Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.760
Filtrar
Más filtros

Intervalo de año de publicación
1.
Genome Res ; 34(1): 20-33, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38190638

RESUMEN

As an essential part of the central nervous system, white matter coordinates communications between different brain regions and is related to a wide range of neurodegenerative and neuropsychiatric disorders. Previous genome-wide association studies (GWASs) have uncovered loci associated with white matter microstructure. However, GWASs suffer from limited reproducibility and difficulties in detecting multi-single-nucleotide polymorphism (multi-SNP) and epistatic effects. In this study, we adopt the concept of supervariants, a combination of alleles in multiple loci, to account for potential multi-SNP effects. We perform supervariant identification and validation to identify loci associated with 22 white matter fractional anisotropy phenotypes derived from diffusion tensor imaging. To increase reproducibility, we use United Kingdom (UK) Biobank White British (n = 30,842) data for discovery and internal validation, and UK Biobank White but non-British (n = 1927) data, Europeans from the Adolescent Brain Cognitive Development study (n = 4399) data, and Europeans from the Human Connectome Project (n = 319) data for external validation. We identify 23 novel loci on the discovery set that have not been reported in the previous GWASs on white matter microstructure. Among them, three supervariants on genomic regions 5q35.1, 8p21.2, and 19q13.32 have P-values lower than 0.05 in the meta-analysis of the three independent validation data sets. These supervariants contain genetic variants located in genes that have been related to brain structures, cognitive functions, and neuropsychiatric diseases. Our findings provide a better understanding of the genetic architecture underlying white matter microstructure.


Asunto(s)
Sustancia Blanca , Humanos , Adolescente , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión Tensora , Estudio de Asociación del Genoma Completo , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen
2.
Proc Natl Acad Sci U S A ; 120(17): e2218617120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068254

RESUMEN

We have developed workflows to align 3D magnetic resonance histology (MRH) of the mouse brain with light sheet microscopy (LSM) and 3D delineations of the same specimen. We start with MRH of the brain in the skull with gradient echo and diffusion tensor imaging (DTI) at 15 µm isotropic resolution which is ~ 1,000 times higher than that of most preclinical MRI. Connectomes are generated with superresolution tract density images of ~5 µm. Brains are cleared, stained for selected proteins, and imaged by LSM at 1.8 µm/pixel. LSM data are registered into the reference MRH space with labels derived from the ABA common coordinate framework. The result is a high-dimensional integrated volume with registration (HiDiver) with alignment precision better than 50 µm. Throughput is sufficiently high that HiDiver is being used in quantitative studies of the impact of gene variants and aging on mouse brain cytoarchitecture and connectomics.


Asunto(s)
Imagen de Difusión Tensora , Microscopía , Ratones , Animales , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Imagen de Difusión por Resonancia Magnética/métodos
3.
Proc Natl Acad Sci U S A ; 120(24): e2220200120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279278

RESUMEN

The human cerebrum consists of a precise and stereotyped arrangement of lobes, primary gyri, and connectivity that underlies human cognition [P. Rakic, Nat. Rev. Neurosci. 10, 724-735 (2009)]. The development of this arrangement is less clear. Current models explain individual primary gyrification but largely do not account for the global configuration of the cerebral lobes [T. Tallinen, J. Y. Chung, J. S. Biggins, L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A. 111, 12667-12672 (2014) and D. C. Van Essen, Nature 385, 313-318 (1997)]. The insula, buried in the depths of the Sylvian fissure, is unique in terms of gyral anatomy and size. Here, we quantitatively show that the insula has unique morphology and location in the cerebrum and that these key differences emerge during fetal development. Finally, we identify quantitative differences in developmental migration patterns to the insula that may underlie these differences. We calculated morphologic data in the insula and other lobes in adults (N = 107) and in an in utero fetal brain atlas (N = 81 healthy fetuses). In utero, the insula grows an order of magnitude slower than the other lobes and demonstrates shallower sulci, less curvature, and less surface complexity both in adults and progressively throughout fetal development. Spherical projection analysis demonstrates that the lenticular nuclei obstruct 60 to 70% of radial pathways from the ventricular zone (VZ) to the insula, forcing a curved migration to the insula in contrast to a direct radial pathway. Using fetal diffusion tractography, we identify radial glial fascicles that originate from the VZ and curve around the lenticular nuclei to form the insula. These results confirm existing models of radial migration to the cortex and illustrate findings that suggest differential insular and cerebral development, laying the groundwork to understand cerebral malformations and insular function and pathologies.


Asunto(s)
Desarrollo Fetal , Corteza Insular , Corteza Insular/anatomía & histología , Corteza Insular/diagnóstico por imagen , Corteza Insular/crecimiento & desarrollo , Imagen de Difusión Tensora , Humanos , Masculino , Femenino , Adulto Joven , Adulto
4.
J Neurosci ; 44(8)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38124022

RESUMEN

Adverse childhood experiences have been linked to detrimental mental health outcomes in adulthood. This study investigates a potential neurodevelopmental pathway between adversity and mental health outcomes: brain connectivity. We used data from the prospective, longitudinal Adolescent Brain Cognitive Development (ABCD) study (N ≍ 12.000, participants aged 9-13 years, male and female) and assessed structural brain connectivity using fractional anisotropy (FA) of white matter tracts. The adverse experiences modeled included family conflict and traumatic experiences. K-means clustering and latent basis growth models were used to determine subgroups based on total levels and trajectories of brain connectivity. Multinomial regression was used to determine associations between cluster membership and adverse experiences. The results showed that higher family conflict was associated with higher FA levels across brain tracts (e.g., t (3) = -3.81, ß = -0.09, p bonf = 0.003) and within the corpus callosum (CC), fornix, and anterior thalamic radiations (ATR). A decreasing FA trajectory across two brain imaging timepoints was linked to lower socioeconomic status and neighborhood safety. Socioeconomic status was related to FA across brain tracts (e.g., t (3) = 3.44, ß = 0.10, p bonf = 0.01), the CC and the ATR. Neighborhood safety was associated with FA in the Fornix and ATR (e.g., t (1) = 3.48, ß = 0.09, p bonf = 0.01). There is a complex and multifaceted relationship between adverse experiences and brain development, where adverse experiences during early adolescence are related to brain connectivity. These findings underscore the importance of studying adverse experiences beyond early childhood to understand lifespan developmental outcomes.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Humanos , Masculino , Adolescente , Preescolar , Femenino , Estudios Prospectivos , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Cuerpo Calloso , Anisotropía
5.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38684365

RESUMEN

Superagers are elderly individuals with the memory ability of people 30 years younger and provide evidence that age-related cognitive decline is not inevitable. In a sample of 64 superagers (mean age, 81.9; 59% women) and 55 typical older adults (mean age, 82.4; 64% women) from the Vallecas Project, we studied, cross-sectionally and longitudinally over 5 years with yearly follow-ups, the global cerebral white matter status as well as region-specific white matter microstructure assessment derived from diffusivity measures. Superagers and typical older adults showed no difference in global white matter health (total white matter volume, Fazekas score, and lesions volume) cross-sectionally or longitudinally. However, analyses of diffusion parameters revealed the better white matter microstructure in superagers than in typical older adults. Cross-sectional differences showed higher fractional anisotropy (FA) in superagers mostly in frontal fibers and lower mean diffusivity (MD) in most white matter tracts, expressed as an anteroposterior gradient with greater group differences in anterior tracts. FA decrease over time is slower in superagers than in typical older adults in all white matter tracts assessed, which is mirrored by MD increases over time being slower in superagers than in typical older adults in all white matter tracts except for the corticospinal tract, the uncinate fasciculus, and the forceps minor. The better preservation of white matter microstructure in superagers relative to typical older adults supports resistance to age-related brain structural changes as a mechanism underpinning the remarkable memory capacity of superagers, while their regional aging pattern is in line with the last-in-first-out hypothesis.


Asunto(s)
Envejecimiento , Sustancia Blanca , Humanos , Femenino , Sustancia Blanca/diagnóstico por imagen , Masculino , Envejecimiento/fisiología , Anciano de 80 o más Años , Anciano , Estudios Transversales , Estudios Longitudinales , Imagen de Difusión Tensora
6.
J Neurosci ; 44(18)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38565289

RESUMEN

Several studies have shown white matter (WM) abnormalities in Alzheimer's disease (AD) using diffusion tensor imaging (DTI). Nonetheless, robust characterization of WM changes has been challenging due to the methodological limitations of DTI. We applied fixel-based analyses (FBA) to examine microscopic differences in fiber density (FD) and macroscopic changes in fiber cross-section (FC) in early stages of AD (N = 393, 212 females). FBA was also compared with DTI, free-water corrected (FW)-DTI and diffusion kurtosis imaging (DKI). We further investigated the correlation of FBA and tensor-derived metrics with AD pathology and cognition. FBA metrics were decreased in the entire cingulum bundle, uncinate fasciculus and anterior thalamic radiations in Aß-positive patients with mild cognitive impairment compared to control groups. Metrics derived from DKI, and FW-DTI showed similar alterations whereas WM degeneration detected by DTI was more widespread. Tau-PET uptake in medial temporal regions was only correlated with reduced FC mainly in the parahippocampal cingulum in Aß-positive individuals. This tau-related WM alteration was also associated with impaired memory. Despite the spatially extensive between-group differences in DTI-metrics, the link between WM and tau aggregation was only revealed using FBA metrics implying high sensitivity but low specificity of DTI-based measures in identifying subtle tau-related WM degeneration. No relationship was found between amyloid load and any diffusion-MRI measures. Our results indicate that early tau-related WM alterations in AD are due to macrostructural changes specifically captured by FBA metrics. Thus, future studies assessing the effects of AD pathology in WM tracts should consider using FBA metrics.


Asunto(s)
Enfermedad de Alzheimer , Imagen de Difusión Tensora , Sustancia Blanca , Proteínas tau , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Femenino , Masculino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Anciano , Proteínas tau/metabolismo , Imagen de Difusión Tensora/métodos , Anciano de 80 o más Años , Persona de Mediana Edad , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología
7.
J Neurosci ; 44(41)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39256045

RESUMEN

Emerging research in nonhuman animals implicates cerebellar projections to the ventral tegmental area (VTA) in appetitive behaviors, but these circuits have not been characterized in humans. Here, we mapped cerebello-VTA white matter connectivity in a cohort of men and women using probabilistic tractography on diffusion imaging data from the Human Connectome Project. We uncovered the topographical organization of these connections by separately tracking from parcels of cerebellar lobule VI, crus I/II, vermis, paravermis, and cerebrocerebellum. Results revealed that connections between the cerebellum and VTA predominantly originate in the right cerebellar hemisphere, interposed nucleus, and paravermal cortex and terminate mostly ipsilaterally. Paravermal crus I sends the most connections to the VTA compared with other lobules. We discovered a mediolateral gradient of connectivity, such that the medial cerebellum has the highest connectivity with the VTA. Individual differences in microstructure were associated with measures of negative affect and social functioning. By splitting the tracts into quarters, we found that the socioaffective effects were driven by the third quarter of the tract, corresponding to the point at which the fibers leave the deep nuclei. Taken together, we produced detailed maps of cerebello-VTA structural connectivity for the first time in humans and established their relevance for trait differences in socioaffective regulation.


Asunto(s)
Cerebelo , Conectoma , Recompensa , Área Tegmental Ventral , Humanos , Masculino , Femenino , Cerebelo/diagnóstico por imagen , Adulto , Área Tegmental Ventral/diagnóstico por imagen , Área Tegmental Ventral/fisiología , Imagen de Difusión Tensora/métodos , Vías Nerviosas , Sustancia Blanca/diagnóstico por imagen , Adulto Joven , Mesencéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología
8.
J Neurosci ; 44(29)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38844343

RESUMEN

During the second-to-third trimester, the neuronal pathways of the fetal brain experience rapid development, resulting in the complex architecture of the interwired network at birth. While diffusion MRI-based tractography has been employed to study the prenatal development of structural connectivity network (SCN) in preterm neonatal and postmortem fetal brains, the in utero development of SCN in the normal fetal brain remains largely unknown. In this study, we utilized in utero dMRI data from human fetuses of both sexes between 26 and 38 gestational weeks to investigate the developmental trajectories of the fetal brain SCN, focusing on intrahemispheric connections. Our analysis revealed significant increases in global efficiency, mean local efficiency, and clustering coefficient, along with significant decrease in shortest path length, while small-worldness persisted during the studied period, revealing balanced network integration and segregation. Widespread short-ranged connectivity strengthened significantly. The nodal strength developed in a posterior-to-anterior and medial-to-lateral order, reflecting a spatiotemporal gradient in cortical network connectivity development. Moreover, we observed distinct lateralization patterns in the fetal brain SCN. Globally, there was a leftward lateralization in network efficiency, clustering coefficient, and small-worldness. The regional lateralization patterns in most language, motor, and visual-related areas were consistent with prior knowledge, except for Wernicke's area, indicating lateralized brain wiring is an innate property of the human brain starting from the fetal period. Our findings provided a comprehensive view of the development of the fetal brain SCN and its lateralization, as a normative template that may be used to characterize atypical development.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Red Nerviosa , Tercer Trimestre del Embarazo , Humanos , Femenino , Masculino , Embarazo , Imagen de Difusión por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/embriología , Red Nerviosa/fisiología , Red Nerviosa/crecimiento & desarrollo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/embriología , Segundo Trimestre del Embarazo , Vías Nerviosas/embriología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Feto/diagnóstico por imagen , Desarrollo Fetal/fisiología , Imagen de Difusión Tensora/métodos
9.
J Neurosci ; 44(21)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38565290

RESUMEN

Left-sided spatial neglect is a very common and challenging issue after right-hemispheric stroke, which strongly and negatively affects daily living behavior and recovery of stroke survivors. The mechanisms underlying recovery of spatial neglect remain controversial, particularly regarding the involvement of the intact, contralesional hemisphere, with potential contributions ranging from maladaptive to compensatory. In the present prospective, observational study, we assessed neglect severity in 54 right-hemispheric stroke patients (32 male; 22 female) at admission to and discharge from inpatient neurorehabilitation. We demonstrate that the interaction of initial neglect severity and spared white matter (dis)connectivity resulting from individual lesions (as assessed by diffusion tensor imaging, DTI) explains a significant portion of the variability of poststroke neglect recovery. In mildly impaired patients, spared structural connectivity within the lesioned hemisphere is sufficient to attain good recovery. Conversely, in patients with severe impairment, successful recovery critically depends on structural connectivity within the intact hemisphere and between hemispheres. These distinct patterns, mediated by their respective white matter connections, may help to reconcile the dichotomous perspectives regarding the role of the contralesional hemisphere as exclusively compensatory or not. Instead, they suggest a unified viewpoint wherein the contralesional hemisphere can - but must not necessarily - assume a compensatory role. This would depend on initial impairment severity and on the available, spared structural connectivity. In the future, our findings could serve as a prognostic biomarker for neglect recovery and guide patient-tailored therapeutic approaches.


Asunto(s)
Imagen de Difusión Tensora , Trastornos de la Percepción , Recuperación de la Función , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Masculino , Femenino , Trastornos de la Percepción/etiología , Trastornos de la Percepción/fisiopatología , Trastornos de la Percepción/rehabilitación , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología , Anciano , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Persona de Mediana Edad , Recuperación de la Función/fisiología , Lateralidad Funcional/fisiología , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Anciano de 80 o más Años
10.
Ann Neurol ; 95(6): 1080-1092, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38481063

RESUMEN

OBJECTIVE: The aim of this study was to investigate whether, compared to pediatric healthy controls (HCs), the glymphatic system is impaired in pediatric multiple sclerosis (MS) patients according to their cognitive status, and to assess its association with clinical disability and MRI measures of brain structural damage. METHODS: Sixty-five pediatric MS patients (females = 62%; median age = 15.5 [interquartile range, IQR = 14.5;17.0] years) and 23 age- and sex-matched HCs (females = 44%; median age = 14.1 [IQR = 11.8;16.2] years) underwent neurological, neuropsychological and 3.0 Tesla MRI assessment, including conventional and diffusion tensor imaging (DTI). We calculated the diffusion along the perivascular space (DTI-ALPS) index, a proxy of glymphatic function. Cognitive impairment (Co-I) was defined as impairment in at least 2 cognitive domains. RESULTS: No significant differences in DTI-ALPS index were found between HCs and cognitively preserved (Co-P) pediatric MS patients (estimated mean difference [EMD] = -0.002 [95% confidence interval = -0.069; 0.065], FDR-p = 0.956). Compared to HCs and Co-P patients, Co-I pediatric MS patients (n = 20) showed significantly lower DTI-ALPS index (EMD = -0.136 [95% confidence interval = -0.214; -0.058], FDR-p ≤ 0.004). In HCs, no associations were observed between DTI-ALPS index and normalized brain, cortical and thalamic volumes, and normal-appearing white matter (NAWM) fractional anisotropy (FA) and mean diffusivity (MD) (FDR-p ≥ 0.348). In pediatric MS patients, higher brain WM lesion volume (LV), higher NAWM MD, lower normalized thalamic volume, and lower NAWM FA were associated with lower DTI-ALPS index (FDR-p ≤ 0.016). Random Forest selected lower DTI-ALPS index (relative importance [RI] = 100%), higher brain WM LV (RI = 59.5%) NAWM MD (RI = 57.1%) and intelligence quotient (RI = 51.3%) as informative predictors of cognitive impairment (out-of-bag area under the curve = 0.762). INTERPRETATION: Glymphatic system dysfunction occurs in pediatric MS, is associated with brain focal lesions, irreversible tissue loss accumulation and cognitive impairment. ANN NEUROL 2024;95:1080-1092.


Asunto(s)
Disfunción Cognitiva , Imagen de Difusión Tensora , Sistema Glinfático , Esclerosis Múltiple , Humanos , Masculino , Femenino , Adolescente , Niño , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/psicología , Esclerosis Múltiple/complicaciones , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/patología , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Pruebas Neuropsicológicas
11.
Mol Psychiatry ; 29(7): 2095-2104, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38383768

RESUMEN

White matter (WM) fiber tract differences are present in autism spectrum disorder (ASD) and could be important markers of behavior. One of the earliest phenotypic differences in ASD are language atypicalities. Although language has been linked to WM in typical development, no work has evaluated this association in early ASD. Participants came from the Infant Brain Imaging Study and included 321 infant siblings of children with ASD at high likelihood (HL) for developing ASD; 70 HL infants were later diagnosed with ASD (HL-ASD), and 251 HL infants were not diagnosed with ASD (HL-Neg). A control sample of 140 low likelihood infants not diagnosed with ASD (LL-Neg) were also included. Infants contributed expressive language, receptive language, and diffusion tensor imaging data at 6-, 12-, and 24 months. Mixed effects regression models were conducted to evaluate associations between WM and language trajectories. Trajectories of microstructural changes in the right arcuate fasciculus were associated with expressive language development. HL-ASD infants demonstrated a different developmental pattern compared to the HL-Neg and LL-Neg groups, wherein the HL-ASD group exhibited a positive association between WM fractional anisotropy and language whereas HL-Neg and LL-Neg groups showed weak or no association. No other fiber tracts demonstrated significant associations with language. In conclusion, results indicated arcuate fasciculus WM is linked to language in early toddlerhood for autistic toddlers, with the strongest associations emerging around 24 months. To our knowledge, this is the first study to evaluate associations between language and WM development during the pre-symptomatic period in ASD.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Imagen de Difusión Tensora , Desarrollo del Lenguaje , Sustancia Blanca , Humanos , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/patología , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Masculino , Femenino , Lactante , Imagen de Difusión Tensora/métodos , Preescolar , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Hermanos , Lenguaje
12.
Mol Psychiatry ; 29(4): 1063-1074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38326559

RESUMEN

White matter pathways, typically studied with diffusion tensor imaging (DTI), have been implicated in the neurobiology of obsessive-compulsive disorder (OCD). However, due to limited sample sizes and the predominance of single-site studies, the generalizability of OCD classification based on diffusion white matter estimates remains unclear. Here, we tested classification accuracy using the largest OCD DTI dataset to date, involving 1336 adult participants (690 OCD patients and 646 healthy controls) and 317 pediatric participants (175 OCD patients and 142 healthy controls) from 18 international sites within the ENIGMA OCD Working Group. We used an automatic machine learning pipeline (with feature engineering and selection, and model optimization) and examined the cross-site generalizability of the OCD classification models using leave-one-site-out cross-validation. Our models showed low-to-moderate accuracy in classifying (1) "OCD vs. healthy controls" (Adults, receiver operator characteristic-area under the curve = 57.19 ± 3.47 in the replication set; Children, 59.8 ± 7.39), (2) "unmedicated OCD vs. healthy controls" (Adults, 62.67 ± 3.84; Children, 48.51 ± 10.14), and (3) "medicated OCD vs. unmedicated OCD" (Adults, 76.72 ± 3.97; Children, 72.45 ± 8.87). There was significant site variability in model performance (cross-validated ROC AUC ranges 51.6-79.1 in adults; 35.9-63.2 in children). Machine learning interpretation showed that diffusivity measures of the corpus callosum, internal capsule, and posterior thalamic radiation contributed to the classification of OCD from HC. The classification performance appeared greater than the model trained on grey matter morphometry in the prior ENIGMA OCD study (our study includes subsamples from the morphometry study). Taken together, this study points to the meaningful multivariate patterns of white matter features relevant to the neurobiology of OCD, but with low-to-moderate classification accuracy. The OCD classification performance may be constrained by site variability and medication effects on the white matter integrity, indicating room for improvement for future research.


Asunto(s)
Imagen de Difusión Tensora , Aprendizaje Automático , Trastorno Obsesivo Compulsivo , Sustancia Blanca , Humanos , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Masculino , Femenino , Adulto , Imagen de Difusión Tensora/métodos , Niño , Adolescente , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Persona de Mediana Edad , Adulto Joven
13.
Mol Psychiatry ; 29(4): 1033-1045, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38228890

RESUMEN

Previous diffusion MRI studies have reported mixed findings on white matter microstructure alterations in obsessive-compulsive disorder (OCD), likely due to variation in demographic and clinical characteristics, scanning methods, and underpowered samples. The OCD global study was created across five international sites to overcome these challenges by harmonizing data collection to identify consistent brain signatures of OCD that are reproducible and generalizable. Single-shell diffusion measures (e.g., fractional anisotropy), multi-shell Neurite Orientation Dispersion and Density Imaging (NODDI) and fixel-based measures, were extracted from skeletonized white matter tracts in 260 medication-free adults with OCD and 252 healthy controls. We additionally performed structural connectome analysis. We compared cases with controls and cases with early (<18) versus late (18+) OCD onset using mixed-model and Bayesian multilevel analysis. Compared with healthy controls, adult OCD individuals showed higher fiber density in the sagittal stratum (B[SE] = 0.10[0.05], P = 0.04) and credible evidence for higher fiber density in several other tracts. When comparing early (n = 145) and late-onset (n = 114) cases, converging evidence showed lower integrity of the posterior thalamic radiation -particularly radial diffusivity (B[SE] = 0.28[0.12], P = 0.03)-and lower global efficiency of the structural connectome (B[SE] = 15.3[6.6], P = 0.03) in late-onset cases. Post-hoc analyses indicated divergent direction of effects of the two OCD groups compared to healthy controls. Age of OCD onset differentially affects the integrity of thalamo-parietal/occipital tracts and the efficiency of the structural brain network. These results lend further support for the role of the thalamus and its afferent fibers and visual attentional processes in the pathophysiology of OCD.


Asunto(s)
Edad de Inicio , Encéfalo , Conectoma , Imagen de Difusión Tensora , Trastorno Obsesivo Compulsivo , Sustancia Blanca , Humanos , Trastorno Obsesivo Compulsivo/patología , Sustancia Blanca/patología , Adulto , Masculino , Femenino , Conectoma/métodos , Imagen de Difusión Tensora/métodos , Encéfalo/patología , Persona de Mediana Edad , Imagen de Difusión por Resonancia Magnética/métodos , Adulto Joven , Anisotropía , Teorema de Bayes , Estudios de Casos y Controles , Adolescente
14.
Brain ; 147(1): 100-108, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37584389

RESUMEN

Recently, an astrocytic aquaporin 4-dependent drainage system, that is, the glymphatic system, has been identified in the live murine and human brain. Growing evidence suggests that glymphatic function is impaired in patients with several neurodegenerative diseases, including Alzheimer's and Parkinson's disease. As the third most common neurodegenerative disease, although animal studies have indicated that early glymphatic dysfunction is likely an important pathological mechanism underpinning amyotrophic lateral sclerosis (ALS), no available study has been conducted to thoroughly assess glymphatic function in vivo in ALS patients to date, particularly in patients with early-stage ALS. Thus, using diffusion tensor imaging analysis along the perivascular space (ALPS) index, an approximate measure of glymphatic function in vivo, we aimed to explore whether glymphatic function is impaired in patients with patients with early-stage ALS, and the diagnostic performance of the ALPS index in distinguishing between patients with early-stage ALS and healthy subjects. We also aimed to identify the relationships between glymphatic dysfunction and clinical disabilities and sleep problems in patients with early-stage ALS. In this retrospective study, King's Stage 1 ALS patients were defined as patients with early-stage ALS. We enrolled 56 patients with early-stage ALS and 32 age- and sex-matched healthy control subjects. All participants completed clinical screening, sleep assessment and ALPS index analysis. For the sleep assessment, the Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale and polysomnography were used. Compared with healthy control subjects, patients with early-stage ALS had a significantly lower ALPS index after family-wise error correction (P < 0.05). Moreover, receiver operating characteristic analysis showed that the area under the curve for the ALPS index was 0.792 (95% confidence interval 0.700-0.884). Partial correlation analyses showed that the ALPS index was significantly correlated with clinical disability and sleep disturbances in patients with early-stage ALS. Multivariate analysis showed that sleep efficiency (r = 0.419, P = 0.002) and periodic limb movements in sleep index (r = -0.294, P = 0.017) were significant predictive factors of the ALPS index in patients with early-stage ALS. In conclusion, our study continues to support an important role for glymphatic dysfunction in ALS pathology, and we provide additional insights into the early diagnostic value of glymphatic dysfunction and its correlation with sleep disturbances in vivo in patients with early-stage ALS. Moreover, we suggest that early improvement of glymphatic function may be a promising strategy for slowing the neurodegenerative process in ALS. Future studies are needed to explore the diagnostic and therapeutic value of glymphatic dysfunction in individuals with presymptomatic-stage neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Animales , Ratones , Esclerosis Amiotrófica Lateral/complicaciones , Imagen de Difusión Tensora , Estudios Retrospectivos , Acuaporina 4
15.
Brain ; 147(2): 352-371, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703295

RESUMEN

Executive functions are high-level cognitive processes involving abilities such as working memory/updating, set-shifting and inhibition. These complex cognitive functions are enabled by interactions among widely distributed cognitive networks, supported by white matter tracts. Executive impairment is frequent in neurological conditions affecting white matter; however, whether specific tracts are crucial for normal executive functions is unclear. We review causal and correlation evidence from studies that used direct electrical stimulation during awake surgery for gliomas, voxel-based and tract-based lesion-symptom mapping, and diffusion tensor imaging to explore associations between the integrity of white matter tracts and executive functions in healthy and impaired adults. The corpus callosum was consistently associated with all executive processes, notably its anterior segments. Both causal and correlation evidence showed prominent support of the superior longitudinal fasciculus to executive functions, notably to working memory. More specifically, strong evidence suggested that the second branch of the superior longitudinal fasciculus is crucial for all executive functions, especially for flexibility. Global results showed left lateralization for verbal tasks and right lateralization for executive tasks with visual demands. The frontal aslant tract potentially supports executive functions, however, additional evidence is needed to clarify whether its involvement in executive tasks goes beyond the control of language. Converging evidence indicates that a right-lateralized network of tracts connecting cortical and subcortical grey matter regions supports the performance of tasks assessing response inhibition, some suggesting a role for the right anterior thalamic radiation. Finally, correlation evidence suggests a role for the cingulum bundle in executive functions, especially in tasks assessing inhibition. We discuss these findings in light of current knowledge about the functional role of these tracts, descriptions of the brain networks supporting executive functions and clinical implications for individuals with brain tumours.


Asunto(s)
Neoplasias Encefálicas , Sustancia Blanca , Adulto , Humanos , Función Ejecutiva/fisiología , Sustancia Blanca/patología , Neoplasias Encefálicas/patología , Imagen de Difusión Tensora , Vigilia
16.
Brain ; 147(3): 961-969, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38128551

RESUMEN

There is increased interest in developing markers reflecting microstructural changes that could serve as outcome measures in clinical trials. This is especially important after unexpected results in trials evaluating disease-modifying therapies targeting amyloid-ß (Aß), where morphological metrics from MRI showed increased volume loss despite promising clinical treatment effects. In this study, changes over time in cortical mean diffusivity, derived using diffusion tensor imaging, were investigated in a large cohort (n = 424) of non-demented participants from the Swedish BioFINDER study. Participants were stratified following the Aß/tau (AT) framework. The results revealed a widespread increase in mean diffusivity over time, including both temporal and parietal cortical regions, in Aß-positive but still tau-negative individuals. These increases were steeper in Aß-positive and tau-positive individuals and robust to the inclusion of cortical thickness in the model. A steeper increase in mean diffusivity was also associated with both changes over time in fluid markers reflecting astrocytic activity (i.e. plasma level of glial fibrillary acidic protein and CSF levels of YKL-40) and worsening of cognitive performance (all P < 0.01). By tracking cortical microstructural changes over time and possibly reflecting variations related to the astrocytic response, cortical mean diffusivity emerges as a promising marker for tracking treatments-induced microstructural changes in clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Imagen de Difusión Tensora , Imagen de Difusión por Resonancia Magnética , Péptidos beta-Amiloides , Filamentos Intermedios
17.
Brain ; 147(9): 3083-3098, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38808482

RESUMEN

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.


Asunto(s)
Estimulación Encefálica Profunda , Mesencéfalo , Vías Nerviosas , Área Tegmental Ventral , Humanos , Estimulación Encefálica Profunda/métodos , Vías Nerviosas/fisiología , Mesencéfalo/fisiología , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/diagnóstico por imagen , Masculino , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Imagen de Difusión Tensora , Corteza Prefrontal/fisiología , Femenino , Ganglios Basales/fisiología
18.
Brain ; 147(10): 3458-3470, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38875488

RESUMEN

Epileptic seizures recorded with stereo-EEG can take a fraction of a second or several seconds to propagate from one region to another. What explains such propagation patterns? We combine tractography and stereo-EEG to determine the relationship between seizure propagation and the white matter architecture and to describe seizure propagation mechanisms. Patient-specific spatiotemporal seizure propagation maps were combined with tractography from diffusion imaging of matched subjects from the Human Connectome Project. The onset of seizure activity was marked on a channel-by-channel basis by two board-certified neurologists for all channels involved in the seizure. We measured the tract connectivity (number of tracts) between regions-of-interest pairs among the seizure onset zone, regions of seizure spread and non-involved regions. We also investigated how tract-connected the seizure onset zone is to regions of early seizure spread compared with regions of late spread. Comparisons were made after correcting for differences in distance. Sixty-nine seizures were marked across 26 patients with drug-resistant epilepsy; 11 were seizure free after surgery (Engel IA) and 15 were not (Engel IB-Engel IV). The seizure onset zone was more tract-connected to regions of seizure spread than to non-involved regions (P < 0.0001); however, regions of seizure spread were not differentially tract-connected to other regions of seizure spread compared with non-involved regions. In seizure-free patients only, regions of seizure spread were more tract-connected to the seizure onset zone than to other regions of spread (P < 0.0001). Over the temporal evolution of a seizure, the seizure onset zone was significantly more tract-connected to regions of early spread compared with regions of late spread in seizure-free patients only (P < 0.0001). By integrating information on structure, we demonstrate that seizure propagation is likely to be mediated by white matter tracts. The pattern of connectivity between seizure onset zone, regions of spread and non-involved regions demonstrates that the onset zone might be largely responsible for seizures propagating throughout the brain, rather than seizures propagating to intermediate points, from which further propagation takes place. Our findings also suggest that seizure propagation over seconds might be the result of a continuous bombardment of action potentials from the seizure onset zone to regions of spread. In non-seizure-free patients, the paucity of tracts from the presumed seizure onset zone to regions of spread suggests that the onset zone was missed. Fully understanding the structure-propagation relationship might eventually provide insight into selecting the correct targets for epilepsy surgery.


Asunto(s)
Imagen de Difusión Tensora , Electroencefalografía , Convulsiones , Sustancia Blanca , Humanos , Convulsiones/fisiopatología , Convulsiones/diagnóstico por imagen , Masculino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Femenino , Imagen de Difusión Tensora/métodos , Adulto , Adulto Joven , Conectoma/métodos , Adolescente , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/cirugía , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Persona de Mediana Edad
19.
Brain ; 147(7): 2483-2495, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701342

RESUMEN

Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.


Asunto(s)
Lobectomía Temporal Anterior , Conectoma , Epilepsia del Lóbulo Temporal , Lóbulo Temporal , Humanos , Femenino , Masculino , Adulto , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Lóbulo Temporal/patología , Lóbulo Temporal/cirugía , Lóbulo Temporal/diagnóstico por imagen , Lobectomía Temporal Anterior/métodos , Persona de Mediana Edad , Adulto Joven , Imagen de Difusión Tensora , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/patología
20.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37948665

RESUMEN

We utilized motion-corrected diffusion tensor imaging (DTI) to evaluate microstructural changes in healthy fetal brains during the late second and third trimesters. Data were derived from fetal magnetic resonance imaging scans conducted as part of a prospective study spanning from 2013 March to 2019 May. The study included 44 fetuses between the gestational ages (GAs) of 23 and 36 weeks. We reconstructed fetal brain DTI using a motion-tracked slice-to-volume registration framework. Images were segmented into 14 regions of interest (ROIs) through label propagation using a fetal DTI atlas, with expert refinement. Statistical analysis involved assessing changes in fractional anisotropy (FA) and mean diffusivity (MD) throughout gestation using mixed-effects models, and identifying points of change in trajectory for ROIs with nonlinear trends. Results showed significant GA-related changes in FA and MD in all ROIs except in the thalamus' FA and corpus callosum's MD. Hemispheric asymmetries were found in the FA of the periventricular white matter (pvWM), intermediate zone, and subplate and in the MD of the ganglionic eminence and pvWM. This study provides valuable insight into the normal patterns of development of MD and FA in the fetal brain. These changes are closely linked with cytoarchitectonic changes and display indications of early functional specialization.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Femenino , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo , Estudios Prospectivos , Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Anisotropía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA