7 complex suggest it plays a critical role in maintaining genome integrity by integrating the regulation of DNA replication with other pathways in the nucleus.

20.
C R Biol ; 346: 95-105, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37779381

RESUMEN

Replication stress is an alteration in the progression of replication forks caused by a variety of events of endogenous or exogenous origin. In precancerous lesions, this stress is exacerbated by the deregulation of oncogenic pathways, which notably disrupts the coordination between replication and transcription, and leads to genetic instability and cancer development. It is now well established that transcription can interfere with genome replication in different ways, such as head-on collisions between polymerases, accumulation of positive DNA supercoils or formation of R-loops. These structures form during transcription when nascent RNA reanneals with DNA behind the RNA polymerase, forming a stable DNA:RNA hybrid. In this review, we discuss how these different cotranscriptional processes disrupt the progression of replication forks and how they contribute to genetic instability in cancer cells.


Le stress réplicatif correspond à une altération de la progression des fourches de réplication causé par une variété d'événements d'origine endogène ou exogène. Dans les lésions précancéreuses, ce stress est aggravé par la dérégulation de voies oncogéniques, qui perturbe notamment la coordination entre la réplication et la transcription du génome et entraine une instabilité génétique contribuant au développement du cancer. Il est maintenant bien établi que la transcription peut interférer avec la réplication du génome de différentes façons, telles que des collisions frontales entre polymérases, l'accumulation de supertours positifs de l'ADN ou la formation de R-loops. Ces structures se forment au cours de la transcription lorsque l'ARN naissant se réassocie avec l'ADN derrière l'ARN polymérase, formant un hybride ADN :ARN stable. Dans cette revue, nous discutons comment ces différents processus cotranscriptionnels perturbent la progression des fourches de réplication et comment ils contribuent à l'instabilité génétique des cellules cancéreuses.


Asunto(s)
Neoplasias , Transcripción Genética , Estructuras R-Loop , Replicación del ADN/genética , ADN , Oncogenes/genética , ARN , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA