Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 334: 118566, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002823

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Trifolium alexandrinum L. (TA), has traditionally been used in folk medicine for its anti-inflammatory properties against hyperuricemia and gout. However, the specific mechanisms of action of TA have not been thoroughly studied. AIM OF THE WORK: This study aimed to evaluate the protective effects of irradiated (TR25) and non-irradiated (TR0) Trifolium alexandrinum L. aqueous extract (TAAE), along with two isolated compounds, caffeine (CAF) and saponin (SAP), in a rat model of acute gouty arthritis (GA). MATERIALS AND METHODS: The GA model was established by injecting a monosodium urate (MSU) suspension into the knee joint. Synovial tissue pathology was assessed, and levels of TNF-α, IL-6, IL-1ß, NF-κB, mTOR, AKT1, PI3K, NLRP3, and ASC were measured by ELISA. mRNA expression of ERK1, JNK, and p-38 MAPK was detected using qRT-PCR, and Caspase-1 protein expression was assessed by immunohistochemical analysis. Knee swelling, uric acid levels, liver and kidney function, and oxidative stress markers were also evaluated. RESULTS: TAAE analysis identified 170 compounds, with 73 successfully identified using LC-HR-MS/MS, including caffeine citrate and theasapogenol B glycoside as the main constituents. The studied materials demonstrated significant protective effects against GA. TR25 administration significantly mitigated knee joint circumference compared to other treatments. It demonstrated potential in alleviating hyperuricemia, renal and hepatic impairments induced by MSU crystals. TR25 also alleviated oxidative stress and reduced levels of IL1ß, IL-6, TNF-α, and NF-κB. Weak Caspase-1 immune-positive staining was observed in the TR25 group. TR25 decreased NLRP3 and ASC expression, reducing inflammatory cytokine levels in GA. It effectively inhibited the PI3K, AKT, and mTOR signaling pathways, promoting autophagy. Additionally, TR25 suppressed ERK1, JNK, and p-38 MAPK gene expression in synovial tissue. These effects were attributed to various components in TAAE, such as flavonoids, phenolic acids, tannins, alkaloids, and triterpenes. CONCLUSION: Importantly, irradiation (25 KGy) enhanced the antioxidant effects and phtchemical contents of TAAE. Additionally, TR0, TR25, CAF, and SAP exhibited promising protective effects against GA, suggesting their therapeutic potential for managing this condition. These effects were likely mediated through modulation of the NLRP3/ASC/Caspase-1 and ERK/JNK/p-38 MAPK signaling pathways, as well as regulation of the PI3K/AKT/mTOR pathway. Further research is warranted to fully elucidate the underlying mechanisms and optimize their clinical applications.


Asunto(s)
Artritis Gotosa , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Extractos Vegetales , Animales , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Caspasa 1/metabolismo , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ácido Úrico
2.
Eur J Pharmacol ; 957: 176029, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37648012

RESUMEN

The current investigation aimed to explore the potential of etoricoxib nanostructured lipid carriers (ET-NLCs) as an anti-inflammatory drug in radiation-exposed rats, with a focus on assessing its efficacy in reducing inflammation while minimizing cardiac toxicity compared to conventional etoricoxib (ET) treatment. The ET-NLCs were prepared by the low-temperature melt emulsification solidification technique. Various techniques were employed to characterize the NLCs. Rats were exposed to gamma-irradiation (6 Gy) to induce cardiac inflammation and injury, followed by oral administration of ET or ET-NLCs (10 mg/kg b.w.) for 14 consecutive days. Results demonstrated a significant increase in the levels of malondialdehyde (MDA), cyclooxygenase-2 (COX-2), nuclear factor kappa-B p65 (NF-κB-p65), and poly ADP-ribose polymerase (PARP-1) in the heart tissues of gamma-irradiated rats compared to the control group. This increase was accompanied by a reduction in the activity of antioxidant enzymes. However, treatment with ET and ET-NLCs exhibited a positive impact on these levels. Interestingly, the efficacy of ET-NLCs in mitigating radiation-induced inflammation in heart tissue was found to be superior to that of ET. In conclusion, the study suggests that the utilization of NLCs as a drug delivery system for ET may not only enhance its therapeutic efficacy but also help reduce the cardiovascular risks associated with ET, specifically focused on individuals who had been exposed to gamma radiation. These findings open new avenues for further research in the development of effective and safer therapeutic strategies for managing inflammatory diseases and their impact on cardiovascular health.


Asunto(s)
Cardiotoxicidad , FN-kappa B , Humanos , Animales , Ratas , Ciclooxigenasa 2 , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Etoricoxib/farmacología , Inflamación/tratamiento farmacológico , Lípidos
3.
Cell Stress Chaperones ; 28(6): 709-720, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37368180

RESUMEN

The purpose of this study was to demonstrate the neuroprotective effect of Melissa officinalis extract (MEE) against brain damage associated with hypothyroidism induced by propylthiouracil (PTU) and/or γ-radiation (IR) in rats. Hypothyroidism induction and/or exposure to IR resulted in a significant decrease in the serum levels of T3 and T4 associated with increased levels of lipid peroxidation end product, malondialdehyde (MDA), and nitrites (NO) in the brain tissue homogenate. Also, hypothyroidism and /or exposure to IR markedly enhance the endoplasmic reticulum stress by upregulating the gene expressions of the protein kinase RNA-like endoplasmic reticulum kinase (PERK), activated transcription factor 6 (ATF6), endoplasmic reticulum-associated degradation (ERAD), and CCAAT/enhancer-binding protein homologous protein (CHOP) in the brain tissue homogenate associated with a proapoptotic state which indicated by the overexpression of Bax, BCl2, and caspase-12 that culminates in brain damage. Meanwhile, the PTU and /or IR-exposed rats treated with MEE reduced oxidative stress and ERAD through ATF6. Also, the MEE treatment prevented the Bax and caspase-12 gene expression from increasing. This treatment in hypothyroid animals was associated with neuronal protection as indicated by the downregulation in the gene expressions of the microtubule-associated protein tau (MAPT) and amyloid precursor protein (APP) in the brain tissue. Furthermore, the administration of MEE ameliorates the histological structure of brain tissue. In conclusion, MEE might prevent hypothyroidism-induced brain damage associated with oxidative stress and endoplasmic reticulum stress.


Asunto(s)
Hipotiroidismo , Melissa , Ratas , Animales , Melissa/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteína X Asociada a bcl-2/metabolismo , Caspasa 12/metabolismo , Encéfalo/metabolismo , Apoptosis , Hipotiroidismo/tratamiento farmacológico , Hipotiroidismo/metabolismo , Hipotiroidismo/patología , Estrés del Retículo Endoplásmico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA