Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.128
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 98(3): 1493-1590, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29845874

RESUMEN

CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory ß-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl- channels, whereas ClC-3 through ClC-7 are 2Cl-/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl- channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.


Asunto(s)
Canales de Cloruro/metabolismo , Animales , Canales de Cloruro/química , Canales de Cloruro/genética , Sordera/genética , Endocitosis , Endosomas/metabolismo , Humanos , Riñón/metabolismo , Enfermedades Renales/genética , Músculo Esquelético/metabolismo , Mutación , Miotonía/genética , Enfermedades Neurodegenerativas/genética , Neuronas/metabolismo , Osteopetrosis/genética
2.
Neurol Sci ; 45(2): 735-740, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37584878

RESUMEN

OBJECTIVE: Electrodiagnostic testing is an important screening test for myotonic dystrophy type 1 (DM1). Although myotonic discharges are observed on electromyography in cases of DM1, it is difficult to distinguish DM1 from other myotonic disorders clinically. In the present study, afterdischarges, another type of pathological potential revealed by electrodiagnostic testing, were analyzed, and their role in distinguishing DM1 from other myotonic disorders was explored. METHODS: Data from 33 patients with myotonic discharges on electromyography were analyzed retrospectively. According to gene testing, the patients were divided into DM1 (n = 20) and non-DM1 myotonia (n = 13) groups. Afterdischarges were investigated by retrospectively evaluating the electrodiagnostic findings of motor nerve conduction studies, F-waves, and repetitive nerve stimulations. RESULTS: Afterdischarges were observed in 17 of the 20 patients with DM1, with an occurrence rate of approximately 85%. However, afterdischarges were absent in all patients with non-DM1 myotonia. There were significant differences in the occurrence rate between the two groups (P < 0.01). CONCLUSION: Afterdischarges may serve as a suggestive role in clinical diagnosis of DM1. The discovery that DM1 can present with afterdischarges may pave a new way to study the pathogenesis of DM1.


Asunto(s)
Miotonía , Distrofia Miotónica , Humanos , Distrofia Miotónica/diagnóstico , Distrofia Miotónica/genética , Miotonía/diagnóstico , Miotonía/genética , Estudios Retrospectivos , Electromiografía , Pruebas Genéticas
3.
Muscle Nerve ; 67(5): 387-393, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36762492

RESUMEN

INTRODUCTION/AIMS: Myotonic dystrophy (DM) is a systemic disease with multiple organ complications, making the standardization of medical care a challenge. We analyzed data from Japan's national registry to clarify the current treatment patterns and demographic features of Japanese DM patients. METHODS: Using the Japanese National Registry of Muscular Dystrophy (Remudy), we analyzed medical care practice for the multisystemic issues associated with adult DM type 1 patients, excluding congenital DM. RESULTS: We included 809 patients with a median age of 44.2 years. Among these patients, 15.8% used ventilators; 31.7% met the index considered at risk for sudden death due to cardiac conduction defects (PR interval over 240 milliseconds or QRS duration over 120 milliseconds) and 2.8% had implanted cardiac devices. Medication for heart failure was prescribed to 9.6% of patients. Overall, 21.2% of patients had abnormal glucose metabolism, of whom 42.9% were treated with oral medications. Among the oral medications, dipeptidyl peptidase-4 inhibitors were the most common. Cancers were observed in 3.7% of the patients, and endometrial and breast cancers were dominant. Mexiletine was prescribed for myotonia in 1.9% of the patients, and only 1% of the patients received medication for daytime sleepiness. DISCUSSION: This study shows difference in treatment patterns for DM1 in Japan compared with other countries, such as lower rates of use of implantable cardiac devices and higher rates of ventilator use. These data may be useful in discussions aimed at standardizing medical care for patients with DM.


Asunto(s)
Distrofias Musculares , Miotonía , Distrofia Miotónica , Adulto , Humanos , Distrofia Miotónica/epidemiología , Distrofia Miotónica/terapia , Distrofia Miotónica/complicaciones , Japón/epidemiología , Distrofias Musculares/complicaciones , Sistema de Registros
4.
BMC Neurol ; 23(1): 171, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106355

RESUMEN

BACKGROUND: Neutral lipid storage disease with myopathy (NLSD-M) is an autosomal recessive disease that manifests itself around the 3rd to 4th decade with chronic myopathy predominantly proximal in the shoulder girdle. Clinical myotonia is uncommon. We will report a rare case of association of pathogenic variants on PNPLA2 and CLCN1 genes with a mixed phenotype of NLSD-M and a subclinical form of Thomsen's congenital myotonia. CASE PRESENTATION: We describe a patient with chronic proximal myopathy, subtle clinical myotonia and electrical myotonia on electromyography (EMG). Serum laboratory analysis disclosure hyperCKemia (CK 1280 mg/dL). A blood smear analysis showed Jordan's anomaly, a hallmark of NLSD-M. A genetic panel was collected using next-generation sequencing (NGS) technique, which identified two pathogenic variants on genes supporting two different diagnosis: NLSD-M and Thomsen congenital myotonia, whose association has not been previously described. CONCLUSIONS: Although uncommon, it is important to remember the possibility of association of pathogenic variants to explain a specific neuromuscular disease phenotype. The use of a range of complementary methods, including myopathy genetic panels, may be essential to diagnostic definition in such cases.


Asunto(s)
Enfermedades Musculares , Miotonía Congénita , Miotonía , Humanos , Aciltransferasas/genética , Canales de Cloruro/genética , Lipasa/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación/genética , Miotonía/genética , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética
5.
Brain ; 145(2): 607-620, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-34529042

RESUMEN

High-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of myotonia congenita. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardized functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine whether functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterization of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern, and serve as reference for 34 previously unreported and 28 previously uncharacterized CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of myotonia congenita. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterization can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling.


Asunto(s)
Miotonía Congénita , Miotonía , Canales de Cloruro/genética , Humanos , Mutación/genética , Miotonía/genética , Miotonía Congénita/genética , Fenotipo
6.
Neurol Sci ; 44(3): 1059-1067, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36401657

RESUMEN

INTRODUCTION: Myotonic dystrophy type 2 (DM2) is a rare, multisystemic, autosomal dominant disease with highly variable clinical presentation. DM2 is considered to be highly underdiagnosed. OBJECTIVE: The aim of this study was to determine which symptoms, signs, and diagnostic findings in patients referred to neurological outpatient units are the most indicative to arouse suspicion of DM2. We tried to make a useful and easy-to-administer clinical scoring system for early diagnosis of DM2-DM2 early diagnosis score (DM2-EDS). PATIENTS AND METHODS: Two hundred ninety-one patients with a clinical suspicion of DM2 were included: 69 were genetically confirmed to have DM2, and 222 patients were DM2 negative. Relevant history, neurological, and paraclinical data were obtained from the electronic medical records. RESULTS: The following parameters appeared as significant predictors of DM2 diagnosis: cataracts (beta = 0.410, p < 0.001), myotonia on needle EMG (beta = 0.298, p < 0.001), hand tremor (beta = 0.211, p = 0.001), positive family history (beta = 0.171, p = 0.012), and calf hypertrophy (beta = 0.120, p = 0.043). In the final DM2-EDS, based on the beta values, symptoms were associated with the following values: cataracts (present 3.4, absent 0), myotonia (present 2.5, absent 0), tremor (present 1.7, absent 0), family history (positive 1.4, negative 0), and calf hypertrophy (present 1.0, absent 0). A cut-off value on DM2-EDS of 3.25 of maximum 10 points had a sensitivity of 84% and specificity of 81% to diagnose DM2. CONCLUSION: Significant predictors of DM2 diagnosis in the neurology outpatient unit were identified. We made an easy-to-administer DM2-EDS score for early diagnosis of DM2.


Asunto(s)
Catarata , Miotonía , Distrofia Miotónica , Humanos , Distrofia Miotónica/diagnóstico , Temblor , Hipertrofia
7.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614292

RESUMEN

The voltage-gated sodium channels represent an important target for drug discovery since a large number of physiological processes are regulated by these channels. In several excitability disorders, including epilepsy, cardiac arrhythmias, chronic pain, and non-dystrophic myotonia, blockers of voltage-gated sodium channels are clinically used. Myotonia is a skeletal muscle condition characterized by the over-excitability of the sarcolemma, resulting in delayed relaxation after contraction and muscle stiffness. The therapeutic management of this disorder relies on mexiletine and other sodium channel blockers, which are not selective for the Nav1.4 skeletal muscle sodium channel isoform. Hence, the importance of deepening the knowledge of molecular requirements for developing more potent and use-dependent drugs acting on Nav1.4. Here, we review the available treatment options for non-dystrophic myotonia and the structure-activity relationship studies performed in our laboratory with a focus on new compounds with potential antimyotonic activity.


Asunto(s)
Mexiletine , Miotonía , Canal de Sodio Activado por Voltaje NAV1.4 , Bloqueadores del Canal de Sodio Activado por Voltaje , Humanos , Mexiletine/farmacología , Mexiletine/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Miotonía/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Síndrome , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
8.
Pract Neurol ; 23(1): 74-77, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36192135

RESUMEN

A 21-year-old woman developed an acute myotonic reaction while undergoing anaesthesia using succinylcholine. Examination later showed she had shoulder, neck and calf hypertrophy, bilateral symmetrical ptosis and eyelid, handgrip and percussion myotonia. Peripheral neurophysiology studies identified significant, continuous myotonic discharges in both upper and lower limbs. Genetic analysis identified a c.3917G>A (p.Gly1306Glu) mutation in the SCN4A gene, confirming a diagnosis of sodium channel myotonia. Succinylcholine and other depolarising agents can precipitate life-threatening acute myotonic reactions when given to patients with myotonia. Patients with neuromuscular disorders are at an increased risk of perioperative anaesthetic complications. We report a woman who developed an acute myotonic reaction whilst undergoing anaesthesia, in the context of an unrecognised myotonic disorder. We then discuss an approach to the diagnosis of myotonic disorders.


Asunto(s)
Anestesia , Miotonía , Trastornos Miotónicos , Femenino , Humanos , Adulto Joven , Adulto , Succinilcolina/efectos adversos , Fuerza de la Mano , Trastornos Miotónicos/inducido químicamente , Trastornos Miotónicos/diagnóstico , Miotonía/inducido químicamente , Miotonía/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética
9.
J Physiol ; 600(12): 2835-2851, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35436004

RESUMEN

Acquired and inherited dysfunction in voltage-gated sodium channels underlies a wide range of diseases. In addition to defects in trafficking and expression, sodium channelopathies are caused by dysfunction in one or several gating properties, for instance activation or inactivation. Disruption of channel inactivation leads to increased late sodium current, which is a common defect in seizure disorders, cardiac arrhythmias skeletal muscle myotonia and pain. An increase in late sodium current leads to repetitive action potentials in neurons and skeletal muscles, and prolonged action potential duration in the heart. In this Topical Review, we compare the effects of late sodium current in brain, heart, skeletal muscle and peripheral nerves.


Asunto(s)
Miotonía , Arritmias Cardíacas , Humanos , Miotonía/metabolismo , Dolor , Sodio/metabolismo , Síndrome
10.
Muscle Nerve ; 66(2): 148-158, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35644941

RESUMEN

INTRODUCTION/AIMS: Consistency of differences between non-dystrophic myotonias over time measured by standardized clinical/patient-reported outcomes is lacking. Evaluation of longitudinal data could establish clinically relevant endpoints for future research. METHODS: Data from prospective observational study of 95 definite/clinically suspected non-dystrophic myotonia participants (six sites in the United States, United Kingdom, and Canada) between March 2006 and March 2009 were analyzed. Outcomes included: standardized symptom interview/exam, Short Form-36, Individualized Neuromuscular Quality of Life (INQoL), electrophysiological short/prolonged exercise tests, manual muscle testing, quantitative grip strength, modified get-up-and-go test. Patterns were assigned as described by Fournier et al. Comparisons were restricted to confirmed sodium channelopathies (SCN4A, baseline, year 1, year 2: n = 34, 19, 13), chloride channelopathies (CLCN1, n = 32, 26, 18), and myotonic dystrophy type 2 (DM2, n = 9, 6, 2). RESULTS: Muscle stiffness was the most frequent symptom over time (54.7%-64.7%). Eyelid myotonia and paradoxical handgrip/eyelid myotonia were more frequent in SCN4A. Grip strength and combined manual muscle testing remained stable. Modified get-up-and-go showed less warm up in SCN4A but remained stable. Median post short exercise decrement was stable, except for SCN4A (baseline to year 2 decrement difference 16.6% [Q1, Q3: 9.5, 39.2]). Fournier patterns type 2 (CLCN1) and 1 (SCN4A) were most specific; 40.4% of participants had a change in pattern over time. INQoL showed higher impact for SCN4A and DM2 with scores stable over time. DISCUSSION: Symptom frequency and clinical outcome assessments were stable with defined variability in myotonia measures supporting trial designs like cross over or combined n-of-1 as important for rare disorders.


Asunto(s)
Canalopatías , Miotonía Congénita , Miotonía , Distrofia Miotónica , Canales de Cloruro/genética , Fuerza de la Mano , Humanos , Mutación , Miotonía/diagnóstico , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Medición de Resultados Informados por el Paciente , Calidad de Vida
11.
Muscle Nerve ; 66(3): 336-339, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35426155

RESUMEN

INTRODUCTION/AIMS: Remote study visits (RSVs) are emerging as important tools for clinical research. We tested the feasibility of using RSVs to evaluate patients with myotonic dystrophy type 1 (DM1), including remote quantitative assessment of muscle function, and we assessed correlations of remote assessments with patient-reported function. METHODS: Twenty three subjects with DM1 were consented remotely. Toolkits containing a tablet computer, grip dynamometer, and spirometer were shipped to participants. The tablets were loaded with software for video-conferencing and questionnaires about functional impairment, patient experience with technology, and willingness to participate in future remote studies. Grip strength, forced vital capacity, peak cough flow, timed-up-and-go (TUG), and grip myotonia (hand opening time) were determined during RSVs. We assessed correlations of remote assessments with patient-reported outcomes of muscle function and with CTG repeat size. RESULTS: All 23 subjects completed RSVs. 95% of participants were able to complete all components of the remote study. All toolkit components were returned upon completion. Grip strength and TUG demonstrated moderate to strong correlations with self-reported inventories of upper and lower extremity impairment, respectively (ρ = 0.7 and ρ = -0.52). A total of 91% of subjects expressed interest in participating in future RSVs. DISCUSSION: Results of this study support the feasibility of using portable devices and video-conferencing for remote collection of patient-reported outcomes and quantitative assessment of muscle function in DM1.


Asunto(s)
Miotonía , Distrofia Miotónica , Estudios de Factibilidad , Fuerza de la Mano , Humanos , Músculo Esquelético , Distrofia Miotónica/diagnóstico
12.
BMC Neurol ; 22(1): 17, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996390

RESUMEN

BACKGROUND: Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous hereditary neuropathy, and CMT1A is the most common form; it is caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. Mutations in the transient sodium channel Nav1.4 alpha subunit (SCN4A) gene underlie a diverse group of dominantly inherited nondystrophic myotonias that run the spectrum from subclinical myopathy to severe muscle stiffness, disabling weakness, or frank episodes of paralysis. CASE PRESENTATION: We describe a Chinese family affected by both CMT1A and myotonia with concomitant alterations in both the PMP22 and SCN4A genes. In this family, the affected proband inherited the disease from his father in an autosomal dominant manner. Genetic analysis confirmed duplication of the PMP22 gene and a missense c.3917G > C (p. Gly1306Ala) mutation in SCN4A in both the proband and his father. The clinical phenotype in the proband showed the combined involvement of skeletal muscle and peripheral nerves. Electromyography showed myopathic changes, including myotonic discharges. MRI revealed the concurrence of neurogenic and myogenic changes in the lower leg muscles. Sural nerve biopsies revealed a chronic demyelinating and remyelinating process with onion bulb formations in the proband. The proband's father presented with confirmed subclinical myopathy, very mild distal atrophy and proximal hypertrophy of the lower leg muscles, pes cavus, and areflexia. CONCLUSION: This study reports the coexistence of PMP22 duplication and SCN4A mutation. The presenting features in this family suggested that both neuropathy and myopathy were inherited in an autosomal dominant manner. The proband had a typical phenotype of sodium channel myotonia (SCM) and CMT1A. However, his father with the same mutations presented a much milder clinical phenotype. Our study might expand the genetic and phenotypic spectra of neuromuscular disorders with concomitant mutations.


Asunto(s)
Artrogriposis , Enfermedad de Charcot-Marie-Tooth , Miotonía , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/genética , Humanos , Masculino , Proteínas de la Mielina , Canal de Sodio Activado por Voltaje NAV1.4/genética , Proteínas
13.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555146

RESUMEN

Myotonic Dystrophies (DM, Dystrophia Myotonia) are autosomal dominant inherited myopathies with a high prevalence across different ethnic regions. Despite some differences, mainly due to the pattern of muscle involvement and the age of onset, both forms, DM1 and DM2, share many clinical and genetic similarities. In this study, we retrospectively analyzed the medical record files of 561 Greek patients, 434 with DM1 and 127 with DM2 diagnosed in two large academic centers between 1994-2020. The mean age at onset of symptoms was 26.2 ± 15.3 years in DM1 versus 44.4 ± 17.0 years in DM2 patients, while the delay of diagnosis was 10 and 7 years for DM1 and DM2 patients, respectively. Muscle weakness was the first symptom in both types, while myotonia was more frequent in DM1 patients. Multisystemic involvement was detected in the great majority of patients, with cataracts being one of the most common extramuscular manifestations, even in the early stages of disease expression. In conclusion, the present work, despite some limitations arising from the retrospective collection of data, is the first record of a large number of Greek patients with myotonic dystrophy and emphasizes the need for specialized neuromuscular centers that can provide genetic counseling and a multidisciplinary approach.


Asunto(s)
Miotonía , Distrofia Miotónica , Humanos , Distrofia Miotónica/epidemiología , Distrofia Miotónica/genética , Estudios Transversales , Estudios Retrospectivos , Grecia/epidemiología
14.
Ann Neurol ; 87(2): 175-183, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31725924

RESUMEN

It is generally thought that muscle excitability is almost exclusively controlled by currents responsible for generation of action potentials. We propose that smaller ion channel currents that contribute to setting the resting potential and to subthreshold fluctuations in membrane potential can also modulate excitability in important ways. These channels open at voltages more negative than the action potential threshold and are thus termed subthreshold currents. As subthreshold currents are orders of magnitude smaller than the currents responsible for the action potential, they are hard to identify and easily overlooked. Discovery of their importance in regulation of excitability opens new avenues for improved therapy for muscle channelopathies and diseases of the neuromuscular junction. ANN NEUROL 2020;87:175-183.


Asunto(s)
Canalopatías/fisiopatología , Canales Iónicos/fisiología , Músculos/fisiología , Miotonía/fisiopatología , Animales , Humanos
15.
Value Health ; 24(7): 925-929, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34243835

RESUMEN

OBJECTIVES: Mexiletine is a long-known drug used for the treatment of arrhythmias and repurposed in the 1980s for patients with nondystrophic myotonia (NDM). Recently, the price of mexiletine in Europe increased significantly after registration as an orphan drug for NDM. This led to international discussions on affordability and willingness to reimburse mexiletine in the absence of background information that would justify such a price. Our objective was to calculate a cost-based price for mexiletine for adult patients with NDM based on detailed information on development costs. METHODS: We calculated a fair price based on a cost-based pricing model for commercial mexiletine to treat adults with NDM using a recent European drug-pricing model as a framework to include actual costs incurred. Three scenarios were applied: 1 with minimum estimated costs, 1 with maximum estimated costs, and 1 with costs as if mexiletine was innovative. RESULTS: The calculated fair price of mexiletine per patient per year (PPPY) is €452 for the minimum scenario and €1996 for the maximum scenario. By using hypothetical R&D costs used for innovative drugs, the price would be €6685 PPPY. In Europe, the list price of mexiletine ranges from €30 707-60 730 PPPY, based on 600 mg daily. CONCLUSIONS: The current list price for mexiletine in Europe is manifold higher than any scenario of the cost-based models. Accounting for the reduced costs for clinical development in a repurposing scenario, the cost-based pricing model provides a fair commercial price range, which can be used as benchmark for pricing negotiations and/or reimbursement decisions.


Asunto(s)
Antiarrítmicos/economía , Reposicionamiento de Medicamentos/economía , Mexiletine/economía , Miotonía/tratamiento farmacológico , Antiarrítmicos/uso terapéutico , Comercio , Europa (Continente) , Humanos , Mexiletine/uso terapéutico , Producción de Medicamentos sin Interés Comercial
16.
BMC Neurol ; 21(1): 467, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852780

RESUMEN

BACKGROUND: Non-dystrophic myotonias (NDMs) comprise muscle chloride and sodium channelopathies due to genetic defects of the CLCN1- and SCN4A-channels. No licensed antimyotonic treatment has been available until approval of mexiletine (NaMuscla®) for adult patients by the EMA in December 2018. This Delphi panel aimed to understand how outcomes of the pivotal phase III Mexiletine study (MYOMEX) translate to real world practice and investigate health resource use, quality of life and the natural history of NDM to support economic modelling and facilitate patient access. METHODS: Nine clinical experts in treating NDM took part in a two-round Delphi panel. Their knowledge of NDM and previous use of mexiletine as an off-label treatment prior to NaMuscla's approval ensured they could provide both qualitative context and quantitative estimates to support economic modelling comparing mexiletine (NaMuscla) to best supportive care. Consensus in four key areas was sought: healthcare resource utilization (HRU), treatment with mexiletine (NaMuscla), patient quality of life (QoL), and the natural history of disease. Concept questions were also asked, considering perceptions on the feasibility of mapping the validated Individualized Neuromuscular Quality of Life (INQoL) instrument to the generic EQ-5D™, and the potential impact on caregiver QoL. RESULTS: Consensus was achieved for key questions including the average long-term dosage of mexiletine (NaMuscla) in practice, the criteria for eligibility of myotonia treatment, the clinical importance of QoL outcomes in MYOMEX, the higher proportion of patients with increased QoL, and the reduction in the need for mental health resources for patients receiving mexiletine (NaMuscla). While consensus was not achieved for other questions, the results demonstrated that most experts felt mexiletine (NaMuscla) reduced the need for HRU and was expected to improve QoL. The QoL mapping exercise suggested that it is feasible to map domains of INQoL to EQ-5D. Points of interest for future research were identified, including that mexiletine (NaMuscla) may slow the annual decrease in QoL of patients over their lifetime, and a significant negative impact on QoL for some caregivers. CONCLUSIONS: This project successfully provided data from an informed group of clinical experts, complementing the currently available clinical trial data for mexiletine (NaMuscla) to support patient access decisions.


Asunto(s)
Canalopatías , Miotonía , Adulto , Humanos , Mexiletine/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.4 , Calidad de Vida , Resultado del Tratamiento
17.
Neurol Sci ; 42(12): 5359-5363, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34378097

RESUMEN

INTRODUCTION: Mutations of the skeletal muscle sodium channel gene SCN4A are associated with several neuromuscular disorders including hyper/hypokaliemic periodic paralysis, paramyotonia congenita and sodium channel myotonia. These disorders are distinguished from dystrophic myotonias by the absence of progressive weakness and extramuscular systemic involvement. METHODS: We present an Italian family with 2 subjects carrying a p.Asn1180Ile mutation in SCN4A gene showing a peculiar clinical picture characterized by the association of myopathic features and myotonia. RESULTS: The clinical, electromyographic and histological findings of these patients are reported. The possible pathogenicity of the mutation was tested by three different software, all giving positive results. DISCUSSION: This is the first report of a dominant, heterozygous mutation in SCN4A causing a complex phenotype of non-congenital myopathy and myotonic syndrome. We suggest that, in patients with myotonia and myopathy not related to dystrophic myotonias, the sequence analysis of SCN4A gene should be performed.


Asunto(s)
Enfermedades Musculares , Miotonía Congénita , Miotonía , Trastornos Miotónicos , Humanos , Mutación/genética , Miotonía/genética , Miotonía Congénita/genética , Trastornos Miotónicos/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Linaje
18.
Neurol Sci ; 42(12): 5365-5368, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34386887

RESUMEN

INTRODUCTION: Myotonic disorders are a group of diseases affecting the muscle, in different ways. Myotonic dystrophy type 1 (DM1) is related to (CTG)n expansion in the 3-untranslated region of the dystrophia myotonica protein kinase (DMPK) gene and is the most frequent and disabling form, causing muscular, visibility, respiratory, and cardiac impairment. Non-dystrophic myotonias (NDMs) affect the skeletal muscle alone. In particular, mutations in the chloride channel (CLCN1) gene cause myotonia congenita (MC), which can have autosomal dominant or recessive inheritance. CASE REPORT: We describe a patient with a family history of asymptomatic or paucisymptomatic myotonia, who presented handgrip myotonia which sharply reduced after mexiletine administration. Molecular analysis showed both a paternally inherited DMPK expansion and a maternally inherited CLCN1 mutation. CONCLUSIONS: Only one other similar case was reported so far; however, the segregation of the two mutations and the characteristics of the muscle were not studied. Since our patient lacked the classical phenotypical and muscle histopathological characteristics of DM1 and showed mild splicing alterations despite a pathogenic DMPK expansion and the nuclear accumulation of toxic RNA, we may speculate that the co-occurrence of a CLCN1 mutation could have attenuated the severity of DM1 phenotype.


Asunto(s)
Miotonía Congénita , Miotonía , Distrofia Miotónica , Canales de Cloruro/genética , Fuerza de la Mano , Humanos , Mutación , Miotonía/genética , Miotonía Congénita/complicaciones , Miotonía Congénita/genética , Distrofia Miotónica/complicaciones , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica
19.
Acta Neurol Taiwan ; 30(3): 113-118, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34841507

RESUMEN

PURPOSE: Early distal muscle weakness and myotonia are typical clinical presentations in type I myotonic dystrophy (DM1). We present a DM1 case with unusual predominant proximal weakness without action myotonia. CASE REPORT: The chief complaint of this 48-year-old female was difficulty in raising her arms and frequent falling in recent years. On neurological examination, proximal muscle weakness was more pronounced than the distal muscle groups, in addition to facial involvement. Although she did not experience any action myotonia throughout her life, hand and tongue myotonia were readily inducible by percussion during neurological examination. The diagnosis of DM1 was later supported by electromyography and neuropathological studies, and confirmed by molecular testing. The pathological findings in this patient and the characteristic features in typical DM1 patients were briefly reviewed. CONCLUSION: The unusual presentation of this DM1 patient suggests the importance of comprehensive neurological examination including percussion of thenar and tongue muscles, even in a patient with atypical distribution of muscle weakness and without a clear personal and family history of myotonia. In addition to molecular testing, muscle biopsy remains supportive in making the diagnosis.


Asunto(s)
Miotonía , Distrofia Miotónica , Electromiografía , Femenino , Humanos , Persona de Mediana Edad , Debilidad Muscular/etiología , Músculo Esquelético , Miotonía/diagnóstico , Distrofia Miotónica/complicaciones , Distrofia Miotónica/diagnóstico , Distrofia Miotónica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA