Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Methods Enzymol ; 700: 275-294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38971603

RESUMEN

Synthetic model membranes are important tools to elucidate lipid domain and protein interactions due to predefined lipid compositions and characterizable biophysical properties. Here, we introduce a model membrane with multiple lipid bilayers (multi-bilayers) stacked on a mica substrate that is prepared through a spin-coating technique. The spin-coated multi-bilayers are useful in the study of phase separated membranes with a high cholesterol content, mobile lipids, microscopic and reversible phase separation, and easy conjugation with proteins, which make them a good model to study interactions between proteins and membrane domains.


Asunto(s)
Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Colesterol/química , Colesterol/metabolismo , Silicatos de Aluminio/química , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Unión Proteica
2.
Sci Adv ; 9(17): eadf6205, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37126554

RESUMEN

During T cell activation, the transmembrane adaptor protein LAT (linker for activation of T cells) forms biomolecular condensates with Grb2 and Sos1, facilitating signaling. LAT has also been associated with cholesterol-rich condensed lipid domains; However, the potential coupling between protein condensation and lipid phase separation and its role in organizing T cell signaling were unknown. Here, we report that LAT/Grb2/Sos1 condensates reconstituted on model membranes can induce and template lipid domains, indicating strong coupling between lipid- and protein-based phase separation. Correspondingly, activation of T cells induces cytoplasmic protein condensates that associate with and stabilize raft-like membrane domains. Inversely, lipid domains nucleate and stabilize LAT protein condensates in both reconstituted and living systems. This coupling of lipid and protein assembly is functionally important, as uncoupling of lipid domains from cytoplasmic protein condensates abrogates T cell activation. Thus, thermodynamic coupling between protein condensates and ordered lipid domains regulates the functional organization of living membranes.


Asunto(s)
Proteínas de la Membrana , Linfocitos T , Linfocitos T/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Lípidos
3.
J Phys Chem B ; 126(5): 1016-1023, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35104126

RESUMEN

Ordered membrane domains are thought to influence the attachment and insertion of toxic amyloid oligomers, and consequently, their toxicity. However, if and how the molecular aspects of this interaction depend on the membrane order is poorly understood. Here we measure the affinity, location, and degree of insertion of the small oligomers of hIAPP (human Islet Amyloid Polypeptide, associated with Type II diabetes) at near-physiological concentrations to adjacent domains of a biphasic lipid bilayer. Using simultaneous atomic force, confocal and fluorescence lifetime microscopy (AFM-FLIM), we find that hIAPP oligomers have a nearly 8-fold higher affinity to the disordered domains over the ordered domains. To probe whether this difference indicates different modes of interaction, we measure the change of lifetime of peptide-attached fluorescent labels induced by soluble fluorescence quenchers and also measure the kinetics of localized photobleaching. We find that in the raft-like ordered domains, the oligomers primarily lie on the aqueous interface with limited membrane penetration. However, in the neighboring disordered domains, their C-termini penetrate deeper into the lipid bilayer. We conclude that local membrane order determines not only the affinity but also the mode of interaction of amyloid oligomers, which may have significant implications for disease mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2 , Polipéptido Amiloide de los Islotes Pancreáticos , Amiloide/química , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Membrana Dobles de Lípidos/química , Membranas
4.
Front Mol Biosci ; 8: 745313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926574

RESUMEN

An important measure of the conformation of protein molecules is the degree of surface exposure of its specific segments. However, this is hard to measure at the level of individual molecules. Here, we combine single molecule photobleaching (smPB, which resolves individual photobleaching steps of single molecules) and fluorescence quenching techniques to measure the accessibility of individual fluorescently labeled protein molecules to quencher molecules in solution. A quencher can reduce the time a fluorophore spends in the excited state, increasing its photostability under continuous irradiation. Consequently, the photo-bleaching step length would increase, providing a measure for the accessibility of the fluorophore to the solvent. We demonstrate the method by measuring the bleaching step-length increase in a lipid, and also in a lipid-anchored peptide (both labelled with rhodamine-B and attached to supported lipid bilayers). The fluorophores in both molecules are expected to be solvent-exposed. They show a near two-fold increase in the step length upon incubation with 5 mM tryptophan (a quencher of rhodamine-B), validating our approach. A population distribution plot of step lengths before and after addition of tryptophan show that the increase is not always homogenous. Indeed there are different species present with differential levels of exposure. We then apply this technique to determine the solvent exposure of membrane-attached N-terminus labelled amylin (h-IAPP, an amyloid associated with Type II diabetes) whose interaction with lipid bilayers is poorly understood. hIAPP shows a much smaller increase of the step length, signifying a lower level of solvent exposure of its N-terminus. Analysis of results from individual molecules and step length distribution reveal that there are at least two different conformers of amylin in the lipid bilayer. Our results show that our method ("Q-SLIP", Quenching-induced Step Length increase in Photobleaching) provides a simple route to probe the conformational states of membrane proteins at a single molecule level.

5.
Biophys J ; 120(14): 2785-2792, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34214538

RESUMEN

The entry of the severe acute respiratory syndrome coronavirus 2 virus in human cells is mediated by the binding of its surface spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor. A 23-residue long helical segment (SBP1) at the binding interface of human ACE2 interacts with viral spike protein and therefore has generated considerable interest as a recognition element for virus detection. Unfortunately, emerging reports indicate that the affinity of SBP1 to the receptor-binding domain of the spike protein is much lower than that of the ACE2 receptor itself. Here, we examine the biophysical properties of SBP1 to reveal factors leading to its low affinity for the spike protein. Whereas SBP1 shows good solubility (solubility > 0.8 mM), circular dichroism spectroscopy shows that it is mostly disordered with some antiparallel ß-sheet content and no helicity. The helicity is substantial (>20%) only upon adding high concentrations (≥20% v/v) of 2,2,2-trifluoroethanol, a helix promoter. Fluorescence correlation spectroscopy and single-molecule photobleaching studies show that the peptide oligomerizes at concentrations >50 nM. We hypothesized that mutating the hydrophobic residues (F28, F32, and F40) of SBP1, which do not directly interact with the spike protein, to alanine would reduce peptide oligomerization without affecting its spike binding affinity. Whereas the mutant peptide (SBP1mod) shows substantially reduced oligomerization propensity, it does not show improved helicity. Our study shows that the failure of efforts, so far, to produce a short SBP1 mimic with a high affinity for the spike protein is not only due to the lack of helicity but is also due to the heretofore unrecognized problem of oligomerization.


Asunto(s)
COVID-19 , Peptidil-Dipeptidasa A , Enzima Convertidora de Angiotensina 2 , Humanos , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
Chemistry ; 27(27): 7533-7541, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33502812

RESUMEN

Serotonin, an important signaling molecule in humans, has an unexpectedly high lipid membrane affinity. The significance of this finding has evoked considerable speculation. Here we show that membrane binding by serotonin can directly modulate membrane properties and cellular function, providing an activity pathway completely independent of serotonin receptors. Atomic force microscopy shows that serotonin makes artificial lipid bilayers softer, and induces nucleation of liquid disordered domains inside the raft-like liquid-ordered domains. Solid-state NMR spectroscopy corroborates this data at the atomic level, revealing a homogeneous decrease in the order parameter of the lipid chains in the presence of serotonin. In the RN46A immortalized serotonergic neuronal cell line, extracellular serotonin enhances transferrin receptor endocytosis, even in the presence of broad-spectrum serotonin receptor and transporter inhibitors. Similarly, it increases the membrane binding and internalization of oligomeric peptides. Our results uncover a mode of serotonin-membrane interaction that can potentiate key cellular processes in a receptor-independent fashion.


Asunto(s)
Proteínas Portadoras , Serotonina , Humanos , Membrana Dobles de Lípidos , Proteínas de Transporte de Membrana , Microscopía de Fuerza Atómica
7.
Front Physiol ; 11: 578868, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192582

RESUMEN

Unsaturated and saturated phospholipids tend to laterally segregate, especially in the presence of cholesterol. Small molecules such as neurotransmitters, toxins, drugs etc. possibly modulate this lateral segregation. The small aromatic neurotransmitter serotonin (5-HT) has been found to bind to membranes. We studied the lipid structure and packing of a ternary membrane mixture consisting of palmitoyl-oleoyl-phosphatidylcholine, palmitoyl-sphingomyelin, and cholesterol at a molar ratio of 4/4/2 in the absence and in the presence of 5-HT, using a combination of solid-state 2H NMR, atomic force microscopy, and atomistic molecular dynamics (MD) simulations. Both NMR and MD report formation of a liquid ordered (L o ) and a liquid disordered (L d ) phase coexistence with small domains. Lipid exchange between the domains was fast such that single component 2H NMR spectra are detected over a wide temperature range. A drastic restructuring of the domains was induced when 5-HT is added to the membranes at a 9 mol% concentration relative to the lipids. 2H NMR spectra of all components of the mixture showed two prominent contributions indicative of molecules of the same kind residing both in the disordered and the ordered phase. Compared to the data in the absence of 5-HT, the lipid chain order in the disordered phase was further decreased in the presence of 5-HT. Likewise, addition of serotonin increased lipid chain order within the ordered phase. These characteristic lipid chain order changes were confirmed by MD simulations. The 5-HT-induced larger difference in lipid chain order results in more pronounced differences in the hydrophobic thickness of the individual membrane domains. The correspondingly enlarged hydrophobic mismatch between ordered and disordered phases is assumed to increase the line tension at the domain boundary, which drives the system into formation of larger size domains. These results not only demonstrate that small membrane binding molecules such as neurotransmitters have a profound impact on essential membrane properties. It also suggests a mechanism by which the interaction of small molecules with membranes can influence the function of membrane proteins and non-cognate receptors. Altered membrane properties may modify lateral sorting of membrane protein, membrane protein conformation, and thus influence their function as suspected for neurotransmitters, local anesthetics, and other small drug molecules.

8.
Phys Chem Chem Phys ; 22(26): 14613-14620, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32483579

RESUMEN

Oligomers are the key suspects in protein aggregation-linked diseases, such as Alzheimer's and Type II diabetes, and most likely exert their toxicity by interacting with lipid membranes. However, the "which oligomer" question remains an obstacle in understanding the disease mechanism, as the exact identity of the toxic oligomer(s) is not yet known. Oligomers exist as a mixture of species of different sizes (i.e. as different 'n-mers') in a physiological solution, making it difficult to determine the properties of individual species. Here we demonstrate a method based on single-molecule photo-bleaching (smPB) which can provide an answer to the "which oligomer" question, at least as far as membrane affinity is concerned. We calculate the ratio of the oligomer size distribution of human Islet Amyloid Polypeptide (IAPP) in the aqueous phase and that on a coexisting artificial lipid bilayer, and this measures the relative membrane affinity of individual oligomeric species. A problem with smPB measurements is that they can be very sensitive to pre-measurement bleaching. Here we correct for pre-bleaching using a covalently linked multimeric peptide as a bleaching standard. We find that the order of membrane affinity for IAPP n-mers is trimer > dimer > tetramer ≫ monomer. Our results agree well with the average membrane affinity values of oligomeric and monomeric solutions previously measured with Fluorescence Correlation Spectroscopy. The "which oligomer" question, in the context of membrane affinity, can therefore, be solved quantitatively for any membrane-active toxic protein aggregate.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/análisis , Membrana Dobles de Lípidos/metabolismo , Colesterol/química , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Fotoblanqueo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Rodaminas/química , Imagen Individual de Molécula
9.
Biophys J ; 118(5): 1101-1108, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-31972157

RESUMEN

Single molecule photobleaching is a powerful technique to measure the number of fluorescent units in subresolution molecular complexes, such as in toxic protein oligomers associated with amyloid diseases. However, photobleaching can occur before the sample is appropriately placed and focused. Such "prebleaching" can introduce a strong systematic bias toward smaller oligomers. Quantitative correction of prebleaching is known to be an ill-posed problem, limiting the utility of the technique. Here, we provide an experimental solution to improve its reliability. We chemically construct multimeric standards to estimate the prebleaching probability, B. We show that B can be used as a constraint to reliably correct the statistics obtained from a known distribution of standard oligomers. Finally, we apply this method to the data obtained from a heterogeneous oligomeric solution of human islet amyloid polypeptide. Our results show that photobleaching can critically skew the estimation of oligomeric distributions, so that low abundance monomers display a much higher apparent abundance. In summary, any inference from photobleaching experiments with B > 0.1 is likely to be unreliable, but our method can be used to quantitatively correct possible errors.


Asunto(s)
Colorantes , Sesgo , Humanos , Fotoblanqueo , Reproducibilidad de los Resultados
10.
ACS Chem Neurosci ; 10(5): 2498-2509, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30763064

RESUMEN

While the roles of intrinsically disordered protein domains in driving interprotein interactions are increasingly well-appreciated, the mechanism of toxicity of disease-causing disordered proteins remains poorly understood. A prime example is Alzheimer's disease (AD) associated amyloid beta (Aß). Aß oligomers are highly toxic partially structured peptide assemblies with a distinct ordered region (residues ∼10-40) and a shorter disordered region (residues ∼1-9). Here, we investigate the role of this disordered domain and its relation to the ordered domain in the manifestation of toxicity through a set of Aß fragments and stereoisomers designed for this purpose. We measure their effects on lipid membranes and cultured neurons, probing their toxicity, intracellular distributions, and specific molecular interactions using the techniques of confocal imaging, lattice light sheet imaging, fluorescence lifetime imaging, and fluorescence correlation spectroscopy. Remarkably, we find that neither part-Aß10-40 or Aß1-9, is toxic by itself. The ordered part (Aß10-40) is the major determinant of how Aß attaches to lipid bilayers, enters neuronal cells, and localizes primarily in the late endosomal compartments. However, once Aß enters the cell, it is the disordered part (only when it is connected to the rest of the peptide) that has a strong and stereospecific interaction with an unknown cellular component, as demonstrated by distinct changes in the fluorescence lifetime of a fluorophore attached to the N-terminal. This interaction appears to commit Aß to the toxic pathway. Our findings correlate well with Aß sites of familial AD mutations, a significant fraction of which cluster in the disordered region. We conclude that, while the ordered region dictates attachment and cellular entry, the key to toxicity lies in the ordered part presenting the disordered part for a specific cellular interaction.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/fisiología , Lípidos de la Membrana/metabolismo , Neuronas/fisiología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Animales , Células Cultivadas , Femenino , Isomerismo , Ratas Wistar
11.
J Biosci ; 43(3): 447-454, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30002264

RESUMEN

Single-molecule photobleaching (smPB) technique is a powerful tool for characterizing molecular assemblies. It can provide a direct measure of the number of monomers constituting a given oligomeric particle and generate the oligomer size distribution in a specimen. A major current application of this technique is in understanding protein aggregation, which is linked to many incurable diseases. Quantitative measurement of the size distribution of an aggregating protein in a physiological solution remains a difficult task, since techniques such as dynamic light scattering or fluorescence correlation spectroscopy (FCS) can provide an average size, but cannot accurately resolve the underlying size distribution. Here we describe the smPB method as implemented on a home-built total internal reflection fluorescence microscope (TIRF). We first describe the construction of a TIRF microscope, and then demonstrate the power of smPB by characterizing a solution of Amylin (hIAPP) oligomers, a 37-residue peptide whose aggregation is associated with Type II diabetes. We compare our results with FCS data obtained from the same specimen, and discuss the advantages and disadvantages of the two techniques.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Agregado de Proteínas , Espectrometría de Fluorescencia/métodos , Humanos , Cinética , Fotoblanqueo , Alcohol Polivinílico/química , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA