Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Science ; 385(6708): 549-553, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088619

RESUMEN

An ever-present limitation of transmission electron microscopy is the damage caused by high-energy electrons interacting with any sample. By reconsidering the fundamentals of imaging, we demonstrate an event-responsive approach to electron microscopy that delivers more information about the sample for a given beam current. Measuring the time to achieve an electron count threshold rather than waiting a predefined constant time improves the information obtained per electron. The microscope was made to respond to these events by blanking the beam, thus reducing the overall dose required. This approach automatically apportions dose to achieve a given signal-to-noise ratio in each pixel, eliminating excess dose that is associated with diminishing returns of information. We demonstrate the wide applicability of our approach to beam-sensitive materials by imaging biological tissue and zeolite.

2.
ACS Appl Mater Interfaces ; 16(29): 37623-37640, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38988046

RESUMEN

Conditions affecting the brain are the second leading cause of death globally. One of the main challenges for drugs targeting brain diseases is passing the blood-brain barrier (BBB). Here, the effectiveness of mesoporous silica nanostars (MSiNSs) with two different spike lengths to cross an in vitro BBB multicellular model was evaluated and compared to spherical nanoparticles (MSiNP). A modified sol-gel single-micelle epitaxial growth was used to produce MSiNS, which showed no cytotoxicity or immunogenicity at concentrations of up to 1 µg mL-1 in peripheral blood mononuclear and neuronal cells. The nanostar MSiNS effectively penetrated the BBB model after 24 h, and MSiNS-1 with a shorter spike length (9 ± 2 nm) crossed the in vitro BBB model more rapidly than the MSiNS-2 with longer spikes (18 ± 4 nm) or spherical MSiNP at 96 h, which accumulated in the apical and basolateral sides, respectively. Molecular dynamic simulations illustrated an increase in configurational flexibility of the lipid bilayer during contact with the MSiNS, resulting in wrapping, whereas the MSiNP suppressed membrane fluctuations. This work advances an effective brain drug delivery system based on virus-like shaped MSiNS for the treatment of different brain diseases and a mechanism for their interaction with lipid bilayers.


Asunto(s)
Barrera Hematoencefálica , Dióxido de Silicio , Dióxido de Silicio/química , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Humanos , Porosidad , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Simulación de Dinámica Molecular , Portadores de Fármacos/química , Transporte Biológico , Animales , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
3.
Nanoscale ; 16(12): 6190-6198, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38445876

RESUMEN

Here we introduce scattering-type scanning near-field optical microscopy (s-SNOM) as a novel tool for nanoscale chemical-imaging of sub-cellular organelles, nanomaterials and of the interactions between them. Our setup uses a tuneable mid-infrared laser and a sharp scanning probe to image at a resolution substantially surpassing the diffraction limit. The laser can be tuned to excite vibrational modes of functional groups in biomolecules, (e.g. amide moieties), in a way that enables direct chemical mapping without the need for labelling. We, for the first time, chemically image neuronal ultrastructure, identify neuronal organelles and sub-organelle structures as small as 10 nm and validate our findings using transmission electron microscopy (TEM). We produce chemical and morphological maps of neurons treated with gold nanospheres and characterize nanoparticle size and intracellular location, and their interaction with the plasma membrane. Our results show that the label-free nature of s-SNOM means it has a 'true' chemical resolution of up to 20 nm which can be further improved. We argue that it offers significant potential in nanomedicine for nanoscale chemical imaging of cell ultrastructure and the subcellular distribution of nanomaterials within tissues.


Asunto(s)
Nanopartículas , Nanoestructuras , Nanotecnología/métodos , Microscopía/métodos , Nanoestructuras/química , Luz
5.
Nat Commun ; 14(1): 5184, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626044

RESUMEN

Transmission electron microscopy is a pivotal instrument in materials and biological sciences due to its ability to provide local structural and spectroscopic information on a wide range of materials. However, the electron detectors used in scanning transmission electron microscopy are often unable to provide quantified information, that is the number of electrons impacting the detector, without exhaustive calibration and processing. This results in arbitrary signal values with slow response times that cannot be used for quantification or comparison to simulations. Here we demonstrate and optimise a hardware signal processing approach to augment electron detectors to perform single electron counting.

6.
BMJ Open Respir Res ; 10(1)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37202121

RESUMEN

BACKGROUND: Spread of SARS-CoV2 by aerosol is considered an important mode of transmission over distances >2 m, particularly indoors. OBJECTIVES: We determined whether SARS-CoV2 could be detected in the air of enclosed/semi-enclosed public spaces. METHODS AND ANALYSIS: Between March 2021 and December 2021 during the easing of COVID-19 pandemic restrictions after a period of lockdown, we used total suspended and size-segregated particulate matter (PM) samplers for the detection of SARS-CoV2 in hospitals wards and waiting areas, on public transport, in a university campus and in a primary school in West London. RESULTS: We collected 207 samples, of which 20 (9.7%) were positive for SARS-CoV2 using quantitative PCR. Positive samples were collected from hospital patient waiting areas, from hospital wards treating patients with COVID-19 using stationary samplers and from train carriages in London underground using personal samplers. Mean virus concentrations varied between 429 500 copies/m3 in the hospital emergency waiting area and the more frequent 164 000 copies/m3 found in other areas. There were more frequent positive samples from PM samplers in the PM2.5 fractions compared with PM10 and PM1. Culture on Vero cells of all collected samples gave negative results. CONCLUSION: During a period of partial opening during the COVID-19 pandemic in London, we detected SARS-CoV2 RNA in the air of hospital waiting areas and wards and of London Underground train carriage. More research is needed to determine the transmission potential of SARS-CoV2 detected in the air.


Asunto(s)
COVID-19 , Chlorocebus aethiops , Animales , Humanos , COVID-19/epidemiología , ARN Viral , SARS-CoV-2 , Londres/epidemiología , Pandemias , Células Vero , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , Material Particulado/análisis
7.
Commun Biol ; 6(1): 583, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258606

RESUMEN

The ability to image cell chemistry at the nanoscale is key for understanding cell biology, but many optical microscopies are restricted by the ~(200-250)nm diffraction limit. Electron microscopy and super-resolution fluorescence techniques beat this limit, but rely on staining and specialised labelling to generate image contrast. It is challenging, therefore, to obtain information about the functional chemistry of intracellular components. Here we demonstrate a technique for intracellular label-free chemical mapping with nanoscale (~30 nm) resolution. We use a probe-based optical microscope illuminated with a mid-infrared laser whose wavelengths excite vibrational modes of functional groups occurring within biological molecules. As a demonstration, we chemically map intracellular structures in human multiple myeloma cells and compare the morphologies with electron micrographs of the same cell line. We also demonstrate label-free mapping at wavelengths chosen to target the chemical signatures of proteins and nucleic acids, in a way that can be used to identify biochemical markers in the study of disease and pharmacology.


Asunto(s)
Luz , Microscopía , Humanos , Microscopía/métodos , Proteínas , Orgánulos
8.
Heliyon ; 9(4): e14682, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37095948

RESUMEN

Magnetic-stimuli responsive hydrogels are quickly becoming a promising class of materials across numerous fields, including biomedical devices, soft robotic actuators, and wearable electronics. Hydrogels are commonly fabricated by conventional methods that limit the potential for complex architectures normally required for rapidly changing custom configurations. Rapid prototyping using 3D printing provides a solution for this. Previous work has shown successful extrusion 3D printing of magnetic hydrogels; however, extrusion-based printing is limited by nozzle resolution and ink viscosity. VAT photopolymerization offers a higher control over resolution and build-architecture. Liquid photo-resins with magnetic nanocomposites normally suffer from nanoparticle agglomeration due to local magnetic fields. In this work, we develop an optimised method for homogenously infusing up to 2 wt % superparamagnetic iron oxide nanoparticles (SPIONs) with a 10 nm diameter into a photo-resin composed of water, acrylamide and PEGDA, with improved nanoparticle homogeneity and reduced agglomeration during printing. The 3D printed starfish hydrogels exhibited high mechanical stability and robust mechanical properties with a maximum Youngs modulus of 1.8 MPa and limited shape deformation of 10% when swollen. Each individual arm of the starfish could be magnetically actuated when a remote magnetic field is applied. The starfish could grab onto a magnet with all arms when a central magnetic field was applied. Ultimately, these hydrogels retained their shape post-printing and returned to their original formation once the magnetic field had been removed. These hydrogels can be used across a wide range of applications, including soft robotics and magnetically stimulated actuators.

10.
Polym Chem ; 14(3): 303-317, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36760606

RESUMEN

Polymer chemistry, composition and molar mass are factors that are known to affect cytotoxicity, however the influence of polymer architecture has not been investigated systematically. In this study the influence of the position of the cationic charges along the polymer chain on cytotoxicity was investigated while keeping constant the other polymer characteristics. Specifically, copolymers of various architectures, based on a cationic pH responsive monomer, 2-(dimethylamino)ethyl methacrylate (DMAEMA) and a non-ionic hydrophilic monomer, oligo(ethylene glycol)methyl ether methacrylate (OEGMA) were engineered and their toxicity towards a panel of cell lines investigated. Of the seven different polymer architectures examined, the block-like structures were less cytotoxic than statistical or gradient/tapered architectures. These findings will assist in developing future vectors for nucleic acid delivery.

11.
Sci Total Environ ; 858(Pt 1): 159315, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283528

RESUMEN

Underground railway systems are recognised spaces of increased personal pollution exposure. We studied the number-size distribution and physico-chemical characteristics of ultrafine (PM0.1), fine (PM0.1-2.5) and coarse (PM2.5-10) particles collected on a London underground platform. Particle number concentrations gradually increased throughout the day, with a maximum concentration between 18:00 h and 21:00 h (local time). There was a maximum decrease in mass for the PM2.5, PM2.5-10 and black carbon of 3.9, 4.5 and ~ 21-times, respectively, between operable (OpHrs) and non-operable (N-OpHrs) hours. Average PM10 (52 µg m-3) and PM2.5 (34 µg m-3) concentrations over the full data showed levels above the World Health Organization Air Quality Guidelines. Respiratory deposition doses of particle number and mass concentrations were calculated and found to be two- and four-times higher during OpHrs compared with N-OpHrs, reflecting events such as train arrival/departure during OpHrs. Organic compounds were composed of aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) which are known to be harmful to health. Specific ratios of PAHs were identified for underground transport that may reflect an interaction between PAHs and fine particles. Scanning transmission electron microscopy (STEM) chemical maps of fine and ultrafine fractions show they are composed of Fe and O in the form of magnetite and nanosized mixtures of metals including Cr, Al, Ni and Mn. These findings, and the low air change rate (0.17 to 0.46 h-1), highlight the need to improve the ventilation conditions.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Tamaño de la Partícula , Londres , Aerosoles , Hidrocarburos Policíclicos Aromáticos/análisis , Monitoreo del Ambiente
12.
ACS Appl Mater Interfaces ; 14(42): 47445-47460, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36218307

RESUMEN

A challenge in neurology is the lack of efficient brain-penetrable neuroprotectants targeting multiple disease mechanisms. Plasmonic gold nanostars are promising candidates to deliver standard-of-care drugs inside the brain but have not been trialed as carriers for neuroprotectants. Here, we conjugated custom-made peptide dendrimers (termed H3/H6), encompassing motifs of the neurotrophic S100A4-protein, onto star-shaped and spherical gold nanostructures (H3/H6-AuNS/AuNP) and evaluated their potential as neuroprotectants and interaction with neurons. The H3/H6 nanostructures crossed a model blood-brain barrier, bound to plasma membranes, and induced neuritogenesis with the AuNS, showing higher potency/efficacy than the AuNP. The H3-AuNS/NP protected neurons against oxidative stress, the H3-AuNS being more potent, and against Parkinson's or Alzheimer's disease (PD/AD)-related cytotoxicity. Unconjugated S100A4 motifs also decreased amyloid beta-induced neurodegeneration, introducing S100A4 as a player in AD. Using custom-made dendrimers coupled to star-shaped nanoparticles is a promising route to activate multiple neuroprotective pathways and increase drug potency to treat neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Dendrímeros , Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/química , Péptidos beta-Amiloides , Dendrímeros/farmacología , Dendrímeros/uso terapéutico , Neuronas , Oro/química , Enfermedad de Alzheimer/tratamiento farmacológico
13.
Commun Biol ; 5(1): 1101, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253409

RESUMEN

There is an increased need and focus to understand how local brain microstructure affects the transport of drug molecules directly administered to the brain tissue, for example in convection-enhanced delivery procedures. This study reports a systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fibres, namely the corpus callosum, the fornix and the corona radiata, with the specific aim to map different regions of the tissue and provide essential information for the development of accurate models of brain biomechanics. Ovine samples are imaged using scanning electron microscopy combined with focused ion beam milling to generate 3D volume reconstructions of the tissue at subcellular spatial resolution. Focus is placed on the characteristic cytological feature of the white matter: the axons and their alignment in the tissue. For each tract, a 3D reconstruction of relatively large volumes, including a significant number of axons, is performed and outer axonal ellipticity, outer axonal cross-sectional area and their relative perimeter are measured. The study of well-resolved microstructural features provides useful insight into the fibrous organization of the tissue, whose micromechanical behaviour is that of a composite material presenting elliptical tortuous tubular axonal structures embedded in the extra-cellular matrix. Drug flow can be captured through microstructurally-based models using 3D volumes, either reconstructed directly from images or generated in silico using parameters extracted from the database of images, leading to a workflow to enable physically-accurate simulations of drug delivery to the targeted tissue.


Asunto(s)
Encéfalo , Sustancia Blanca , Animales , Axones/ultraestructura , Fenómenos Biomecánicos , Cuerpo Calloso , Ovinos , Sustancia Blanca/ultraestructura
14.
Noncoding RNA ; 8(4)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36005826

RESUMEN

As research uncovers the underpinnings of cancer biology, new targeted therapies have been developed. Many of these therapies are small molecules, such as kinase inhibitors, that target specific proteins; however, only 1% of the genome encodes for proteins and only a subset of these proteins has 'druggable' active binding sites. In recent decades, RNA therapeutics have gained popularity due to their ability to affect targets that small molecules cannot. Additionally, they can be manufactured more rapidly and cost-effectively than small molecules or recombinant proteins. RNA therapeutics can be synthesised chemically and altered quickly, which can enable a more personalised approach to cancer treatment. Even though a wide range of RNA therapeutics are being developed for various indications in the oncology setting, none has reached the clinic to date. One of the main reasons for this is attributed to the lack of safe and effective delivery systems for this type of therapeutic. This review focuses on current strategies to overcome these challenges and enable the clinical utility of these novel therapeutic agents in the cancer clinic.

15.
Environ Pollut ; 305: 119323, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35447256

RESUMEN

Air pollution consists of a multi-faceted mix of gases and ambient particulate matter (PM) with diverse organic and non-organic chemical components that contribute to increasing morbidity and mortality worldwide. In particular, epidemiological and clinical studies indicate that respiratory health is adversely affected by exposure to air pollution by both causing and worsening (exacerbating) diseases such as chronic obstructive pulmonary disease (COPD), asthma, interstitial pulmonary fibrosis and lung cancer. The molecular mechanisms of air pollution-induced pulmonary toxicity have been evaluated with regards to different types of PM of various sizes and concentrations with single and multiple exposures over different time periods. These data provide a plausible interrelationship between cellular toxicity and the activation of multiple biological processes including proinflammatory responses, oxidative stress, mitochondrial oxidative damage, autophagy, apoptosis, cell genotoxicity, cellular senescence and epithelial-mesenchymal transition. However, these molecular changes have been studied predominantly in cell lines rather than in primary bronchial or nasal cells from healthy subjects or those isolated from patients with airways disease. In addition, they have been conducted under different cell culture conditions and generally in submerged culture rather than the more relevant air-liquid interface culture and with a variety of air pollutant exposure protocols. Cell types may respond differentially to pollution delivered as an aerosol rather than being bathed in media containing agglomerations of particles. As a result, the actual pathophysiological pathways activated by different PMs in primary cells from the airways of healthy and asthmatic subjects remains unclear. This review summarises the literature on the different methodologies utilised in studying the impact of submicron-sized pollutants on cells derived from the respiratory tract with an emphasis on data obtained from primary human cell. We highlight the critical underlying molecular mechanisms that may be important in driving disease processes in response to air pollution in vivo.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Polvo , Contaminantes Ambientales/farmacología , Células Epiteliales , Gases , Humanos , Pulmón , Material Particulado/análisis
16.
Glob Chall ; 6(3): 2100091, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35284090

RESUMEN

The increasing commercial use of engineered zinc oxide nanomaterials necessitates a thorough understanding of their behavior following their release into wastewater. Herein, the fates of zinc oxide nanoparticles (ZnO NPs) and ionic Zn in a real primary sludge collected from a municipal wastewater system are studied via stable isotope tracing at an environmentally relevant spiking concentration of 15.2 µg g-1. Due to rapid dissolution, nanoparticulate ZnO does not impart particle-specific effects, and the Zn ions from NP dissolution and ionic Zn display indistinguishable behavior as they partition equally between the solid, liquid, and ultrafiltrate phases of the sludge over a 4-h incubation period. This work provides important constraints on the behavior of engineered ZnO nanomaterials in primary sludge-the first barrier in a wastewater treatment plant-at low, realistic concentrations. As the calculated solid-liquid partition coefficients are significantly lower than those reported in prior studies that employ unreasonably high spiking concentrations, this work highlights the importance of using low, environmentally relevant doses of engineered nanomaterials in experiments to obtain accurate risk assessments.

17.
Sci Total Environ ; 831: 154616, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35307433

RESUMEN

Impacts of widespread release of engineered titanium dioxide nanoparticles (nTiO2) on freshwater phytoplankton and phytobenthic assemblages in the field, represents a significant knowledge gap. Using outdoor experiments, we quantified impacts of nTiO2 on phytoplankton and periphyton from UK rivers, applied at levels representative of environmentally realistic concentrations (0.05 mg/L) and hot spots of accumulation (5.0 mg/L). Addition of nTiO2 to river water led to rapid temporal size changes in homoagglomerates and many heteroaggregates of nTiO2 with cells in the phytoplankton, including green algae, pennate and centric diatoms, increasing settlement of some cells. Changes in phytoplankton composition were evident after 72-h resulting from a significant decline in the relative abundance of very small phytoplankton cells (1-3 µm), often accompanied by increases in centric diatoms at both concentrations. Significant changes detected in the composition of the phytobenthos after 12 days, following nTiO2 treatments, were not evident when using benthic diatoms alone after 56 days. A lack of inhibition in the maximum quantum yield (Fv/Fm) in phytobenthos after 72-h exposures contrasted with a significant inhibition in Fv/Fm in 75% of phytoplankton samples, the highest recorded in Rutile nTiO2 exposures at both concentrations of nTiO2. After 12 days, strong positive stimulatory responses were recorded in the maximum relative electron transport rate (rETRmax) and the maximum non-photochemical coefficient (NPQmax), in phytoplankton and phytobenthos samples exposed to the higher Anatase nTiO2 concentration, were not measured in Rutile exposed biota. Collectively, these results indicate that the Rutile phase of nTiO2 has more negative impacts on freshwater algae than the Anatase form, at specific time scales, and phytoplankton may be more impacted by nTiO2 than phytobenthos. We caution that repeated release of nTiO2, could lead to significant changes in riverine algal biomass and species composition, dependent on the phase and concentration of nTiO2.


Asunto(s)
Diatomeas , Nanopartículas , Nanopartículas/química , Fitoplancton , Titanio/química , Titanio/toxicidad
18.
Biomater Adv ; 133: 112610, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35042635

RESUMEN

The cellular response of murine primary macrophages to monodisperse strontium containing bioactive glass nanoparticles (SrBGNPs), with diameters of 90 ± 10 nm and a composition (mol%) of 88.8 SiO2-1.8CaO-9.4SrO (9.4% Sr-BGNPs) was investigated for the first time. Macrophage response is critical as applications of bioactive nanoparticles will involve the nanoparticles circulating in the blood stream and macrophages will be the first cells to encounter the particles, as part of inflammatory response mechanisms. Macrophage viability and total DNA measurements were not decreased by particle concentrations of up to 250 µg/mL. The Sr-BGNPs were actively internalised by the macrophages via formation of endosome/lysosome-like vesicles bordered by a membrane inside the cells. The Sr-BGNPs degraded inside the cells, with the Ca and Sr maintained inside the silica network. When RAW264.7 cells were incubated with Sr-BGNPs, the cells were polarised towards the pro-regenerative M2 population rather than the pro-inflammatory M1 population. Sr-BGNPs are potential biocompatible vehicles for therapeutic cation delivery for applications in bone regeneration.


Asunto(s)
Nanopartículas , Estroncio , Animales , Vidrio , Macrófagos , Ratones , Dióxido de Silicio , Estroncio/farmacología
20.
Acta Biomater ; 120: 194-202, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32344173

RESUMEN

Osteopontin (OPN) is a non-collagenous protein involved in biomineralization of bone tissue. Beyond its role in biomineralization, we show that osteopontin is essential to the quality of collagen fibrils in bone. Transmission electron microscopy revealed that, in Opn-/- tissue, the organization of the collagen fibrils was highly heterogeneous, more disorganized than WT bone and comprised of regions of both organized and disorganized matrix with a reduced density. The Opn-/- bone tissue also exhibited regions in which the collagen had lost its characteristic fibrillar structure, and the crystals were disorganized. Using nanobeam electron diffraction, we show that damage to structural integrity of collagen fibrils in Opn-/- bone tissue and their organization causes mineral disorganization, which could ultimately affect its mechanical integrity. STATEMENT OF SIGNIFICANCE: This study presents new evidence about the role of osteopontin (OPN) - a non-collagenous protein - on the structure and organization of the organic and mineral matrix in bone. In previous work, osteopontin has been suggested to regulate the nucleation and growth of bone mineral crystals and to form sacrificial bonds between mineralized collagen fibrils to enhance bone's toughness. Our findings show that OPN plays a crucial role before mineralization, during the formation of the collagen fibrils. OPN-deficient bones present a lower collagen content compared to wild type bone and, at the tissue level, collagen fibrils organization can be significantly altered in the absence of OPN. Our results suggest that OPN is critical for the formation and/or remodeling of bone collagen matrix. Our findings could lead to the development of new therapeutic strategies of bone diseases affecting collagen formation and remodeling.


Asunto(s)
Colágeno Tipo I , Osteopontina , Huesos , Colágeno , Matriz Extracelular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA