Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 137(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38842578

RESUMEN

An important mechanism of gene expression regulation is the epigenetic modification of histones. The cofactors and substrates for these modifications are often intermediary metabolites, and it is becoming increasingly clear that the metabolic and nutritional state of cells can influence these marks. These connections between the balance of metabolites, histone modifications and downstream transcriptional changes comprise a metabolic signaling program that can enable cells to adapt to changes in nutrient availability. Beyond acetylation, there is evidence now that histones can be modified by other acyl groups. In this Cell Science at a Glance article and the accompanying poster, we focus on these histone acylation modifications and provide an overview of the players that govern these acylations and their connections with metabolism.


Asunto(s)
Histonas , Procesamiento Proteico-Postraduccional , Animales , Humanos , Acilación , Epigénesis Genética , Histonas/metabolismo
2.
Nat Commun ; 14(1): 7719, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012152

RESUMEN

Application of microfluidic platforms facilitated high-precision measurements of yeast replicative lifespan (RLS); however, comparative quantification of lifespan across strain libraries has been missing. Here we microfluidically measure the RLS of 307 yeast strains, each deleted for a single gene. Despite previous reports of extended lifespan in these strains, we found that 56% of them did not actually live longer than the wild-type; while the remaining 44% showed extended lifespans, the degree of extension was often different from what was previously reported. Deletion of SIS2 gene led to the largest RLS increase observed. Sis2 regulated yeast lifespan in a dose-dependent manner, implying a role for the coenzyme A biosynthesis pathway in lifespan regulation. Introduction of the human PPCDC gene in the sis2Δ background neutralized the lifespan extension. RNA-seq experiments revealed transcriptional increases in cell-cycle machinery components in sis2Δ background. High-precision lifespan measurement will be essential to elucidate the gene network governing lifespan.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular , Replicación del ADN/genética , Longevidad/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37808861

RESUMEN

Autophagy is a conserved process of cellular self-digestion that promotes survival during nutrient stress. In yeast, methionine starvation is sufficient to induce autophagy. One pathway of autophagy induction is governed by the SEACIT complex, which regulates TORC1 activity in response to amino acids through the Rag GTPases Gtr1 and Gtr2. However, the precise mechanism by which SEACIT senses amino acids and regulates TORC1 signaling remains incompletely understood. Here, we identify the conserved 5'-3' RNA exonuclease Xrn1 as a surprising and novel regulator of TORC1 activity in response to methionine starvation. This role of Xrn1 is dependent on its catalytic activity, but not on degradation of any specific class of mRNAs. Instead, Xrn1 modulates the nucleotide-binding state of the Gtr1/2 complex, which is critical for its interaction with and activation of TORC1. This work identifies a critical role for Xrn1 in nutrient sensing and growth control that extends beyond its canonical housekeeping function in RNA degradation and indicates an avenue for RNA metabolism to function in amino acid signaling into TORC1.

4.
PLoS Genet ; 19(5): e1010774, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216416

RESUMEN

Pbp1 (poly(A)-binding protein-binding protein 1) is a cytoplasmic stress granule marker that is capable of forming condensates that function in the negative regulation of TORC1 signaling under respiratory conditions. Polyglutamine expansions in its mammalian ortholog ataxin-2 lead to spinocerebellar dysfunction due to toxic protein aggregation. Here, we show that loss of Pbp1 in S. cerevisiae leads to decreased amounts of mRNAs and mitochondrial proteins which are targets of Puf3, a member of the PUF (Pumilio and FBF) family of RNA-binding proteins. We found that Pbp1 supports the translation of Puf3-target mRNAs in respiratory conditions, such as those involved in the assembly of cytochrome c oxidase and subunits of mitochondrial ribosomes. We further show that Pbp1 and Puf3 interact through their respective low complexity domains, which is required for Puf3-target mRNA translation. Our findings reveal a key role for Pbp1-containing assemblies in enabling the translation of mRNAs critical for mitochondrial biogenesis and respiration. They may further explain prior associations of Pbp1/ataxin-2 with RNA, stress granule biology, mitochondrial function, and neuronal health.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ataxina-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biogénesis de Organelos , Proteínas de Unión al ARN/metabolismo , Mamíferos/genética , Proteínas Portadoras/genética
5.
iScience ; 25(5): 104334, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35602938

RESUMEN

Targeted therapies for epilepsies associated with the mTORC1 signaling negative regulator GATOR1 are lacking. NPRL2 is a subunit of the GATOR1 complex and mutations in GATOR1 subunits, including NPRL2, are associated with epilepsy. To delineate the mechanisms underlying NPRL2-related epilepsies, we created a mouse (Mus musculus) model with neocortical loss of Nprl2. Mutant mice have increased mTORC1 signaling and exhibit spontaneous seizures. They also display abnormal synaptic function characterized by increased evoked and spontaneous EPSC and decreased evoked and spontaneous IPSC frequencies, respectively. Proteomic and metabolomics studies of Nprl2 mutants revealed alterations in known epilepsy-implicated proteins and metabolic pathways, including increases in the neurotransmitter, glycine. Furthermore, glycine actions on the NMDA receptor contribute to the electrophysiological and survival phenotypes of these mice. Taken together, in this neuronal Nprl2 model, we delineate underlying molecular, metabolic, and electrophysiological mechanisms contributing to mTORC1-related epilepsy, providing potential therapeutic targets for epilepsy.

6.
Mol Cell ; 82(1): 60-74.e5, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995509

RESUMEN

Acetyl-CoA is a key intermediate situated at the intersection of many metabolic pathways. The reliance of histone acetylation on acetyl-CoA enables the coordination of gene expression with metabolic state. Abundant acetyl-CoA has been linked to the activation of genes involved in cell growth or tumorigenesis through histone acetylation. However, the role of histone acetylation in transcription under low levels of acetyl-CoA remains poorly understood. Here, we use a yeast starvation model to observe the dramatic alteration in the global occupancy of histone acetylation following carbon starvation; the location of histone acetylation marks shifts from growth-promoting genes to gluconeogenic and fat metabolism genes. This reallocation is mediated by both the histone deacetylase Rpd3p and the acetyltransferase Gcn5p, a component of the SAGA transcriptional coactivator. Our findings reveal an unexpected switch in the specificity of histone acetylation to promote pathways that generate acetyl-CoA for oxidation when acetyl-CoA is limiting.


Asunto(s)
Gluconeogénesis , Glucosa/deficiencia , Histonas/metabolismo , Metabolismo de los Lípidos , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Metabolismo de los Lípidos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
7.
Mol Cell ; 81(18): 3659-3664, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34547228

RESUMEN

To celebrate our Focus Issue, we asked a selection of researchers working on different aspects of metabolism what they are excited about and what is still to come. They discuss emerging concepts, unanswered questions, things to consider, and technologies that are enabling new discoveries, as well as developing and integrating approaches to drive the field forward.


Asunto(s)
Metabolismo/fisiología , Investigación/tendencias , Humanos , Investigadores
8.
Elife ; 102021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34374645

RESUMEN

TMEM120A, also named as TACAN, is a novel membrane protein highly conserved in vertebrates and was recently proposed to be a mechanosensitive channel involved in sensing mechanical pain. Here we present the single-particle cryogenic electron microscopy (cryo-EM) structure of human TMEM120A, which forms a tightly packed dimer with extensive interactions mediated by the N-terminal coiled coil domain (CCD), the C-terminal transmembrane domain (TMD), and the re-entrant loop between the two domains. The TMD of each TMEM120A subunit contains six transmembrane helices (TMs) and has no clear structural feature of a channel protein. Instead, the six TMs form an α-barrel with a deep pocket where a coenzyme A (CoA) molecule is bound. Intriguingly, some structural features of TMEM120A resemble those of elongase for very long-chain fatty acids (ELOVL) despite the low sequence homology between them, pointing to the possibility that TMEM120A may function as an enzyme for fatty acid metabolism, rather than a mechanosensitive channel.


Asunto(s)
Coenzima A/metabolismo , Elongasas de Ácidos Grasos/química , Ácidos Grasos/química , Canales Iónicos/química , Canales Iónicos/metabolismo , Proteínas Portadoras , Fenómenos Electrofisiológicos , Ácidos Grasos/clasificación , Ácidos Grasos/metabolismo , Células HEK293 , Humanos , Canales Iónicos/genética , Metabolismo de los Lípidos , Proteínas de la Membrana , Membranas , Unión Proteica
9.
Elife ; 102021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33949310

RESUMEN

S-adenosylmethionine (SAM) is the methyl donor for nearly all cellular methylation events. Cells regulate intracellular SAM levels through intron detention of MAT2A, the only SAM synthetase expressed in most cells. The N6-adenosine methyltransferase METTL16 promotes splicing of the MAT2A detained intron by an unknown mechanism. Using an unbiased CRISPR knock-out screen, we identified CFIm25 (NUDT21) as a regulator of MAT2A intron detention and intracellular SAM levels. CFIm25 is a component of the cleavage factor Im (CFIm) complex that regulates poly(A) site selection, but we show it promotes MAT2A splicing independent of poly(A) site selection. CFIm25-mediated MAT2A splicing induction requires the RS domains of its binding partners, CFIm68 and CFIm59 as well as binding sites in the detained intron and 3´ UTR. These studies uncover mechanisms that regulate MAT2A intron detention and reveal a previously undescribed role for CFIm in splicing and SAM metabolism.


Asunto(s)
Regulación de la Expresión Génica , Homeostasis/genética , Metionina Adenosiltransferasa/genética , Empalme del ARN , S-Adenosilmetionina/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Regiones no Traducidas 3' , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Células HEK293 , Humanos , Intrones/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
10.
Cell Rep ; 34(10): 108825, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691096

RESUMEN

N6-methyladenosine (m6A) is a conserved ribonucleoside modification that regulates many facets of RNA metabolism. Using quantitative mass spectrometry, we find that the universally conserved tandem adenosines at the 3' end of 18S rRNA, thought to be constitutively di-methylated (m62A), are also mono-methylated (m6A). Although present at substoichiometric amounts, m6A at these positions increases significantly in response to sulfur starvation in yeast cells and mammalian cell lines. Combining yeast genetics and ribosome profiling, we provide evidence to suggest that m6A-bearing ribosomes carry out translation distinctly from m62A-bearing ribosomes, featuring a striking specificity for sulfur metabolism genes. Our work thus reveals methylation multiplicity as a mechanism to regulate translation.


Asunto(s)
Adenosina/metabolismo , ARN Ribosómico 18S/metabolismo , Adenosina/análogos & derivados , Animales , Línea Celular , Medios de Cultivo/química , Humanos , Metionina/deficiencia , Metionina/metabolismo , Metilación , Ratones , Mutagénesis Sitio-Dirigida , Biosíntesis de Proteínas/genética , ARN Ribosómico 18S/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
Curr Opin Genet Dev ; 67: 111-118, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33454579

RESUMEN

Eukaryotic cells express thousands of protein domains long believed to function in the absence of molecular order. These intrinsically disordered protein (IDP) domains are typified by gibberish-like repeats of only a limited number of amino acids that we refer to as domains of low sequence complexity. A decade ago, it was observed that these low complexity (LC) domains can undergo phase transition out of aqueous solution to form either liquid-like droplets or hydrogels. The self-associative interactions responsible for phase transition involve the formation of specific cross-ß structures that are unusual in being labile to dissociation. Here we give evidence that the LC domains of two RNA binding proteins, ataxin-2 and TDP43, form cross-ß interactions that specify biologically relevant redox sensors.


Asunto(s)
Ataxina-2/genética , Proteínas de Unión al ADN/genética , Dominios Proteicos/genética , Proteínas de Unión al ARN/genética , Secuencia de Aminoácidos/genética , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Regulación de la Expresión Génica/genética , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/ultraestructura , Oxidación-Reducción , Conformación Proteica en Lámina beta/genética
12.
Nat Commun ; 12(1): 57, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397945

RESUMEN

Autophagy catabolizes cellular constituents to promote survival during nutrient deprivation. Yet, a metabolic comprehension of this recycling operation, despite its crucial importance, remains incomplete. Here, we uncover a specific metabolic function of autophagy that exquisitely adjusts cellular metabolism according to nitrogen availability in the budding yeast Saccharomyces cerevisiae. Autophagy enables metabolic plasticity to promote glutamate and aspartate synthesis, which empowers nitrogen-starved cells to replenish their nitrogen currency and sustain macromolecule synthesis. Our findings provide critical insights into the metabolic basis by which autophagy recycles cellular components and may also have important implications in understanding the role of autophagy in diseases such as cancer.


Asunto(s)
Ácido Aspártico/biosíntesis , Autofagia , Ácido Glutámico/biosíntesis , Nitrógeno/deficiencia , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Compuestos de Amonio/metabolismo , Autofagia/efectos de los fármacos , Glutamato-Sintasa (NADH)/metabolismo , Sustancias Macromoleculares/metabolismo , Modelos Biológicos , Mutación/genética , Ácidos Nucleicos/biosíntesis , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología
13.
Proc Natl Acad Sci U S A ; 117(46): 28727-28734, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33144500

RESUMEN

A methionine-rich low complexity (LC) domain is found within a C-terminal region of the TDP43 RNA-binding protein. Self-association of this domain leads to the formation of labile cross-ß polymers and liquid-like droplets. Treatment with H2O2 caused phenomena of methionine oxidation and droplet melting that were reversed upon exposure of the oxidized protein to methionine sulfoxide reductase enzymes. Morphological features of the cross-ß polymers were revealed by H2O2-mediated footprinting. Equivalent TDP43 LC domain footprints were observed in polymerized hydrogels, liquid-like droplets, and living cells. The ability of H2O2 to impede cross-ß polymerization was abrogated by the prominent M337V amyotrophic lateral sclerosis-causing mutation. These observations may offer insight into the biological role of TDP43 in facilitating synapse-localized translation as well as aberrant aggregation of the protein in neurodegenerative diseases.


Asunto(s)
Ataxina-2/metabolismo , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Células HEK293 , Humanos , Polimerizacion , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo
14.
Mol Cell ; 79(5): 758-767.e6, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32755596

RESUMEN

During proteotoxic stress, bacteria maintain critical processes like DNA replication while removing misfolded proteins, which are degraded by the Lon protease. Here, we show that in Caulobacter crescentus Lon controls deoxyribonucleoside triphosphate (dNTP) pools during stress through degradation of the transcription factor CcrM. Elevated dNTP/nucleotide triphosphate (NTP) ratios in Δlon cells protects them from deletion of otherwise essential deoxythymidine triphosphate (dTTP)-producing pathways and shields them from hydroxyurea-induced loss of dNTPs. Increased dNTP production in Δlon results from higher expression of ribonucleotide reductase driven by increased CcrM. We show that misfolded proteins can stabilize CcrM by competing for limited protease and that Lon-dependent control of dNTPs improves fitness during protein misfolding conditions. We propose that linking dNTP production with availability of Lon allows Caulobacter to maintain replication capacity when misfolded protein burden increases, such as during rapid growth. Because Lon recognizes misfolded proteins regardless of the stress, this mechanism allows for response to a variety of unanticipated conditions.


Asunto(s)
Caulobacter crescentus/metabolismo , Nucleótidos/metabolismo , Proteasa La/metabolismo , Pliegue de Proteína , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/enzimología , Elementos Transponibles de ADN , Didesoxinucleósidos/metabolismo , Regulación Bacteriana de la Expresión Génica , Nucleótido Desaminasas/genética , Nucleótido Desaminasas/metabolismo , Ribonucleótido Reductasas/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Regulación hacia Arriba
15.
Mol Cell ; 78(2): 210-223.e8, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32208170

RESUMEN

S-adenosylmethionine (SAM) is the methyl-donor substrate for DNA and histone methyltransferases that regulate epigenetic states and subsequent gene expression. This metabolism-epigenome link sensitizes chromatin methylation to altered SAM abundance, yet the mechanisms that allow organisms to adapt and protect epigenetic information during life-experienced fluctuations in SAM availability are unknown. We identified a robust response to SAM depletion that is highlighted by preferential cytoplasmic and nuclear mono-methylation of H3 Lys 9 (H3K9) at the expense of broad losses in histone di- and tri-methylation. Under SAM-depleted conditions, H3K9 mono-methylation preserves heterochromatin stability and supports global epigenetic persistence upon metabolic recovery. This unique chromatin response was robust across the mouse lifespan and correlated with improved metabolic health, supporting a significant role for epigenetic adaptation to SAM depletion in vivo. Together, these studies provide evidence for an adaptive response that enables epigenetic persistence to metabolic stress.


Asunto(s)
Metilación de ADN/genética , Heterocromatina/genética , Metaboloma/genética , S-Adenosilmetionina/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Citoplasma/genética , Citoplasma/metabolismo , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Células HCT116 , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Metionina/genética , Ratones , Procesamiento Proteico-Postraduccional/genética , Proteómica/métodos
16.
Ann N Y Acad Sci ; 1462(1): 5-13, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792987

RESUMEN

Tumor cells have devised unique metabolic strategies to garner enough nutrients to sustain continuous growth and cell division. Oncogenic mutations may alter metabolic pathways to unlock new sources of energy, and cells take the advantage of various scavenging pathways to ingest material from their environment. These changes in metabolism result in a metabolic profile that, in addition to providing the building blocks for macromolecules, can also influence cell signaling pathways to promote tumor initiation and progression. Understanding what pathways tumor cells use to synthesize the materials necessary to support metabolic growth can pave the way for new cancer therapeutics. Potential strategies include depriving tumors of the materials needed to grow or targeting pathways involved in dependencies that arise by virtue of their altered metabolis.


Asunto(s)
Congresos como Asunto/tendencias , Metabolismo Energético/fisiología , Neoplasias/metabolismo , Informe de Investigación/tendencias , Animales , Transformación Celular Neoplásica/metabolismo , Humanos , Redes y Vías Metabólicas/fisiología , Ciudad de Nueva York
17.
Nucleic Acids Res ; 48(1): 486-499, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31745563

RESUMEN

Cross-species pathway transplantation enables insight into a biological process not possible through traditional approaches. We replaced the enzymes catalyzing the entire Saccharomyces cerevisiae adenine de novo biosynthesis pathway with the human pathway. While the 'humanized' yeast grew in the absence of adenine, it did so poorly. Dissection of the phenotype revealed that PPAT, the human ortholog of ADE4, showed only partial function whereas all other genes complemented fully. Suppressor analysis revealed other pathways that play a role in adenine de-novo pathway regulation. Phylogenetic analysis pointed to adaptations of enzyme regulation to endogenous metabolite level 'setpoints' in diverse organisms. Using DNA shuffling, we isolated specific amino acids combinations that stabilize the human protein in yeast. Thus, using adenine de novo biosynthesis as a proof of concept, we suggest that the engineering methods used in this study as well as the debugging strategies can be utilized to transplant metabolic pathway from any origin into yeast.


Asunto(s)
Adenina/biosíntesis , Vías Biosintéticas/genética , Carboxiliasas/genética , Cromosomas Artificiales Humanos/química , Péptido Sintasas/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Sistemas CRISPR-Cas , Carboxiliasas/metabolismo , Cromosomas Artificiales Humanos/metabolismo , Prueba de Complementación Genética , Ingeniería Genética/métodos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Péptido Sintasas/metabolismo , Filogenia , Plásmidos/química , Plásmidos/metabolismo , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
18.
Proc Natl Acad Sci U S A ; 116(44): 22229-22236, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611405

RESUMEN

Fumarylacetoacetate hydrolase (FAH) is the last enzyme in tyrosine catabolism, and mutations in the FAH gene are associated with hereditary tyrosinemia type I (HT1 or TYRSN1) in humans. In a behavioral screen of N-ethyl-N-nitrosourea mutagenized mice we identified a mutant line which we named "swingshift" (swst, MGI:3611216) with a nonsynonymous point mutation (N68S) in Fah that caused age-dependent disruption of sleep-wake patterns. Mice homozygous for the mutation had an earlier onset of activity (several hours before lights off) and a reduction in total activity and body weight when compared with wild-type or heterozygous mice. Despite abnormal behavioral entrainment to light-dark cycles, there were no differences in the period or phase of the central clock in mutant mice, indicating a defect downstream of the suprachiasmatic nucleus. Interestingly, these behavioral phenotypes became milder as the mice grew older and were completely rescued by the administration of NTBC [2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione], an inhibitor of 4-hydroxyphenylpyruvate dioxygenase, which is upstream of FAH. Mechanistically, the swst mutation had no effect on the enzymatic activity of FAH, but rather promoted the degradation of the mutant protein. This led to reduced FAH protein levels and enzymatic activity in the liver and kidney (but not the brain or fibroblasts) of homozygous mice. In addition, plasma tyrosine-but not methionine, phenylalanine, or succinylacetone-increased in homozygous mice, suggesting that swst mutants provide a model of mild, chronic HT1.


Asunto(s)
Ritmo Circadiano , Hidrolasas/genética , Mutación , Sueño , Tirosinemias/genética , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , Animales , Células Cultivadas , Ciclohexanonas/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Estabilidad de Enzimas , Células HEK293 , Homocigoto , Humanos , Hidrolasas/deficiencia , Hidrolasas/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrobenzoatos/uso terapéutico , Especificidad de Órganos , Núcleo Supraquiasmático/metabolismo , Tirosinemias/tratamiento farmacológico , Tirosinemias/fisiopatología
19.
J Bacteriol ; 201(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31138629

RESUMEN

The synthesis of signaling molecules is one strategy bacteria employ to sense alterations in their environment and rapidly adjust to those changes. In Gram-negative bacteria, bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulates the transition from a unicellular motile state to a multicellular sessile state. However, c-di-GMP signaling has been less intensively studied in Gram-positive organisms. To that end, we constructed a fluorescent yfp reporter based on a c-di-GMP-responsive riboswitch to visualize the relative abundance of c-di-GMP for single cells of the Gram-positive model organism Bacillus subtilis Coupled with cell-type-specific fluorescent reporters, this riboswitch reporter revealed that c-di-GMP levels are markedly different among B. subtilis cellular subpopulations. For example, cells that have made the decision to become matrix producers maintain higher intracellular c-di-GMP concentrations than motile cells. Similarly, we find that c-di-GMP levels differ between sporulating and competent cell types. These results suggest that biochemical measurements of c-di-GMP abundance are likely to be inaccurate for a bulk ensemble of B. subtilis cells, as such measurements will average c-di-GMP levels across the population. Moreover, the significant variation in c-di-GMP levels between cell types hints that c-di-GMP might play an important role during B. subtilis biofilm formation. This study therefore emphasizes the importance of using single-cell approaches for analyzing metabolic trends within ensemble bacterial populations.IMPORTANCE Many bacteria have been shown to differentiate into genetically identical yet morphologically distinct cell types. Such population heterogeneity is especially prevalent among biofilms, where multicellular communities are primed for unexpected environmental conditions and can efficiently distribute metabolic responsibilities. Bacillus subtilis is a model system for studying population heterogeneity; however, a role for c-di-GMP in these processes has not been thoroughly investigated. Herein, we introduce a fluorescent reporter, based on a c-di-GMP-responsive riboswitch, to visualize the relative abundance of c-di-GMP for single B. subtilis cells. Our analysis shows that c-di-GMP levels are conspicuously different among B. subtilis cellular subtypes, suggesting a role for c-di-GMP during biofilm formation. These data highlight the utility of riboswitches as tools for imaging metabolic changes within individual bacterial cells. Analyses such as these offer new insight into c-di-GMP-regulated phenotypes, especially given that other biofilms also consist of multicellular communities.


Asunto(s)
Bacillus subtilis/citología , GMP Cíclico/análogos & derivados , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/análisis , GMP Cíclico/metabolismo , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía , Análisis de la Célula Individual
20.
Cell ; 177(3): 697-710.e17, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30982600

RESUMEN

Yeast ataxin-2, also known as Pbp1 (polyA binding protein-binding protein 1), is an intrinsically disordered protein implicated in stress granule formation, RNA biology, and neurodegenerative disease. To understand the endogenous function of this protein, we identify Pbp1 as a dedicated regulator of TORC1 signaling and autophagy under conditions that require mitochondrial respiration. Pbp1 binds to TORC1 specifically during respiratory growth, but utilizes an additional methionine-rich, low complexity (LC) region to inhibit TORC1. This LC region causes phase separation, forms reversible fibrils, and enables self-association into assemblies required for TORC1 inhibition. Mutants that weaken phase separation in vitro exhibit reduced capacity to inhibit TORC1 and induce autophagy. Loss of Pbp1 leads to mitochondrial dysfunction and reduced fitness during nutritional stress. Thus, Pbp1 forms a condensate in response to respiratory status to regulate TORC1 signaling.


Asunto(s)
Proteínas Portadoras/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Autofagia/efectos de los fármacos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Metionina/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mutagénesis Sitio-Dirigida , Fosforilación , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA