Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
iScience ; 25(4): 104004, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35313694

RESUMEN

Mutations in the gene encoding DNA methyltransferase 3A (DNMT3A) are the most common cause of clonal hematopoiesis and are among the most common initiating events of acute myeloid leukemia (AML). Studies in germline and somatic Dnmt3a knockout mice have identified focal, canonical hypomethylation phenotypes in hematopoietic cells; however, the kinetics of methylation loss following acquired DNMT3A inactivation in hematopoietic cells is essentially unknown. Therefore, we evaluated a somatic, inducible model of hematopoietic Dnmt3a loss, and show that inactivation of Dnmt3a in murine hematopoietic cells results in a relatively slow loss of methylation at canonical sites throughout the genome; in contrast, remethylation of Dnmt3a deficient genomes in hematopoietic cells occurs much more quickly. This data suggests that slow methylation loss may contribute, at least in part, to the long latent period that characterizes clonal expansion and leukemia development in individuals with acquired DNMT3A mutations in hematopoietic stem cells.

2.
Proc Natl Acad Sci U S A ; 117(6): 3123-3134, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31996479

RESUMEN

Mutations in the DNA methyltransferase 3A (DNMT3A) gene are the most common cause of age-related clonal hematopoiesis (ARCH) in older individuals, and are among the most common initiating events for acute myeloid leukemia (AML). The most frequent DNMT3A mutation in AML patients (R882H) encodes a dominant-negative protein that reduces methyltransferase activity by ∼80% in cells with heterozygous mutations, causing a focal, canonical DNA hypomethylation phenotype; this phenotype is partially recapitulated in murine Dnmt3a-/- bone marrow cells. To determine whether the hypomethylation phenotype of Dnmt3a-/- hematopoietic cells is reversible, we developed an inducible transgene to restore expression of DNMT3A in transplanted bone marrow cells from Dnmt3a-/- mice. Partial remethylation was detected within 1 wk, but near-complete remethylation required 6 mo. Remethylation was accurate, dynamic, and highly ordered, suggesting that differentially methylated regions have unique properties that may be relevant for their functions. Importantly, 22 wk of DNMT3A addback partially corrected dysregulated gene expression, and mitigated the expansion of myeloid cells. These data show that restoring DNMT3A expression can alter the epigenetic "state" created by loss of Dnmt3a activity; this genetic proof-of-concept experiment suggests that this approach could be relevant for patients with ARCH or AML caused by loss-of-function DNMT3A mutations.


Asunto(s)
Células de la Médula Ósea/metabolismo , ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN/genética , Expresión Génica/genética , Animales , Trasplante de Médula Ósea , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Hematopoyesis/genética , Humanos , Ratones , Ratones Transgénicos , Mutación/genética
3.
J Clin Invest ; 126(1): 85-98, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595813

RESUMEN

The DNA methyltransferases DNMT3A and DNMT3B are primarily responsible for de novo methylation of specific cytosine residues in CpG dinucleotides during mammalian development. While loss-of-function mutations in DNMT3A are highly recurrent in acute myeloid leukemia (AML), DNMT3A mutations are almost never found in AML patients with translocations that create oncogenic fusion genes such as PML-RARA, RUNX1-RUNX1T1, and MLL-AF9. Here, we explored how DNMT3A is involved in the function of these fusion genes. We used retroviral vectors to express PML-RARA, RUNX1-RUNX1T1, or MLL-AF9 in bone marrow cells derived from WT or DNMT3A-deficient mice. Additionally, we examined the phenotypes of hematopoietic cells from Ctsg-PML-RARA mice, which express PML-RARA in early hematopoietic progenitors and myeloid precursors, with or without DNMT3A. We determined that the methyltransferase activity of DNMT3A, but not DNMT3B, is required for aberrant PML-RARA-driven self-renewal ex vivo and that DNMT3A is dispensable for RUNX1-RUNX1T1- and MLL-AF9-driven self-renewal. Furthermore, both the PML-RARA-driven competitive transplantation advantage and development of acute promyelocytic leukemia (APL) required DNMT3A. Together, these findings suggest that PML-RARA requires DNMT3A to initiate APL in mice.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/fisiología , Leucemia Promielocítica Aguda/etiología , Proteínas de Fusión Oncogénica/fisiología , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Metilación de ADN , ADN Metiltransferasa 3A , Ratones , Ratones Endogámicos C57BL
4.
Genetics ; 199(3): 761-75, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25567989

RESUMEN

The LIN-1 ETS transcription factor plays a pivotal role in controlling cell fate decisions during development of the Caenorhabditis elegans vulva. Prior to activation of the RTK/Ras/ERK-signaling pathway, LIN-1 functions as a SUMOylated transcriptional repressor that inhibits vulval cell fate. Here we demonstrate using the yeast two-hybrid system that SUMOylation of LIN-1 mediates interactions with a protein predicted to be involved in transcriptional repression: the RAD-26 Mi-2ß/CHD4 component of the nucleosome remodeling and histone deacetylation (NuRD) transcriptional repression complex. Genetic studies indicated that rad-26 functions to inhibit vulval cell fates in worms. Using the yeast two-hybrid system, we showed that the EGL-27/MTA1 component of the NuRD complex binds the carboxy-terminus of LIN-1 independently of LIN-1 SUMOylation. EGL-27 also binds UBC-9, an enzyme involved in SUMOylation, and MEP-1, a zinc-finger protein previously shown to bind LIN-1. Genetic studies indicate that egl-27 inhibits vulval cell fates in worms. These results suggest that LIN-1 recruits multiple proteins that repress transcription via both the SUMOylated amino-terminus and the unSUMOylated carboxy-terminus. Assays in cultured cells showed that the carboxy-terminus of LIN-1 was converted to a potent transcriptional activator in response to active ERK. We propose a model in which LIN-1 recruits multiple transcriptional repressors to inhibit the 1° vulval cell fate, and phosphorylation by ERK converts LIN-1 to a transcriptional activator that promotes the 1° vulval cell fate.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Femenino , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Fosforilación , Proteínas Represoras/genética , Sumoilación , Transactivadores/genética , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos , Enzimas Ubiquitina-Conjugadoras/metabolismo , Vulva/fisiología
5.
Mol Cell Biol ; 26(3): 1124-34, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16428463

RESUMEN

We developed a mammalian plasmid replicon with a formerly uncharacterized origin of DNA synthesis, 8xRep*. 8xRep* functions efficiently to support once-per-cell-cycle synthesis of plasmid DNA which initiates within Rep*. By characterizing Rep*'s requirements for acting as an origin, we have uncovered several striking properties it shares with DS, the only other well-characterized, licensed, mammalian plasmid origin of DNA synthesis. Rep* contains a pair of previously unrecognized Epstein-Barr nuclear antigen 1 (EBNA1)-binding sites that are both necessary and sufficient in cis for its origin activity. These sites have an essential 21-bp center-to-center spacing, are bent by EBNA1, and recruit the origin recognition complex. The properties shared between DS and Rep* define cis and trans characteristics of a mammalian, extrachromosomal replicon. The role of EBNA1 likely reflects its evolution from cellular factors involved in the assembly of the initiation machinery.


Asunto(s)
Replicación del ADN , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Plásmidos/metabolismo , Origen de Réplica , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Humanos , Datos de Secuencia Molecular , Plásmidos/genética
6.
Development ; 132(5): 1047-56, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15689373

RESUMEN

The LIN-1 ETS transcription factor inhibits vulval cell fates during Caenorhabditis elegans development. We demonstrate that LIN-1 interacts with UBC-9, a small ubiquitin-related modifier (SUMO) conjugating enzyme. This interaction is mediated by two consensus sumoylation motifs in LIN-1. Biochemical studies showed that LIN-1 is covalently modified by SUMO-1. ubc-9 and smo-1, the gene encoding SUMO-1, inhibit vulval cell fates and function at the level of lin-1, indicating that sumoylation promotes LIN-1 inhibition of vulval cell fates. Sumoylation of LIN-1 promoted transcriptional repression and mediated an interaction with MEP-1, a protein previously shown to associate with the nucleosome remodeling and histone deacetylation (NuRD) transcriptional repression complex. Genetic studies showed that mep-1 inhibits vulval cell fates and functions at the level of lin-1. We propose that sumoylation of LIN-1 mediates an interaction with MEP-1 that contributes to transcriptional repression of genes that promote vulval cell fates. These studies identify a molecular mechanism for SUMO-mediated transcriptional repression.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteína SUMO-1/fisiología , Factores de Transcripción/metabolismo , Vulva/embriología , Secuencias de Aminoácidos , Animales , Sitios de Unión , Caenorhabditis elegans , Línea Celular , Linaje de la Célula , Cromatina/metabolismo , Femenino , Genes Reporteros , Genotipo , Humanos , Modelos Genéticos , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA