Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202409071, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136345

RESUMEN

The energy densities of conventional aqueous batteries are often unsatisfactory due to the limited capacities of electrode materials.Therefore, the design of creative aqueous batteries has to be considered. Herein, aqueous S-MnO2 batteries are constructed by matching S/Cu2S redox couples and MnO2 deposition/dissolution. In such batteries, S/Cu2S redox couples undergo the solid-solid conversion reaction with four-electron transfer, ensuring a high specific capacity of 2220 mAh g-1 in S anodes.Furthermore, the conversion reaction of S/Cu2S redox couples can take place stably in acidic electrolyte that is essential for the MnO2 deposition/dissolution. As a result, the S/Cu2S redox couples can match MnO2 deposition/dissolution well, which endow the batteries with a membrane-free configuration. As a proof of concept,  Ah-level prismatic and single-flow batteries were assembled and could operate stably for over 1000 h, demonstrating their great potential for large-scale energy storage. This work broadens the horizons of aqueous batteries beyond metal-manganese chemistry.

2.
ACS Nano ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984372

RESUMEN

Multiscale design of catalyst layers (CLs) is important to advancing hydrogen electrochemical conversion devices toward commercialized deployment, which has nevertheless been greatly hampered by the complex interplay among multiscale CL components, high synthesis cost and vast design space. We lack rational design and optimization techniques that can accurately reflect the nanostructure-performance relationship and cost-effectively search the design space. Here, we fill this gap with a deep generative artificial intelligence (AI) framework, GLIDER, that integrates recent generative AI, data-driven surrogate techniques and collective intelligence to efficiently search the optimal CL nanostructures driven by their electrochemical performance. GLIDER achieves realistic multiscale CL digital generation by leveraging the dimensionality-reduction ability of quantized vector-variational autoencoder. The powerful generative capability of GLIDER allows the efficient search of the optimal design parameters for the Pt-carbon-ionomer nanostructures of CLs. We also demonstrate that GLIDER is transferable to other fuel cell electrode microstructure generation, e.g., fibrous gas diffusion layers and solid oxide fuel cell anode. GLIDER is of potential as a digital tool for the design and optimization of broad electrochemical energy devices.

3.
Chem Sci ; 15(17): 6200-6217, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699266

RESUMEN

Plastic waste has imposed significant burdens on the environment. Chemical recycling allows for repeated regeneration of plastics without deterioration in quality, but often requires harsh reaction conditions, thus being environmentally unfriendly. Enzymatic catalysis offers a promising solution for recycling under mild conditions, but it faces inherent limitations such as poor stability, high cost, and narrow substrate applicability. Biomimetic catalysis may provide a new avenue by combining high enzyme-like activity with the stability of inorganic materials. Biomimetic catalysis has demonstrated great potential in biomass conversion and has recently shown promising progress in plastic degradation. This perspective discusses biomimetic catalysis for plastic degradation from two perspectives: the imitation of the active centers and the imitation of the substrate-binding clefts. Given the chemical similarity between biomass and plastics, relevant work is also included in the discussion to draw inspiration. We conclude this perspective by highlighting the challenges and opportunities in achieving sustainable plastic recycling via a biomimetic approach.

4.
Adv Mater ; 36(29): e2401452, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723848

RESUMEN

Nickel-cobalt (NiCo) phosphides (NCPs) possess high electrochemical activity, which makes them promising candidates for electrode materials in aqueous energy storage devices, such as supercapacitors and zinc (Zn) batteries. However, the actual specific capacitance and rate capability of NCPs require further improvement, which can be achieved through reasonable heterostructural design and loading conditions of active materials on substrates. Herein, novel hierarchical Bi-NCP heterogeneous structures with built-in electric fields consisting of bismuth (Bi) interlayers (electrodeposited on carbon cloth (CC)) are designed and fabricated to ensure the formation of uniform high-load layered active materials for efficient charge and ion transport. The resulting CC/Bi-NCP electrodes show a uniform, continuous, and high mass loading (>3.5 mg) with a superior capacitance reaching 1200 F g-1 at 1 A g-1 and 4129 mF cm-2 at 1 mA cm-2 combined with high-rate capability and durable cyclic stability. Moreover, assembled hybrid supercapacitors (HSCs), supercapatteries, and alkaline Zn-ion (AZBs) batteries constructed using these electrodes deliver high energy densities of 64.4, 81.8, and 319.1 Wh kg-1, respectively. Overall, the constructed NCPs with excellent aqueous energy storage performance have the potential for the development of novel transition metal-based heterostructure electrodes for advanced energy devices.

5.
Angew Chem Int Ed Engl ; 63(27): e202405166, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38600042

RESUMEN

Self-charging power systems are considered as promising alternatives for off-grid energy devices to provide sustained electricity supply. However, the conventional self-charging systems are severely restricted by the energy availability and time-consuming charging process as well as insufficient capacity. Herein, we developed an ultrafast H2O2 self-charging aqueous Zn/NaFeFe(CN)6 battery, which simultaneously integrates the H2O2 power generation and energy storage into a battery configuration. In such battery, the chemical energy conversion of H2O2 can generate electrical energy to self-charge the battery to 1.7 V through the redox reaction between H2O2 and NaFeFe(CN)6 cathode. The thermodynamically and kinetically favorable redox reaction contributes to the ultrafast H2O2 self-charging rate and the extremely short self-charging time within 60 seconds. Moreover, the rapid H2O2 power generation can promptly compensate the energy consumption of battery to provide continuous electricity supply. Impressively, this self-charging battery shows excellent scalability of device architecture and can be designed to a H2O2 single-flow battery of 7.06 Ah to extend the long-term energy supply. This work not only provides a route to design self-charging batteries with fast charging rate and high capacity, but also pushes forward the development of self-charging power systems for advanced large-scale energy storage applications.

6.
J Am Chem Soc ; 146(13): 9434-9443, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38507716

RESUMEN

Electrocatalytic synthesis of hydrogen peroxide (H2O2) in acidic media is an efficient and eco-friendly approach to produce inherently stable H2O2, but limited by the lack of selective and stable catalysts under industrial-relevant current densities. Herein, we report a diatomic cobalt catalyst for two-electron oxygen reduction to efficiently produce H2O2 at 50-400 mA cm-2 in acid. Electrode kinetics study shows a >95% selectivity for two-electron oxygen reduction on the diatomic cobalt sites. In a flow cell device, a record-high production rate of 11.72 mol gcat-1 h-1 and exceptional long-term stability (100 h) are realized under high current densities. In situ spectroscopic studies and theoretical calculations reveal that introducing a second metal into the coordination sphere of the cobalt site can optimize the binding strength of key H2O2 intermediates due to the downshifted d-band center of cobalt. We also demonstrate the feasibility of processing municipal plastic wastes through decentralized H2O2 production.

7.
Phytomedicine ; 127: 155494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471370

RESUMEN

BACKGROUND: Parkinson's disease (PD), a neurodegenerative disorder, is characterized by motor symptoms due to the progressive loss of dopaminergic neurons in the substantia nigra (SN) and striatum (STR), alongside neuroinflammation. Asiaticoside (AS), a primary active component with anti-inflammatory and neuroprotective properties, is derived from Centella asiatica. However, the precise mechanisms through which AS influences PD associated with inflammation are not yet fully understood. PURPOSE: This study aimed to explore the protective mechanism of AS in PD. METHODS: Targets associated with AS and PD were identified from the Swiss Target Prediction, Similarity Ensemble Approach, PharmMapper, and GeneCards database. A protein-protein interaction (PPI) network was constructed to identify potential therapeutic targets. Concurrently, GO and KEGG analyses were performed to predict potential signaling pathways. To validate these mechanisms, the effects of AS on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice were investigated. Furthermore, neuroinflammation and the activation of the NLRP3 inflammasome were assessed to confirm the anti-inflammatory properties of AS. In vitro experiments in BV2 cells were then performed to investigate the mechanisms of AS in PD. Moreover, CETSA, molecular docking, and molecular dynamics simulations (MDs) were performed for further validation. RESULTS: Network pharmacology analysis identified 17 potential targets affected by AS in PD. GO and KEGG analyses suggested the biological roles of these targets, demonstrating that AS interacts with 149 pathways in PD. Notably, the NOD-like receptor signaling pathway was identified as a key pathway mediating AS's effect on PD. In vivo studies demonstrated that AS alleviated motor dysfunction and reduced the loss of dopaminergic neurons in MPTP-induced PD mice. In vitro experiments demonstrated that AS substantially decreased IL-1ß release in BV2 cells, attributing this to the modulation of the NLRP3 signaling pathway. CETSA and molecular docking studies indicated that AS forms a stable complex with NLRP3. MDs suggested that ARG578 played an important role in the formation of the complex. CONCLUSION: In this study, we first predicted that the potential target and pathway of AS's effect on PD could be NLRP3 protein and NOD-like receptor signaling pathway by network pharmacology analysis. Further, we demonstrated that AS could alleviate symptoms of PD induced by MPTP through its interaction with the NLRP3 protein for the first time by in vivo and in vitro experiments. By binding to NLRP3, AS effectively inhibits the assembly and activation of the inflammasome. These findings suggest that AS is a promising inhibitor for PD driven by NLRP3 overactivation.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Triterpenos , Ratones , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Neuroprotección , Enfermedades Neuroinflamatorias , Simulación del Acoplamiento Molecular , Microglía , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
8.
Phytomedicine ; 127: 155474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471369

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestine, which significantly affects patients' quality of life. As a perennial plant with the homology of medicine and food, Panax ginseng is known for its substantial anti-inflammatory effects in various inflammatory disorders. Ginsenosides, the main bioactive compounds of P. ginseng, are recognized for their efficacy in ameliorating inflammation. PURPOSE: Over the past decade, approximately 150 studies have investigated the effects of P. ginseng and ginsenosides on IBD treatment and new issues have arisen. However, there has yet to be a comprehensive review assessing the potential roles of ginsenosides in IBD therapy. METHOD: This manuscript strictly adheres to the PRISMA guidelines, thereby guaranteeing systematic synthesis of data. The research articles referenced were sourced from major scientific databases, including Google Scholar, PubMed, and Web of Science. The search strategy employed keywords such as "ginsenoside", "IBD", "colitis", "UC", "inflammation", "gut microbiota", and "intestinal barrier". For image creation, Figdraw 2.0 was methodically employed. RESULTS: Treatment with various ginsenosides markedly alleviated clinical IBD symptoms. These compounds have been observed to restore intestinal epithelia, modulate cellular immunity, regulate gut microbiota, and suppress inflammatory signaling pathways. CONCLUSION: An increasing body of research supports the potential of ginsenosides in treating IBD. Ginsenosides have emerged as promising therapeutic agents for IBD, attributed to their remarkable efficacy, safety, and absence of side effects. Nevertheless, their limited bioavailability presents a substantial challenge. Thus, efforts to enhance the bioavailability of ginsenosides represent a crucial and promising direction for future IBD research.


Asunto(s)
Ginsenósidos , Enfermedades Inflamatorias del Intestino , Panax , Humanos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Calidad de Vida , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Inflamación/tratamiento farmacológico
9.
Angew Chem Int Ed Engl ; 63(22): e202403712, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38525796

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are considered as the promising candidates for large-scale energy storage because of their high safety, low cost and environmental benignity. The large-scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre-evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed-loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs.

10.
Angew Chem Int Ed Engl ; 63(15): e202400337, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38351433

RESUMEN

Aqueous zinc-ion batteries (ZIBs) are promising large-scale energy storage devices because of their low cost and high safety. However, owing to the high activity of H2O molecules in electrolytes, hydrogen evolution reaction and side reactions usually take place on Zn anodes. Herein, additive-free PCA-Zn electrolyte with capacity of suppressing the activity of free and solvated H2O molecules was designed by selecting the cationophilic and solventophilic anions. In such electrolyte, contact ion-pairs and solvent-shared ion-pairs were achieved even at low concentration, where PCA- anions coordinate with Zn2+ and bond with solvated H2O molecules. Simultaneously, PCA- anions also induce the construction of H-bonds between free H2O molecules and them. Therefore, the activity of free and solvated H2O molecules is effectively restrained. Furthermore, since PCA- anions possess a strong affinity with metal Zn, they can also adsorb on Zn anode surface to protect Zn anode from the direct contact of H2O molecules, inhibiting the occurrence of water-triggered side reactions. As a result, plating/stripping behavior of Zn anodes is highly reversible and the coulombic efficiency can reach to 99.43 % in PCA-Zn electrolyte. To illustrate the feasibility of PCA-Zn electrolyte, the Zn||PANI full batteries were assembled based on PCA-Zn electrolyte and exhibited enhanced cycling performance.

11.
Angew Chem Int Ed Engl ; 63(10): e202317825, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38238258

RESUMEN

Rechargeable aqueous batteries are promising energy storage devices because of their high safety and low cost. However, their energy densities are generally unsatisfactory due to the limited capacities of ion-inserted electrode materials, prohibiting their widespread applications. Herein, a high-energy aqueous all-sulfur battery was constructed via matching S/Cu2 S and S/CaSx redox couples. In such batteries, both cathodes and anodes undergo the conversion reaction between sulfur/metal sulfides redox couples, which display high specific capacities and rational electrode potential difference. Furthermore, during the charge/discharge process, the simultaneous redox of Cu2+ ion charge-carriers also takes place and contributes to a more two-electron transfer, which doubles the capacity of cathodes. As a result, the assembled aqueous all-sulfur batteries deliver a high discharge capacity of 447 mAh g-1 based on total mass of sulfur in cathode and anode at 0.1 A g-1 , contributing to an enhanced energy density of 393 Wh kg-1 . This work will widen the scope for the design of high-energy aqueous batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA