Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.069
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; : e0078124, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078191

RESUMEN

Influenza remains a worldwide public health threat. Although seasonal influenza vaccines are currently the best means of preventing severe disease, the standard-of-care vaccines require frequent updating due to antigenic drift and can have low efficacy, particularly in vulnerable populations. Here, we demonstrate that a single administration of a recombinant adenovirus-associated virus (rAAV) vector expressing a computationally optimized broadly reactive antigen (COBRA)-derived influenza H1 hemagglutinin (HA) induces strongly neutralizing and broadly protective antibodies in naïve mice and ferrets with pre-existing influenza immunity. Following a lethal viral challenge, the rAAV-COBRA vaccine allowed for significantly reduced viral loads in the upper and lower respiratory tracts and complete protection from morbidity and mortality that lasted for at least 5 months post-vaccination. We observed no signs of antibody waning during this study. CpG motif enrichment of the antigen can act as an internal adjuvant to further enhance the immune responses to allow for lower vaccine dosages with the induction of unique interferon-producing CD4+ and CD8+ T cells specific to HA head and stem peptide sequences. Our studies highlight the utility of rAAV as an effective platform to improve seasonal influenza vaccines. IMPORTANCE: Developing an improved seasonal influenza vaccine remains an ambitious goal of researchers and clinicians alike. With influenza routinely causing severe epidemics with the potential to rise to pandemic levels, it is critical to create an effective, broadly protective, and durable vaccine to improve public health worldwide. As a potential solution, we created a rAAV viral vector expressing a COBRA-optimized influenza hemagglutinin antigen with modestly enriched CpG motifs to evoke a robust and long-lasting immune response after a single intramuscular dose without needing boosts or adjuvants. Importantly, the rAAV vaccine boosted antibody breadth to future strains in ferrets with pre-existing influenza immunity. Together, our data support further investigation into the utility of viral vectors as a potential avenue to improve our seasonal influenza vaccines.

2.
J Pharm Bioallied Sci ; 16(Suppl 2): S1805-S1807, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882826

RESUMEN

Background: Accelerated orthodontic treatment has gained popularity in recent years as patients seek shorter treatment durations. Microosteoperforations (MOPs) have emerged as a minimally invasive technique to expedite tooth movement. This study aims to compare the effectiveness of MOPs in accelerating orthodontic treatment with conventional methods. Materials and Methods: A randomized controlled trial was conducted on 60 orthodontic patients requiring dental alignment. The participants were divided into two groups: Group A (MOPs) and Group B (conventional orthodontic treatment). In Group A, MOPs were performed at the beginning of the treatment. Both groups received monthly orthodontic adjustments. Treatment duration, rate of tooth movement, and patient discomfort were measured and compared between the two groups. Results: The study found that in Group A, the treatment duration was reduced by 30% compared to Group B (P < 0.05). The rate of tooth movement in the MOPs group was 1.5 times higher than the conventional group (P < 0.01). Additionally, patient-reported discomfort levels were similar between the two groups. No adverse events related to MOPs were observed during the study. Conclusion: MOPs significantly accelerate orthodontic treatment, reducing treatment duration by 30% and increasing the rate of tooth movement by 1.5 times compared to conventional methods. Importantly, MOPs are well-tolerated by patients, making them a valuable option for expediting orthodontic treatment with minimal discomfort. This study highlights the potential benefits of integrating MOPs into orthodontic practice to improve treatment efficiency and patient satisfaction.

3.
iScience ; 27(6): 109992, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38868209

RESUMEN

The studies reported here focus on the impact of pre-existing CD4 T cell immunity on the first encounter with SARS-CoV-2. They leverage PBMC samples from plasma donors collected after a first SARS-CoV-2 infection, prior to vaccine availability and compared to samples collected prior to the emergence of SARS-CoV-2. Analysis of CD4 T cell specificity across the entire SARS-CoV-2 proteome revealed that the recognition of SARS-CoV-2-derived epitopes by CD4 memory cells prior to the pandemic are enriched for reactivity toward non-structural proteins conserved across endemic CoV strains. However, CD4 T cells after primary infection with SARS-CoV-2 focus on epitopes from structural proteins. We observed little evidence for preferential recall to epitopes conserved between SARS-CoV-2 and seasonal CoV, a finding confirmed through use of selectively curated conserved and SARS-unique peptides. Our data suggest that SARS-CoV-2 CD4 T cells elicited by the first infection are primarily established from the naive CD4 T cell pool.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38831147

RESUMEN

The rapid progress in the marine industry has resulted in notable challenges related to biofouling and surface corrosion on underwater infrastructure. Conventional coating techniques prioritise individual protective properties, such as offering either antifouling or anticorrosion protection. Current progress and innovations in nanomaterials and technologies have presented novel prospects and possibilities in the domain of integrated multifunctional coatings. These coatings can provide simultaneous protection against fouling and corrosion. This review study focuses on the potential applications of various nanomaterials, such as carbon-based nanostructures, nano-metal oxides, polymers, metal-organic frameworks, and nanoclays, in developing integrated multifunctional nano-based coatings. These emerging integrated multifunctional coating technologies recently developed and are currently in the first phases of development. The potential opportunities and challenges of incorporating nanomaterial-based composites into multifunctional coatings and their future prospects are discussed. This review aims to improve the reader's understanding of the integrated multifunctional nano-material composite coating design and encourage valuable contributions to its development.

5.
Int J Nanomedicine ; 19: 4857-4875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828195

RESUMEN

Brain diseases are the most devastating problem among the world's increasingly aging population, and the number of patients with neurological diseases is expected to increase in the future. Although methods for delivering drugs to the brain have advanced significantly, none of these approaches provide satisfactory results for the treatment of brain diseases. This remains a challenge due to the unique anatomy and physiology of the brain, including tight regulation and limited access of substances across the blood-brain barrier. Nanoparticles are considered an ideal drug delivery system to hard-to-reach organs such as the brain. The development of new drugs and new nanomaterial-based brain treatments has opened various opportunities for scientists to develop brain-specific delivery systems that could improve treatment outcomes for patients with brain disorders such as Alzheimer's disease, Parkinson's disease, stroke and brain tumors. In this review, we discuss noteworthy literature that examines recent developments in brain-targeted nanomedicines used in the treatment of neurological diseases.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Sistemas de Liberación de Medicamentos , Nanomedicina , Humanos , Nanomedicina/métodos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Animales , Nanopartículas/química , Encefalopatías/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/farmacocinética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico
6.
Sci Rep ; 14(1): 13466, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866815

RESUMEN

CRISPR-Cas9 technology has facilitated development of strategies that can potentially provide more humane and effective methods to control invasive vertebrate species, such as mice. One promising strategy is X chromosome shredding which aims to bias offspring towards males, resulting in a gradual and unsustainable decline of females. This method has been explored in insects with encouraging results. Here, we investigated this strategy in Mus musculus by targeting repeat DNA sequences on the X chromosome with the aim of inducing sufficient DNA damage to specifically eliminate X chromosome-bearing sperm during gametogenesis. We tested three different guide RNAs (gRNAs) targeting different repeats on the X chromosome, together with three male germline-specific promoters for inducing Cas9 expression at different stages of spermatogenesis. A modest bias towards mature Y-bearing sperm was detected in some transgenic males, although this did not translate into significant male-biasing of offspring. Instead, cleavage of the X chromosome during meiosis typically resulted in a spermatogenic block, manifest as small testes volume, empty tubules, low sperm concentration, and sub/infertility. Our study highlights the importance of controlling the timing of CRISPR-Cas9 activity during mammalian spermatogenesis and the sensitivity of spermatocytes to X chromosome disruption.


Asunto(s)
Sistemas CRISPR-Cas , Espermatogénesis , Cromosoma X , Animales , Masculino , Ratones , Espermatogénesis/genética , Cromosoma X/genética , Femenino , ARN Guía de Sistemas CRISPR-Cas/genética , Espermatozoides/metabolismo , Ratones Transgénicos , Meiosis/genética
7.
J Breath Res ; 18(4)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38876091

RESUMEN

The Peppermint Initiative, established within the International Association of Breath Research, introduced the peppermint protocol, a breath analysis benchmarking effort designed to address the lack of inter-comparability of outcomes across different breath sampling techniques and analytical platforms. Benchmarking with gas chromatography-ion mobility spectrometry (GC-IMS) using peppermint has been previously reported however, coupling micro-thermal desorption (µTD) to GC-IMS has not yet, been benchmarked for breath analysis. To benchmarkµTD-GC-IMS for breath analysis using the peppermint protocol. Ten healthy participants (4 males and 6 females, aged 20-73 years), were enrolled to give six breath samples into Nalophan bags via a modified peppermint protocol. Breath sampling after peppermint ingestion occurred over 6 h att= 60, 120, 200, 280, and 360 min. The breath samples (120 cm3) were pre-concentrated in theµTD before being transferred into the GC-IMS for detection. Data was processed using VOCal, including background subtractions, peak volume measurements, and room air assessment. During peppermint washout, eucalyptol showed the highest change in concentration levels, followed byα-pinene andß-pinene. The reproducibility of the technique for breath analysis was demonstrated by constructing logarithmic washout curves, with the average linearity coefficient ofR2= 0.99. The time to baseline (benchmark) value for the eucalyptol washout was 1111 min (95% CI: 529-1693 min), obtained by extrapolating the average logarithmic washout curve. The study demonstrated thatµTD-GC-IMS is reproducible and suitable technique for breath analysis, with benchmark values for eucalyptol comparable to the gold standard GC-MS.


Asunto(s)
Benchmarking , Pruebas Respiratorias , Mentha piperita , Humanos , Pruebas Respiratorias/métodos , Pruebas Respiratorias/instrumentación , Femenino , Masculino , Adulto , Persona de Mediana Edad , Anciano , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Movilidad Iónica/normas , Adulto Joven , Cromatografía de Gases y Espectrometría de Masas/métodos , Cromatografía de Gases/métodos , Cromatografía de Gases/instrumentación , Cromatografía de Gases/normas
8.
Bioinform Adv ; 4(1): vbae057, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721398

RESUMEN

Motivation: Data reuse is a common and vital practice in molecular biology and enables the knowledge gathered over recent decades to drive discovery and innovation in the life sciences. Much of this knowledge has been collated into molecular biology databases, such as UniProtKB, and these resources derive enormous value from sharing data among themselves. However, quantifying and documenting this kind of data reuse remains a challenge. Results: The article reports on a one-day virtual workshop hosted by the UniProt Consortium in March 2023, attended by representatives from biodata resources, experts in data management, and NIH program managers. Workshop discussions focused on strategies for tracking data reuse, best practices for reusing data, and the challenges associated with data reuse and tracking. Surveys and discussions showed that data reuse is widespread, but critical information for reproducibility is sometimes lacking. Challenges include costs of tracking data reuse, tensions between tracking data and open sharing, restrictive licenses, and difficulties in tracking commercial data use. Recommendations that emerged from the discussion include: development of standardized formats for documenting data reuse, education about the obstacles posed by restrictive licenses, and continued recognition by funding agencies that data management is a critical activity that requires dedicated resources. Availability and implementation: Summaries of survey results are available at: https://docs.google.com/forms/d/1j-VU2ifEKb9C-sW6l3ATB79dgHdRk5v_lESv2hawnso/viewanalytics (survey of data providers) and https://docs.google.com/forms/d/18WbJFutUd7qiZoEzbOytFYXSfWFT61hVce0vjvIwIjk/viewanalytics (survey of users).

9.
Nat Commun ; 15(1): 3924, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724518

RESUMEN

An effective HIV-1 vaccine must elicit broadly neutralizing antibodies (bnAbs) against highly diverse Envelope glycoproteins (Env). Since Env with the longest hypervariable (HV) loops is more resistant to the cognate bnAbs than Env with shorter HV loops, we redesigned hypervariable loops for updated Env consensus sequences of subtypes B and C and CRF01_AE. Using modeling with AlphaFold2, we reduced the length of V1, V2, and V5 HV loops while maintaining the integrity of the Env structure and glycan shield, and modified the V4 HV loop. Spacers are designed to limit strain-specific targeting. All updated Env are infectious as pseudoviruses. Preliminary structural characterization suggests that the modified HV loops have a limited impact on Env's conformation. Binding assays show improved binding to modified subtype B and CRF01_AE Env but not to subtype C Env. Neutralization assays show increases in sensitivity to bnAbs, although not always consistently across clades. Strikingly, the HV loop modification renders the resistant CRF01_AE Env sensitive to 10-1074 despite the absence of a glycan at N332.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Anti-VIH , VIH-1 , Productos del Gen env del Virus de la Inmunodeficiencia Humana , VIH-1/inmunología , Humanos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Anticuerpos Anti-VIH/inmunología , Anticuerpos Neutralizantes/inmunología , Vacunas contra el SIDA/inmunología , Pruebas de Neutralización , Células HEK293 , Secuencia de Consenso , Infecciones por VIH/virología , Infecciones por VIH/inmunología , Unión Proteica , Epítopos/inmunología
10.
Sci Adv ; 10(19): eadk9137, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728395

RESUMEN

Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet, the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis. In these studies, we use a diet-induced obese ferret model and tools to demonstrate that, like humans, obesity resulted in notable changes to the lung microenvironment, leading to increased clinical disease and viral spread to the lower respiratory tract. The decreased antiviral responses also resulted in obese animals shedding higher infectious virus for a longer period, making them more likely to transmit to contacts. These data suggest that the obese ferret model may be crucial to understanding obesity's impact on influenza disease severity and community transmission and a key tool for therapeutic and intervention development for this high-risk population.


Asunto(s)
Modelos Animales de Enfermedad , Hurones , Obesidad , Infecciones por Orthomyxoviridae , Animales , Obesidad/virología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Pulmón/virología , Pulmón/patología , Índice de Severidad de la Enfermedad , Dieta , Humanos , Esparcimiento de Virus , Gripe Humana/transmisión , Gripe Humana/virología
11.
Nat Prod Res ; : 1-5, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738697

RESUMEN

Passiflora foetida is a climbing herb employed in ethno-medicine for the treatment of various ailments. The essential oil from flowers of P. foetida was obtained by hydrodistillation. The ethanol extract of the leaves was dissolved in water, then partitioned with n-hexane and n-butanol to obtain the various fractions; the fractions and isolated compound were subjected to in vitro antioxidant activity. Gas chromatography-mass spectrometry afforded the identification of forty-two constituents in the floral oil, dominated by ß-caryophyllene (17.2%), cedrol (11.5%), and α-humulene (11.5%). The n-butanol fraction was the most active (70% inhibition and absorbance 0.401; 100 µg/mL) in the 2,2-diphenyl-1-picrylhydrazyl radicals and ferric reducing power assays, respectively. Chromatographic analysis facilitated the isolation of 8-C-ß-d-glucosylapigenin (vitexin) from the butanol fraction of P. foetida. Vitexin demonstrated good antioxidant activities (75% inhibition and absorbance 0.424; 100 µg/mL) compared with ascorbic acid. The volatile metabolites of P. foetida flowers are reported for the first time.

12.
R Soc Open Sci ; 11(5): 231949, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721134

RESUMEN

Globally, heatwaves have become more common with hazardous consequences on biological processes. Research using a model insect (Tribolium castaneum) found that 5-day experimental heatwave conditions damaged several aspects of male reproductive biology, while females remained unaffected. However, females' reproductive fitness may still be impacted, as insects typically store sperm from multiple males in specialized organs for prolonged periods. Consequently, using males which produce sperm with green fluorescent protein (GFP)-tagged sperm nuclei, we visualized in vivo whether thermal stress affects the ejaculate occupancy across female storage sites under two scenarios; (i) increasing time since insemination and (ii) in the presence of defending competitor sperm. We reconfirmed that sperm from heatwave-exposed males sired fewer offspring with previously mated females and provided new scenarios for in vivo distributions of heat-stress-exposed males' sperm. Sperm from heatwave-exposed males occupied a smaller area and were at lower densities across the females' storage sites. Generally, sperm occupancy decreased with time since insemination, and sperm from the first male to mate dominated the long-term storage site. Reassuringly, although heated males' ejaculate was less successful in occupying female tracts, they were not lost from female storage at a faster rate and were no worse than control males in their offensive ability to enter storage sites occupied by competitor sperm. Future work should consider the potential site-specificity of factors influencing sperm storage where amenable.

13.
Nat Microbiol ; 9(6): 1593-1606, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38637722

RESUMEN

Metabolic disease is epidemiologically linked to severe complications upon influenza virus infection, thus vaccination is a priority in this high-risk population. Yet, vaccine responses are less effective in these same hosts. Here we examined how the timing of diet switching from a high-fat diet to a control diet affected influenza vaccine efficacy in diet-induced obese mice. Our results demonstrate that the systemic meta-inflammation generated by high-fat diet exposure limited T cell maturation to the memory compartment at the time of vaccination, impacting the recall of effector memory T cells upon viral challenge. This was not improved with a diet switch post-vaccination. However, the metabolic dysfunction of T cells was reversed if weight loss occurred 4 weeks before vaccination, restoring a functional recall response. This corresponded with changes in the systemic obesity-related biomarkers leptin and adiponectin, highlighting the systemic and specific effects of diet on influenza vaccine immunogenicity.


Asunto(s)
Dieta Alta en Grasa , Vacunas contra la Influenza , Obesidad , Infecciones por Orthomyxoviridae , Animales , Ratones , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Obesidad/inmunología , Obesidad/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Ratones Endogámicos C57BL , Vacunación , Ratones Obesos , Leptina/metabolismo , Masculino , Femenino , Adiponectina/metabolismo , Linfocitos T/inmunología
14.
Cell ; 187(9): 2052-2078, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670065

RESUMEN

Adaptive immunity provides protection against infectious and malignant diseases. These effects are mediated by lymphocytes that sense and respond with targeted precision to perturbations induced by pathogens and tissue damage. Here, we review key principles underlying adaptive immunity orchestrated by distinct T cell and B cell populations and their extensions to disease therapies. We discuss the intracellular and intercellular processes shaping antigen specificity and recognition in immune activation and lymphocyte functions in mediating effector and memory responses. We also describe how lymphocytes balance protective immunity against autoimmunity and immunopathology, including during immune tolerance, response to chronic antigen stimulation, and adaptation to non-lymphoid tissues in coordinating tissue immunity and homeostasis. Finally, we discuss extracellular signals and cell-intrinsic programs underpinning adaptive immunity and conclude by summarizing key advances in vaccination and engineering adaptive immune responses for therapeutic interventions. A deeper understanding of these principles holds promise for uncovering new means to improve human health.


Asunto(s)
Inmunidad Adaptativa , Humanos , Animales , Linfocitos B/inmunología , Linfocitos T/inmunología , Autoinmunidad/inmunología
15.
Environ Pollut ; 351: 123928, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615836

RESUMEN

The threatened Gangetic dolphin (Platanista gangetica) and smooth-coated otter (Lutrogale perspicillata) occuring in the Ganga River Basin (GRB), are experiencing a decline in their population and distribution range owing to multiple anthropogenic pressures, including pollution by Potentially Toxic Elements (PTEs). Apex predators primarily encounter contaminants through dietary exposure. Yet, notable gaps persist in our understanding of the risks associated with the ingestion of PTE-contaminated prey for Gangetic dolphins and smooth-coated otters. In this study, we examined the occurrence and spatial variation of PTEs in the prey (fish) of both these riverine mammals across three major rivers of the Basin, while also evaluating the associated risk of ingesting contaminated prey. Our assessment revealed no statistical variation in bioaccumulation profiles of PTEs across the three rivers, attributable to comparable land use patterns and PTE consumption within the catchment. Zn and Cu were the most dominant PTEs in the prey species. The major potential sources of pollution identified in the catchment include agricultural settlements, vehicular emissions, and the presence of metal-based additives in plastics. Zn, As and Hg accumulation vary with the trophic level whereas some PTEs show concentration (Hg) and dilution (As, Cr, Pb and Zn) with fish growth. The Risk Quotient (RQ), based on the dietary intake of contaminated prey calculated using Toxicity Reference Value was consistently below 1 indicating no significant risk to these riverine mammals. Conversely, with the exception of Co and Ni, the Reference Dose-based RQs for all other PTEs indicated a substantial risk for Gangetic dolphins and smooth-coated otters through dietary exposure. This study serves as a pivotal first step in assessing the risk of PTEs for two threatened riverine mammals in a densely populated river basin, highlighting the importance of their prioritization in regular monitoring to reinforce the ongoing conservation efforts.


Asunto(s)
Exposición Dietética , Monitoreo del Ambiente , Nutrias , Ríos , Contaminantes Químicos del Agua , Animales , Ríos/química , India , Exposición Dietética/estadística & datos numéricos , Contaminantes Químicos del Agua/análisis , Peces , Delfines , Cadena Alimentaria
16.
Nature ; 628(8009): 835-843, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600381

RESUMEN

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Asunto(s)
Lesión Pulmonar , Necroptosis , Infecciones por Orthomyxoviridae , Inhibidores de Proteínas Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Femenino , Humanos , Masculino , Ratones , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/virología , Células Epiteliales Alveolares/metabolismo , Virus de la Influenza A/clasificación , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Lesión Pulmonar/complicaciones , Lesión Pulmonar/patología , Lesión Pulmonar/prevención & control , Lesión Pulmonar/virología , Ratones Endogámicos C57BL , Necroptosis/efectos de los fármacos , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/prevención & control , Síndrome de Dificultad Respiratoria/virología
18.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585889

RESUMEN

The cellular plasticity of neuroblastoma is defined by a mixture of two major cell states, adrenergic (ADRN) and mesenchymal (MES), which may contribute to therapy resistance. However, how neuroblastoma cells switch cellular states during therapy remains largely unknown and how to eradicate neuroblastoma regardless of their cell states is a clinical challenge. To better understand the lineage switch of neuroblastoma in chemoresistance, we comprehensively defined the transcriptomic and epigenetic map of ADRN and MES types of neuroblastomas using human and murine models treated with indisulam, a selective RBM39 degrader. We showed that cancer cells not only undergo a bidirectional switch between ADRN and MES states, but also acquire additional cellular states, reminiscent of the developmental pliancy of neural crest cells. The lineage alterations are coupled with epigenetic reprogramming and dependency switch of lineage-specific transcription factors, epigenetic modifiers and targetable kinases. Through targeting RNA splicing, indisulam induces an inflammatory tumor microenvironment and enhances anticancer activity of natural killer cells. The combination of indisulam with anti-GD2 immunotherapy results in a durable, complete response in high-risk transgenic neuroblastoma models, providing an innovative, rational therapeutic approach to eradicate tumor cells regardless of their potential to switch cell states.

19.
Open Biol ; 14(4): 230383, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38629124

RESUMEN

Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.


Asunto(s)
Encéfalo , Adhesión Celular , Protocadherinas , Animales , Ratones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Epilepsia/metabolismo , Neuronas/metabolismo
20.
Cell Rep ; 43(4): 114062, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38588339

RESUMEN

The role of T cell receptor (TCR) diversity in infectious disease susceptibility is not well understood. We use a systems immunology approach on three cohorts of herpes zoster (HZ) patients and controls to investigate whether TCR diversity against varicella-zoster virus (VZV) influences the risk of HZ. We show that CD4+ T cell TCR diversity against VZV glycoprotein E (gE) and immediate early 63 protein (IE63) after 1-week culture is more restricted in HZ patients. Single-cell RNA and TCR sequencing of VZV-specific T cells shows that T cell activation pathways are significantly decreased after stimulation with VZV peptides in convalescent HZ patients. TCR clustering indicates that TCRs from HZ patients co-cluster more often together than TCRs from controls. Collectively, our results suggest that not only lower VZV-specific TCR diversity but also reduced functional TCR affinity for VZV-specific proteins in HZ patients leads to lower T cell activation and consequently affects the susceptibility for viral reactivation.


Asunto(s)
Herpes Zóster , Herpesvirus Humano 3 , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T , Humanos , Herpes Zóster/inmunología , Herpes Zóster/virología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Activación de Linfocitos/inmunología , Herpesvirus Humano 3/inmunología , Femenino , Persona de Mediana Edad , Masculino , Linfocitos T CD4-Positivos/inmunología , Anciano , Adulto , Epítopos de Linfocito T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA