Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acc Chem Res ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007720

RESUMEN

ConspectusIntegrating functional materials and devices with living systems enables novel methods for recording, manipulating, or augmenting organisms not accessible by traditional chemical, optical, or genetic approaches. (The term "device" refers to the fundamental components of complex electronic systems, such as transistors, capacitors, conductors, and electrodes.) Typically, these advanced materials and devices are synthesized, either through chemical or physical reactions, outside the biological systems (ex situ) before they are integrated. This is due in part to the more limited repertoire of biocompatible chemical transformations available for assembling functional materials in vivo. Given that most of the assembled bulk materials are impermeable to cell membranes and cannot go through the blood-brain barrier (BBB), the external synthesis poses challenges when trying to interface these materials and devices with cells precisely and in a timely manner and at the micro- and nanoscale─a crucial requirement for modulating cellular functions. In contrast to presynthesis in a separate location, in situ assembly, wherein small molecules or building blocks are directly assembled into functional materials within a biological system at the desired site of action, has offered a potential solution for spatiotemporal and genetic control of material synthesis and assembly.In this Account, we highlight recent advances in spatially and temporally targeted functional material synthesis and assembly in living cells, tissues and animals and provide perspective on how they may enable novel probing, modulation, or augmentation of fundamental biology. We discuss several strategies, starting from the traditional nontargeted methods to targeted assembly of functional materials and devices based on the endogenous markers of the biological system. We then focus on genetically targeted assembly of functional materials, which employs enzymatic catalysis centers expressed in living systems to assemble functional materials in specific molecular-defined cell types. We introduce the recent efforts of our group to modulate membrane capacitance and neuron excitability using in situ synthesized electrically functional polymers in a genetically targetable manner. These advances demonstrate the promise of in situ synthesis and assembly of functional materials and devices, including the optogenetic polymerization developed by our lab, to interface with cells in a cellular- or subcellular-specific manner by incorporating genetic and/or optical control over material assembly. Finally, we discuss remaining challenges, areas for improvement, potential applications to other biological systems, and novel methods for the in situ synthesis of functional materials that could be elevated by incorporating genetic or material design strategies. As researchers expand the toolkit of biocompatible in situ functional material synthetic techniques, we anticipate that these advancements could potentially offer valuable tools for exploring biological systems and developing therapeutic solutions.

2.
Sci Adv ; 8(49): eade1136, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36475786

RESUMEN

Ionic conductivity and membrane capacitance are two foundational parameters that govern neuron excitability. Conventional optogenetics has emerged as a powerful tool to temporarily manipulate membrane ionic conductivity in intact biological systems. However, no analogous method exists for precisely manipulating cell membrane capacitance to enable long-lasting modulation of neuronal excitability. Genetically targetable chemical assembly of conductive and insulating polymers can modulate cell membrane capacitance, but further development of this technique has been hindered by poor spatiotemporal control of the polymer deposition and cytotoxicity from the widely diffused peroxide. We address these issues by harnessing genetically targetable photosensitizer proteins to assemble electrically functional polymers in neurons with precise spatiotemporal control. Using whole-cell patch-clamp recordings, we demonstrate that this optogenetic polymerization can achieve stepwise modulation of both neuron membrane capacitance and intrinsic excitability. Furthermore, cytotoxicity can be limited by controlling light exposure, demonstrating a promising new method for precisely modulating cell excitability.

3.
J Am Chem Soc ; 140(6): 2020-2023, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29384658

RESUMEN

Fluorescent sensors for mobile zinc are valuable for studying complex biological systems. Because these sensors typically bind zinc rapidly and tightly, there has been little temporal control over the activity of the probe after its application to a sample. The ability to control the activity of a zinc sensor in vivo during imaging experiments would greatly improve the time resolution of the measurement. Here, we describe photoactivatable zinc sensors that can be triggered with short pulses of UV light. These probes are prepared by functionalizing a zinc sensor with protecting groups that render the probe insensitive to metal ions. Photoinduced removal of the protecting groups restores the binding site, allowing for zinc-responsive changes in fluorescence that can be observed in live cells and tissues.


Asunto(s)
Colorantes Fluorescentes/química , Zinc/análisis , Química Encefálica , Fluorescencia , Células HeLa , Humanos , Microscopía Fluorescente/métodos , Espectrometría de Fluorescencia/métodos , Rayos Ultravioleta
4.
J Am Chem Soc ; 139(27): 9325-9332, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28576078

RESUMEN

The CF2H group, a potential surrogate for the OH group, can act as an unusual hydrogen bond donor, as confirmed by crystallographic, spectroscopic, and computational methods. Here, we demonstrate the bioisosterism of the OH and CF2H groups and the important roles of CF2-H···O hydrogen bonds in influencing intermolecular interactions and conformational preferences. Experimental evidence, corroborated by theory, reveals the distinctive nature of CF2H hydrogen bonding interactions relative to their normal OH hydrogen bonding counterparts.


Asunto(s)
Hidrocarburos Fluorados/química , Radical Hidroxilo/química , Enlace de Hidrógeno , Nitrofenoles/química , Teoría Cuántica , Espectrofotometría Infrarroja , Tolueno/análogos & derivados , Tolueno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA