Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nutr ; 154(7): 2108-2119, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710305

RESUMEN

BACKGROUND: The intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been associated with health benefits. Blood levels of these fatty acids, measured by gas chromatography (GC), are associated with their dietary intake, but the relationships with lipidomic measurements are not well defined. OBJECTIVES: This study aimed to determine the lipidomic biomarkers in whole blood that predict intakes of EPA + DHA and examine the relationship between lipidomic and GC-based n-3 polyunsaturated fatty acid (n-3 PUFA) biomarkers. METHODS: Lipidomic and fatty acid analyses were completed on 120 whole blood samples collected from Danish participants. Dietary intakes were completed using a web-based 7-d food diary. Stepwise multiple linear regression was used to identify the fatty acid and lipidomic variables that predict intakes of EPA + DHA and to determine lipidomic species that predict commonly used fatty acid biomarkers. RESULTS: Stepwise regression selected lipidomic variables with an R2 = 0.52 for predicting EPA + DHA intake compared to R2 = 0.40 for the selected fatty acid GC-based variables. More predictive models were generated when the lipidomic variables were selected for females only (R2 = 0.62, n = 68) and males only (R2 = 0.72, n = 52). Phosphatidylethanolamine plasmalogen species containing EPA or DHA tended to be the most predictive lipidomic variables. Stepwise regression also indicated that selected lipidomic variables can predict commonly used fatty acid GC-based n-3 PUFA biomarkers as the R2 values ranged from 0.84 to 0.91. CONCLUSIONS: Both fatty acid and lipidomic data can be used to predict EPA + DHA intakes, and fatty acid GC-based biomarkers can be emulated by lipidomic species. Lipidomic-based biomarkers appear to be influenced by sex differences, probably in n-3 PUFA and lipoprotein metabolism. These results improve our ability to understand the relationship between novel lipidomic data and GC fatty acid data and will increase our ability to apply lipidomic methods to fatty acid and lipid nutritional research.


Asunto(s)
Biomarcadores , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Lipidómica , Humanos , Ácido Eicosapentaenoico/sangre , Ácido Eicosapentaenoico/administración & dosificación , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/administración & dosificación , Femenino , Masculino , Biomarcadores/sangre , Dinamarca , Persona de Mediana Edad , Adulto , Dieta , Ácidos Grasos/sangre , Anciano , Registros de Dieta
2.
Artículo en Inglés | MEDLINE | ID: mdl-38643744

RESUMEN

Florida manatees (Trichechus manatus latirostris) are protected as a threatened species, and data are lacking regarding their reproductive physiology. This study aimed to (1) quantify plasma steroid hormones in Florida manatees from two field sites, Crystal River and Indian River Lagoon, at different gestational stages and to (2) identify individual lipids associated with pregnancy status. Ultra-high performance liquid chromatography-tandem mass spectrometric analysis was used to measure plasma steroid hormones and lipids. Pregnant female manatees were morphometrically distinct from male and non-pregnant female manatees, characterized by larger body weight and maximal girth. Progesterone concentrations in manatees were also elevated during early gestation versus late gestation. Cholesterol, an important metabolic lipid, and precursor for reproductive steroids, was not different between groups. Mass spectrometry quantified 949 lipids. Plasma concentrations of glycerophospholipids, glycerolipids, sphingolipids, acylcarnitines, and cholesteryl esters were associated with pregnancy status in the Florida manatee. Most of the lipid species associated with pregnancy were triacylglycerides, phosphatidylethanolamines, and ether-linked phosphatidylethanolamines, which may serve as energy sources for fetal development. This research contributes to improving knowledge of manatee reproductive physiology by providing data on plasma steroid hormones relative to reproductive status and by identifying plasma lipids that may be important for pregnancy. Elucidation of lipid species directly associated with pregnancy has the potential to serve as a diagnostic approach to identify pregnant individuals in fresh and archived samples. These biochemical and morphometric indicators of reproductive status advance the understanding of manatee physiology.


Asunto(s)
Lipidómica , Trichechus manatus , Animales , Femenino , Embarazo , Trichechus manatus/sangre , Masculino , Reproducción , Lípidos/sangre
3.
Cancers (Basel) ; 16(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398103

RESUMEN

Prostate cancer represents a significant health risk to aging men, in which diagnostic challenges to the identification of aggressive cancers remain unmet. Prostate cancer screening is driven by the prostate-specific antigen (PSA); however, in men with benign prostatic hyperplasia (BPH) due to an enlarged prostate and elevated PSA, PSA's screening utility is diminished, resulting in many unnecessary biopsies. To address this issue, we previously identified a cleaved fragment of Filamin A (FLNA) protein (as measured with IP-MRM mass spectrometry assessment as a prognostic biomarker for stratifying BPH from prostate cancer and subsequently evaluated its expanded utility in Caucasian (CA) and African American (AA) men. All men had a negative digital rectal examination (DRE) and PSA between 4 and 10 ng/mL and underwent prostate biopsy. In AA men, FLNA serum levels exhibited diagnostic utility for stratifying BPH from patients with aggressive prostate cancer (0.71 AUC and 12.2 OR in 48 men with BPH and 60 men with PCa) and outperformed PSA (0.50 AUC, 2.2 OR). In CA men, FLNA serum levels also exhibited diagnostic utility for stratifying BPH from patients with aggressive prostate cancer (0.74 AUC and 19.4 OR in 191 men with BPH and 109 men with PCa) and outperformed PSA (0.46 AUC, 0.32 OR). Herein, we established FLNA alone as a serum biomarker for stratifying men with BPH vs. those with high Gleason (7-10) prostate cancers compared to the current diagnostic paradigm of using PSA. This approach demonstrates clinical actionability of FLNA alone without the requirement of prostate volume measurement as a test with utility in AA and CA men and represents a significant opportunity to decrease the number of unnecessary biopsies in aggressive prostate cancer diagnoses.

4.
Mol Metab ; 81: 101887, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280449

RESUMEN

OBJECTIVE: Lipotoxic injury from renal lipid accumulation in obesity and type 2 diabetes (T2D) is implicated in associated kidney damage. However, models examining effects of renal ectopic lipid accumulation independent of obesity or T2D are lacking. We generated renal tubule-specific adipose triglyceride lipase knockout (RT-SAKO) mice to determine if this targeted triacylglycerol (TAG) over-storage affects glycemic control and kidney health. METHODS: Male and female RT-SAKO mice and their control littermates were tested for changes in glycemic control at 10-12 and 16-18 weeks of age. Markers of kidney health and blood lipid and hormone concentrations were analyzed. Kidney and blood lysophosphatidic acid (LPA) levels were measured, and a role for LPA in mediating impaired glycemic control was evaluated using the LPA receptor 1/3 inhibitor Ki-16425. RESULTS: All groups remained insulin sensitive, but 16- to 18-week-old male RT-SAKO mice became glucose intolerant, without developing kidney inflammation or fibrosis. Rather, these mice displayed lower circulating insulin and glucagon-like peptide 1 (GLP-1) levels. Impaired first-phase glucose-stimulated insulin secretion was detected and restored by Exendin-4. Kidney and blood LPA levels were elevated in older male but not female RT-SAKO mice, associated with increased kidney diacylglycerol kinase epsilon. Inhibition of LPA-mediated signaling restored serum GLP-1 levels, first-phase insulin secretion, and glucose tolerance. CONCLUSIONS: TAG over-storage alone is insufficient to cause renal tubule lipotoxicity. This work is the first to show that endogenously derived LPA modulates GLP-1 levels in vivo, demonstrating a new mechanism of kidney-gut-pancreas crosstalk to regulate insulin secretion and glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Animales , Femenino , Masculino , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Inflamación/metabolismo , Insulina/metabolismo , Secreción de Insulina , Riñón/metabolismo , Metabolismo de los Lípidos , Lípidos , Obesidad/metabolismo
5.
Nutrients ; 15(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686800

RESUMEN

Epidemiological data demonstrate that bovine whole milk is often substituted for human milk during the first 12 months of life and may be associated with adverse infant outcomes. The objective of this study is to interrogate the human and bovine milk metabolome at 2 weeks of life to identify unique metabolites that may impact infant health outcomes. Human milk (n = 10) was collected at 2 weeks postpartum from normal-weight mothers (pre-pregnant BMI < 25 kg/m2) that vaginally delivered term infants and were exclusively breastfeeding their infant for at least 2 months. Similarly, bovine milk (n = 10) was collected 2 weeks postpartum from normal-weight primiparous Holstein dairy cows. Untargeted data were acquired on all milk samples using high-resolution liquid chromatography-high-resolution tandem mass spectrometry (HR LC-MS/MS). MS data pre-processing from feature calling to metabolite annotation was performed using MS-DIAL and MS-FLO. Our results revealed that more than 80% of the milk metabolome is shared between human and bovine milk samples during early lactation. Unbiased analysis of identified metabolites revealed that nearly 80% of milk metabolites may contribute to microbial metabolism and microbe-host interactions. Collectively, these results highlight untargeted metabolomics as a potential strategy to identify unique and shared metabolites in bovine and human milk that may relate to and impact infant health outcomes.


Asunto(s)
Lactancia Materna , Espectrometría de Masas en Tándem , Animales , Femenino , Lactante , Embarazo , Humanos , Bovinos , Cromatografía Liquida , Lactancia , Leche Humana , Metabolómica
6.
Chem Res Toxicol ; 36(7): 1121-1128, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37342084

RESUMEN

Cell and animal models have been used to provide insights with regard to physiological changes in intestinal flora due to exposure to drugs and environmental contaminants. Here, a novel in vitro model known as simulator of the human intestinal microbial ecosystem (SHIME) was used to assess the effects of three chemicals of emerging concern, namely glyphosate, perfluorooctanoic acid (PFOA), and docusate sodium (dioctyl sulfosuccinate, DOSS), on the lipidomic and metabolomic profiles of the gut microenvironment in both the proximal and distal colonic compartments. Nontargeted analyses by ultra-high performance liquid chromatography-tandem mass spectrometry and gas chromatography-electron ionization-mass spectrometry revealed minor differences in the lipidomic and metabolomic signatures of the proximal and distal colon following treatment with either glyphosate or PFOA at acceptable human daily intake levels or average daily exposures. However, global dysregulation of lipids and metabolites was observed due to DOSS treatment at conventional prescription doses when indicated as a stool softener. Our findings suggest that the current guidelines for glyphosate and PFOA exposure may be adequate at the level of the lower gut microbiome in healthy adults, but the probable yet uncharacterized off-target effects, safety, and efficacy of long-term DOSS treatment warrants further investigation. Indeed, we highlight the SHIME system as a novel in vitro approach which can be used as a screening tool to assess the impact of drugs and/or chemicals on the gut microbiome, while implementing state-of-the-art and data-driven mass spectrometric workflows to identify toxic lipidomic and metabolomic signatures.


Asunto(s)
Ácido Dioctil Sulfosuccínico , Microbioma Gastrointestinal , Animales , Humanos , Ácido Dioctil Sulfosuccínico/farmacología , Lipidómica , Ecosistema , Cromatografía de Gases y Espectrometría de Masas , Glifosato
7.
Artículo en Inglés | MEDLINE | ID: mdl-36966673

RESUMEN

Recent studies suggest the effects of DHA supplementation on human memory may differ between females and males during infancy, adolescence, and early adulthood, but the underlying mechanisms are not clear. As a result, this study sought to examine the spatial memory and brain lipidomic profiles in female and male adolescent rats with or without a DHA-enriched diet that began perinatally with the supplementation of dams. Spatial learning and memory were examined in adolescent rats using the Morris Water Maze beginning at 6 weeks of age and animals were sacrificed at 7 weeks of age to permit isolation of brain tissue and blood samples. Behavioral testing showed that there was a significant diet x sex interaction for two key measures of spatial memory (distance to zone and time spent in the correct quadrant during the probe test), with female rats benefiting the most from DHA supplementation. Lipidomic analyses suggest levels of arachidonic acid (ARA) and n-6 docosapentaenoic acid (DPA) containing phospholipid species were lower in the hippocampus of DHA supplemented compared with control animals, and principal component analyses revealed a potential dietary treatment effect for hippocampal PUFA. Females fed DHA had slightly more PE P-18:0_22:6 and maintained levels of PE 18:0_20:4 in the hippocampus in contrast with males fed DHA. Understanding how DHA supplementation during the perinatal and adolescent periods changes cognitive function in a sex-specific manner has important implications for determining the dietary requirements of DHA. This study adds to previous work highlighting the importance of DHA for spatial memory and provides evidence that further research needs to consider how DHA supplementation can cause sex-specific changes.


Asunto(s)
Lipidómica , Caracteres Sexuales , Humanos , Embarazo , Ratas , Animales , Femenino , Masculino , Adolescente , Adulto , Ácidos Docosahexaenoicos/farmacología , Encéfalo , Dieta
8.
Biomolecules ; 13(2)2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36830627

RESUMEN

Butyrate, a short-chain fatty acid, is utilized by the gut epithelium as energy and it improves the gut epithelial barrier. More recently, it has been associated with beneficial effects on immune and cardiovascular homeostasis. Conversely, tumor necrosis factor alpha (TNFα) is a pro-inflammatory and pro-hypertensive cytokine. While butyrate and TNFα are both linked with hypertension, studies have not yet addressed their interaction in the colon. Here, we investigated the capacity of butyrate to modulate a host of effects of TNFα in primary rodent colonic cells in vitro. We measured ATP levels, cell viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial oxidative phosphorylation, and glycolytic activity in colonocytes following exposure to either butyrate or TNFα, or both. To address the potential mechanisms, transcripts related to oxidative stress, cell fate, and cell metabolism (Pdk1, Pdk2, Pdk4, Spr, Slc16a1, Slc16a3, Ppargc1a, Cs, Lgr5, Casp3, Tnfr2, Bax, Bcl2, Sod1, Sod2, and Cat) were measured, and untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the metabolic responses of colonocytes following exposure to butyrate and TNFα. We found that both butyrate and TNFα lowered cellular ATP levels towards a quiescent cell energy phenotype, characterized by decreased oxygen consumption and extracellular acidification. Co-treatment with butyrate ameliorated TNFα-induced cytotoxicity and the reduction in cell viability. Butyrate also opposed the TNFα-mediated decrease in MMP and mitochondrial-to-intracellular calcium ratios, suggesting that butyrate may protect colonocytes against TNFα-induced cytotoxicity by decreasing mitochondrial calcium flux. The relative expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were increased via co-treatment of butyrate and TNFα, suggesting the synergistic inhibition of glycolysis. TNFα alone reduced the expression of monocarboxylate transporters slc16a1 and slc16a3, suggesting effects of TNFα on butyrate uptake into colonocytes. Of the 185 metabolites that were detected with LC-MS, the TNFα-induced increase in biopterin produced the only significant change, suggesting an alteration in mitochondrial biogenesis in colonocytes. Considering the reports of elevated colonic TNFα and reduced butyrate metabolism in many conditions, including in hypertension, the present work sheds light on cellular interactions between TNFα and butyrate in colonocytes that may be important in understanding conditions of the colon.


Asunto(s)
Butiratos , Hipertensión , Ratas , Animales , Butiratos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Calcio/metabolismo , Cromatografía Liquida , Mucosa Intestinal/metabolismo , Espectrometría de Masas en Tándem , Hipertensión/metabolismo , Adenosina Trifosfato/metabolismo
9.
Heliyon ; 8(8): e10239, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36090227

RESUMEN

As the persistence of per- and polyfluoroalkyl substances (PFAS) become a global concern, information about the occurrence and characteristics of PFAS in estuarine and marine ecosystems is poorly represented. In this study, the presence of 51 PFAS were monitored in the Pensacola Bay System (PBS), Florida, USA. Due to the presence of many potential PFAS sources in close proximity to the PBS (e.g., military bases, industries, airports and several firefighting stations), the distribution and concentration of PFAS in this estuarine environment provides insights into the fate of these complex compounds as well as the possible impacts on coastal systems. Surface water was collected and analyzed from 45 different sites via Strata-X-AW cartridge extractions and ultra-high pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Recoveries for many PFAS (13/51) were >60% (mean 77 %), with relative standard deviations below 20%, except for N-methylperfluoro-1-octanesulfonamidoacetic acid (N-MeFOSAA) (22%). Of the perfluoroalkyl carboxylic acids (PFCAs), which comprised the majority of PFAS detected: perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) were present in all samples; however, perfluoropentanoic acid (PFPeA) was the individual PFAS with the highest concentration of this group (51.9 ng.L-1, at site 81). The PFAS detected at the highest concentrations were perfluoroalkyl sulfonic acids (PFSA), with perfluorooctane sulfonic acid (PFOS) having the highest detected concentration (269 ng.L-1, at site 81). At all sites, at least eight or more PFAS were quantified. Past and current use of PFAS-containing materials and their fate in areas surrounding military bases, airports, and industries, require more in-depth monitoring efforts to better determine the need for regulation, management, and/or remediation. Here, sites located close to areas suspected of PFAS use had elevated concentrations. For example, one coastal location near an airfield had a ΣPFAS of 677 ng.L-1. Expansion from these ongoing efforts will focus on assessment of PFAS-related effects in local wildlife and evaluating the distribution of PFAS at these "hotspot" sites during large episodic weather events, a critically understudied phenomenon regarding PFAS and vulnerable coastal environments.

10.
Neurotoxicology ; 91: 290-304, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35700754

RESUMEN

Strobilurin fungicides are quinone outside inhibitors (QoI) used to treat fungal pathogens for agricultural and residential use. Here, we compared the potential for neurotoxicity of the widely used strobilurins, azoxystrobin (AZS) and trifloxystrobin (TFS), in differentiated human SH-SY5Y cells. Fungicides did not include cytotoxicity up to 200 µM but both induced loss of cell viability at 48 h, with TFS showing slightly higher toxicity that AZS. Caspase 3/7 activity was induced in SH-SY5Y cells by both fungicides at 48 h (50 µM for AZS and 25 µM for TFS). ATP levels were reduced following a 24-hour exposure to > 25 µM AZS and > 6.25 µM TFS and both fungicides rapidly impaired oxidative respiration (~12.5 µM for AZS and ~3.125 µM TFS) and decreased oligomycin-induced ATP production, maximal respiration, and mitochondrial spare capacity. AZS at 100 µM showed a continual impairment of mitochondrial membrane potential (MMP) between 4 and 48 h while TFS at > 50 µM decreased MMP at 24 h. Taken together, TFS exerted higher mitochondrial toxicity at lower concentrations compared to AZS in SH-SY5Y cells. To discern toxicity mechanisms of strobilurin fungicides, lipidomics was conducted in SH-SY5Y cells following exposure to 6.25 µM and 25 µM AZS, and a total of 1595 lipids were detected, representing 49 different lipid classes. Lipid classes with the largest proportion of lipids detected in SH-SY5Y cells included triglycerides (17%), phosphatidylethanolamines (8%), ether-linked triglycerides (8%), phosphatidylcholines (7%), ether-linked phosphatidylethanolamines (6%), and diacylglycerols (5%). Together, these 5 lipid classes accounted for over 50% of the total lipids measured in SH-SY5Y cells. Lipids that were increased by AZS included acyl carnitine, which plays a role in long chain fatty acid utilization for mitochondrial ß-oxidation, as well as non-modified, ether linked, and oxidized triacylglycerols, suggesting compensatory upregulation of triglyceride biosynthesis. The ceramide HexCer-NS, linked to neurodegenerative diseases, was decreased in abundance following AZS exposure. In summary, strobilurin fungicides rapidly inhibit mitochondrial oxidative respiration and alter the abundance of several lipids in neuronal cells, relevant for understanding environmental exposure risks related to their neurotoxicity.


Asunto(s)
Fungicidas Industriales , Neuroblastoma , Síndromes de Neurotoxicidad , Acetatos , Adenosina Trifosfato , Línea Celular Tumoral , Éteres , Fungicidas Industriales/toxicidad , Humanos , Iminas , Lipidómica , Potencial de la Membrana Mitocondrial , Fosfatidiletanolaminas , Pirimidinas , Estrobilurinas/toxicidad , Triglicéridos
11.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743156

RESUMEN

Tissue-specific cardiolipin fatty acyl profiles are achieved by remodeling of de novo synthesized cardiolipin, and four remodeling enzymes have thus far been identified. We studied the enzyme phospholipase A and acyltransferase 1 (PLAAT1), and we report the discovery that it has phosphatidylcholine (PC):monolysocardiolipin (MLCL) transacylase activity. Subcellular localization was analyzed by differential centrifugation and immunoblotting. Total levels of major phospholipids, and the fatty acyl profile of cardiolipin, were analyzed in HEK293 cells expressing murine PLAAT1 using gas chromatography. Apparent enzyme kinetics of affinity-purified PLAAT1 were calculated using radiochemical enzyme assays. This enzyme was found to localize predominantly to the endoplasmic reticulum (ER) but was detected at low levels in the mitochondria-associated ER matrix. Cells expressing PLAAT1 had higher levels of total cardiolipin, but not other phospholipids, and it was primarily enriched in the saturated fatty acids myristate, palmitate, and stearate, with quantitatively smaller increases in the n-3 polyunsaturated fatty acids linolenate, eicosatrienoate, and eicosapentanoate and the monounsaturated fatty acid erucate. Affinity-purified PLAAT1 did not catalyze the transacylation of MLCL using 1-palmitoyl-2-[14C]-linoleoyl-PC as an acyl donor. However, PLAAT1 had an apparent Vmax of 1.61 µmol/min/mg protein and Km of 126 µM using [9,10-3H]-distearoyl-PC as an acyl donor, and 0.61 µmol/min/mg protein and Km of 16 µM using [9,10-3H]-dioleoyl-PC. PLAAT1 is therefore a novel PC:MLCL transacylase.


Asunto(s)
Cardiolipinas , Lisofosfolípidos , Fosfolipasas A/metabolismo , Aciltransferasas/metabolismo , Animales , Cardiolipinas/metabolismo , Células HEK293 , Humanos , Lecitinas , Lisofosfolípidos/metabolismo , Ratones
12.
Metabolomics ; 18(4): 24, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397018

RESUMEN

INTRODUCTION: The metabolomics quality assurance and quality control consortium (mQACC) is enabling the identification, development, prioritization, and promotion of suitable reference materials (RMs) to be used in quality assurance (QA) and quality control (QC) for untargeted metabolomics research. OBJECTIVES: This review aims to highlight current RMs, and methodologies used within untargeted metabolomics and lipidomics communities to ensure standardization of results obtained from data analysis, interpretation and cross-study, and cross-laboratory comparisons. The essence of the aims is also applicable to other 'omics areas that generate high dimensional data. RESULTS: The potential for game-changing biochemical discoveries through mass spectrometry-based (MS) untargeted metabolomics and lipidomics are predicated on the evolution of more confident qualitative (and eventually quantitative) results from research laboratories. RMs are thus critical QC tools to be able to assure standardization, comparability, repeatability and reproducibility for untargeted data analysis, interpretation, to compare data within and across studies and across multiple laboratories. Standard operating procedures (SOPs) that promote, describe and exemplify the use of RMs will also improve QC for the metabolomics and lipidomics communities. CONCLUSIONS: The application of RMs described in this review may significantly improve data quality to support metabolomics and lipidomics research. The continued development and deployment of new RMs, together with interlaboratory studies and educational outreach and training, will further promote sound QA practices in the community.


Asunto(s)
Lipidómica , Metabolómica , Espectrometría de Masas/métodos , Metabolómica/métodos , Control de Calidad , Reproducibilidad de los Resultados
13.
J Am Vet Med Assoc ; 260(9): 1-9, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35298406

RESUMEN

CASE DESCRIPTION: A 19-year-old male bottlenose dolphin (Tursiops truncatus) presented with inappetence and avoidant behavior. CLINICAL FINDINGS: Ultrasound revealed a large-volume left-sided pleural effusion, which was consistent with chronic nonchylous lymphatic effusion and mild chronic hemorrhage by cytology. Computed tomography identified ipsilateral rib fractures, atelectasis, nodular pleuritis, marginal lymph node enlargement, and suspected dilation of the thoracic duct and internal thoracic veins. Fifteen lipids were significantly higher in serum of the dolphin as compared with controls (n = 3) using nontargeted lipidomics. TREATMENT AND OUTCOME: A series of thoracentesis procedures were performed. Follow-up CT demonstrated marked reduction in pleural effusion with persistence of thoracic duct dilation and mass-like areas of pleural thickening. Ultrasonographic resolution of pleural effusion occurred 14 months after presentation; however, recrudescence was noted 5 months later. Over a total of 24 months, 21.52 L of pleural effusion was removed. Despite the presence of pleural effusion, the patient was clinically stable during this time and quality of life was considered good on the basis of continuous animal welfare evaluations. Humane euthanasia was elected following acute clinical decline 27 months after initial diagnosis. Necropsy confirmed severe pleural effusion, chronic severe pleural fibrosis with chronic hemorrhage, and mediastinal fibrosis with entrapped lymph nodes and thymic tissue. CLINICAL RELEVANCE: Pleuritis and effusion were suspected sequelae of previous rib fractures. To our knowledge, this is the first report of nonchylous lymphatic pleural effusion with repeated pleural drainage and diagnostic imaging for clinical management in a bottlenose dolphin.


Asunto(s)
Delfín Mular , Derrame Pleural , Pleuresia , Fracturas de las Costillas , Animales , Masculino , Derrame Pleural/veterinaria , Pleuresia/veterinaria , Calidad de Vida , Fracturas de las Costillas/veterinaria
14.
Metabolites ; 12(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35050209

RESUMEN

Clinical metabolomics emerged as a novel approach for biomarker discovery with the translational potential to guide next-generation therapeutics and precision health interventions. However, reproducibility in clinical research employing metabolomics data is challenging. Checklists are a helpful tool for promoting reproducible research. Existing checklists that promote reproducible metabolomics research primarily focused on metadata and may not be sufficient to ensure reproducible metabolomics data processing. This paper provides a checklist including actions that need to be taken by researchers to make computational steps reproducible for clinical metabolomics studies. We developed an eight-item checklist that includes criteria related to reusable data sharing and reproducible computational workflow development. We also provided recommended tools and resources to complete each item, as well as a GitHub project template to guide the process. The checklist is concise and easy to follow. Studies that follow this checklist and use recommended resources may facilitate other researchers to reproduce metabolomics results easily and efficiently.

15.
Environ Res ; 208: 112635, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34990607

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals commonly found in everyday consumer products and are an emerging concern due to their ubiquitous presence in ecosystems around the world. PFAS exposure, which often occurs through contaminated water, has been linked to several adverse health effects in humans and wildlife. PFAS can be transported in surface water and storm runoff in the nearshore environment. Episodic events, such as hurricanes, are projected to increase in frequency and intensity, and a critical unanswered question is: how do episodic events influence the concentrations and distributions of emerging contaminants, such as PFAS, in coastal systems? Here, we investigated the impact of the 2019 Hurricane Dorian on the Florida coast to assess how natural disasters, such as hurricanes, influence the fate and transport of PFAS in surface water. Water samples collected throughout the St. Augustine Intracoastal waterway before, during, and after the storm were analyzed and compared with baseline concentrations. Ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was used in the detection and quantification of 23 and 17 PFAS, respectively. Perfluorooctane sulfonic acid (PFOS) was the compound with the highest concentration across all sampling sites. Mean PFOS levels showed the highest increase of 177% during the hurricane and returned to baseline levels after two days. Our findings highlight the need for continued research focused on understanding how large storms near all coastlines can impact the transport of environmental pollutants, such as PFOS, that can have adverse effects on human and environmental health. Further monitoring of PFAS in coastal systems is necessary to identify potential PFAS hotspots, investigate the impacts of episodic events on PFAS transport, develop mitigation practices capable of reducing the risk of PFAS exposure.


Asunto(s)
Ácidos Alcanesulfónicos , Tormentas Ciclónicas , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Ecosistema , Florida , Fluorocarburos/análisis , Humanos , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
16.
Anal Bioanal Chem ; 414(3): 1201-1215, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34014358

RESUMEN

Because of the pervasiveness, persistence, and toxicity of per- and polyfluoroalkyl substances (PFAS), there is growing concern over PFAS contamination, exposures, and health effects. The diversity of potential PFAS is astounding, with nearly 10,000 PFAS catalogued in databases to date (and growing). The ability to detect the thousands of known PFAS, and discover previously uncatalogued PFAS, is necessary to understand the scope of PFAS contamination and to identify appropriate remediation and regulatory solutions. Current non-targeted methods for PFAS analysis require manual curation and are time-consuming, prone to error, and not comprehensive. FluoroMatch Flow 2.0 is the first software to cover all steps of data processing for PFAS discovery in liquid chromatography-high-resolution tandem mass spectrometry samples. These steps include feature detection, feature blank filtering, exact mass matching to catalogued PFAS, mass defect filtering, homologous series detection, retention time pattern analysis, class-based MS/MS screening, fragment screening, and predicted MS/MS from SMILES structures. In addition, a comprehensive confidence level criterion is implemented to help users understand annotation certainty and integrate various layers of evidence to reduce overreporting. Applying the software to aqueous film forming foam analysis, we discovered over one thousand likely PFAS including previously unreported species. Furthermore, we were able to filter out 96% of features which were likely not PFAS. FluoroMatch Flow 2 increased coverage of likely PFAS by over tenfold compared to the previous release. This software will enable researchers to better characterize PFAS in the environment and in biological systems.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Fluorocarburos/análisis , Programas Informáticos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos
17.
Methods Mol Biol ; 2396: 161-173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34786682

RESUMEN

Conventional breeding techniques and genetic modifications have made it possible to alter the composition of vegetable oils. In recent years, the field of lipidomics has rapidly evolved due to technological developments in mass spectrometry. "Macrolipidomics" is an approach dedicated to detailed characterization of the most abundant lipids of a sample and has the potential to be useful for the profiling of commercial seed oils. Seed oils are composed largely of triacylglycerols (TAG) with various fatty acyls that can result in a number of isobaric and isomeric TAG species in each sample. Comprehensive methods for fatty acyl TAG characterization are still scarce. In this chapter, we describe the steps required to process and analyze different sunflower oils with altered oleic acid content to generate quantitative data for discrete fatty acyl species of TAG molecules. We utilized a dual ultra-high-performance liquid chromatography (UHPLC) serial coupling setup and untargeted tandem mass spectrometry (MS/MS) to quantitate 23 common TAG species in three sunflower oils containing 40% (low), 60% (mid), and 85% (high) oleic acid by weight.


Asunto(s)
Helianthus , Ácido Oléico , Fitomejoramiento , Aceite de Girasol , Espectrometría de Masas en Tándem , Triglicéridos
18.
Environ Sci Process Impacts ; 23(9): 1301-1307, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34369533

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent, ubiquitous pollutants. It is important to continuously monitor the presence of PFAS contamination, utilizing both legacy and new sentinels. In this study, environmental PFAS levels were evaluated using ticks as a sentinel model due to their world-wide distribution, hematophagous nature, and ease of collection and sampling. Hematophagy in discrete blood meals, from a suite of vertebrates, allows ticks to sample dozens of species of consumers and bioaccumulation across communities. Four different species of ticks, across two states (NY, n = 28 in mid-April of 2020 and FL, n = 32 between 2015 and 2020) with two sampling sites in each state were analyzed for the presence of 53 PFAS. The total PFAS concentration in ticks was the lowest at Newburgh (NY), a site that has been undergoing remediation efforts, while the highest total PFAS concentrations were measured in ticks at the Sweetwater site, a wastewater treatment wetland. Detection of PFAS and the potential for variation between tick species and between locations are necessary to establish the utility of ticks as sentinels, in addition to assessing additional environmental factors, such as other wildlife, water, or soil.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Garrapatas , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Bioacumulación , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
19.
J Am Soc Mass Spectrom ; 32(9): 2481-2489, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34388338

RESUMEN

The number of metabolomics studies have increased dramatically in recent years, spanning from basic/mechanistic research to the identification and validation of clinical biomarkers. Developments in analyte separation techniques and the growth of databases are largely responsible for the rapid growth of metabolomics, although broad differences in analytical workflows can result in difficulty when comparing data across studies. The establishment of baseline metabolomics data for human reference materials using complementary/orthogonal data acquisition strategies can help to alleviate some of these challenges. To this end, we report nontargeted semiquantitative metabolomics data for 22 commercially available materials including plasma (healthy, diabetic, hypertriglyceridemic, African-American), serum (female, male, pregnant, among others), feces (meconium, vegan, omnivore), urine (smokers' and nonsmokers'), breast milk, saliva, and vaginal fluid, using ultrahigh-performance liquid chromatography-tandem mass spectrometry in positive and negative electrospray ionization, as well as gas chromatography-electron ionization-mass spectrometry. Significant differences were observed in the metabolomic fingerprints between all sample types. Post hoc comparisons between relevant sample types support the relevance of these materials and the validity of nontargeted strategies in global metabolomics. As the number and variety of reference materials continues to increase, it is imperative that their adoption is matched. The results of this study may inform future biomedical research by highlighting several metabolites across matrixes and treatments/states that could serve as clinical biomarkers or important biochemical pathway intermediates. Furthermore, our work can serve as a metric for systems suitability, quality assurance, and quality control across the community via the dissemination of high-quality and publicly available annotated metabolomics data.


Asunto(s)
Biomarcadores/análisis , Biomarcadores/metabolismo , Espectrometría de Masas/métodos , Metabolómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Embarazo , Estándares de Referencia
20.
Environ Toxicol Chem ; 40(10): 2726-2732, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34293220

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants linked to adverse health effects in humans and wildlife. Marine mammals, particularly manatees, have shown potential as sentinels for evaluating the presence and effects of anthropogenic chemicals. However, traditional blood collection techniques with marine mammals can be challenging, highlighting the need for improved strategies. In the present study, four different methods for the extraction of PFAS from dried blood spots were evaluated. Environ Toxicol Chem 2021;40:2726-2732. © 2021 SETAC.


Asunto(s)
Fluorocarburos , Trichechus manatus , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA