Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
2.
Nat Microbiol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191887

RESUMEN

Aspergillus fumigatus causes aspergillosis and relies on asexual spores (conidia) for initiating host infection. There is scarce information about A. fumigatus proteins involved in fungal evasion and host immunity modulation. Here we analysed the conidial surface proteome of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, as well as pathogenic Aspergillus lentulus, to identify such proteins. After identifying 62 proteins exclusively detected on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding these proteins. Deletion of 33 of these genes altered susceptibility to macrophage, epithelial cells and cytokine production. Notably, a gene that encodes a putative glycosylasparaginase, modulating levels of the host proinflammatory cytokine IL-1ß, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins are important for evasion and modulation of the immune response at the onset of fungal infection.

3.
Nat Commun ; 15(1): 4984, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862481

RESUMEN

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Quinasas DyrK , Proteínas Fúngicas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Animales , Antifúngicos/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Ratones , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Azoles/farmacología , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Pulmón/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Femenino
4.
Nat Commun ; 15(1): 33, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167253

RESUMEN

Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. The Mitogen-Activated Protein kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. The sensor histidine kinase SlnASln1 is important for modulation of MpkA phosphorylation. Our work emphasizes the importance of MpkA and compartmentalization of cellular events for GT production and self-defense.


Asunto(s)
Aspergilosis , Gliotoxina , Humanos , Aspergillus fumigatus/metabolismo , Gliotoxina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Aspergilosis/microbiología
5.
Res Sq ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37790311

RESUMEN

Aspergillus fumigatus, an important pulmonary fungal pathogen causing several diseases collectively called aspergillosis, relies on asexual spores (conidia) for initiating host infection. Here, we used a phylogenomic approach to compare proteins in the conidial surface of A. fumigatus, two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis, and the cryptic pathogen Aspergillus lentulus. After identifying 62 proteins uniquely expressed on the A. fumigatus conidial surface, we assessed null mutants for 42 genes encoding conidial proteins. Deletion of 33 of these genes altered susceptibility to macrophage killing, penetration and damage to epithelial cells, and cytokine production. Notably, a gene that encodes glycosylasparaginase, which modulates levels of the host pro-inflammatory cytokine IL-1ß, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins and effectors are important for evasion and modulation of the immune response at the onset of fungal infection.

6.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662192

RESUMEN

Aspergillus fumigatus , an important pulmonary fungal pathogen causing several diseases collectively called aspergillosis, relies on asexual spores or conidia for initiating host infection. Here, we used a phylogenomic approach to compare proteins in the conidial surface of A. fumigatus , two closely related non-pathogenic species, Aspergillus fischeri and Aspergillus oerlinghausenensis , and the cryptic pathogen Aspergillus lentulus . After identifying 62 proteins uniquely expressed on the A. fumigatus conidial surface, we deleted 42 genes encoding conidial proteins. We found deletion of 33 of these genes altered susceptibility to macrophage killing, penetration and damage to epithelial cells, and cytokine production. Notably, a gene that encodes glycosylasparaginase, which modulates levels of the host pro-inflammatory cytokine IL-1ß, is important for infection in an immunocompetent murine model of fungal disease. These results suggest that A. fumigatus conidial surface proteins and effectors are important for evasion and modulation of the immune response at the onset of fungal infection.

7.
Res Sq ; 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37398048

RESUMEN

Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. Peroxisomes are also required for proper GT production and self-defense. The Mitogen-Activated Protein (MAP) kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. Our work emphasizes the importance of dynamic compartmentalization of cellular events for GT production and self-defense.

8.
Res Sq ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398159

RESUMEN

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. The azole class of antifungals represent first line therapeutics for most of these infections however resistance is rising. Identification of novel antifungal targets that, when inhibited, synergise with the azoles will aid the development of agents that can improve therapeutic outcomes and supress the emergence of resistance. As part of the A. fumigatus genome-wide knockout program (COFUN), we have completed the generation of a library that consists of 120 genetically barcoded null mutants in genes that encode the protein kinase cohort of A. fumigatus. We have employed a competitive fitness profiling approach (Bar-Seq), to identify targets which when deleted result in hypersensitivity to the azoles and fitness defects in a murine host. The most promising candidate from our screen is a previously uncharacterised DYRK kinase orthologous to Yak1 of Candida albicans, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. Here we show that the orthologue YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress via phosphorylation of the Woronin body tethering protein Lah. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and impacts growth in murine lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit Yak1 in C. albicans prevents stress mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.

9.
Microbiol Spectr ; : e0512822, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36946762

RESUMEN

Secondary infections caused by the pulmonary fungal pathogen Aspergillus fumigatus are a significant cause of mortality in patients with severe coronavirus disease 19 (COVID-19). Even though epithelial cell damage and aberrant cytokine responses have been linked to susceptibility to COVID-19-associated pulmonary aspergillosis (CAPA), little is known about the mechanisms underpinning copathogenicity. Here, we analyzed the genomes of 11 A. fumigatus isolates from patients with CAPA in three centers from different European countries. CAPA isolates did not cluster based on geographic origin in a genome-scale phylogeny of representative A. fumigatus isolates. Phenotypically, CAPA isolates were more similar to the A. fumigatus A1160 reference strain than to the Af293 strain when grown in infection-relevant stresses, except for interactions with human immune cells wherein macrophage responses were similar to those induced by the Af293 reference strain. Collectively, our data indicate that CAPA isolates are genomically diverse but are more similar to each other in their responses to infection-relevant stresses. A larger number of isolates from CAPA patients should be studied to better understand the molecular epidemiology of CAPA and to identify genetic drivers of copathogenicity and antifungal resistance in patients with COVID-19. IMPORTANCE Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) has been globally reported as a life-threatening complication in some patients with severe COVID-19. Most of these infections are caused by the environmental mold Aspergillus fumigatus, which ranks third in the fungal pathogen priority list of the WHO. However, little is known about the molecular epidemiology of Aspergillus fumigatus CAPA strains. Here, we analyzed the genomes of 11 A. fumigatus isolates from patients with CAPA in three centers from different European countries, and carried out phenotypic analyses with a view to understanding the pathophysiology of the disease. Our data indicate that A. fumigatus CAPA isolates are genomically diverse but are more similar to each other in their responses to infection-relevant stresses.

10.
Microbiol Spectr ; : e0477022, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912663

RESUMEN

Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.

11.
Virulence ; 14(1): 2172264, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36752587

RESUMEN

Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.


Asunto(s)
Aspergilosis , Aspergilosis Pulmonar , Humanos , Aspergillus fumigatus , Virulencia , Aspergilosis/microbiología , Factores de Virulencia
12.
mBio ; 13(6): e0221522, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36286521

RESUMEN

Aspergillosis, in its various manifestations, is a major cause of morbidity and mortality. Very few classes of antifungal drugs have been approved for clinical use to treat these diseases and resistance to the first-line therapeutic class, the triazoles are increasing. A new class of antifungals that target pyrimidine biosynthesis, the orotomides, are currently in development with the first compound in this class, olorofim in late-stage clinical trials. In this study, we identified an antagonistic action of the triazoles on the action of olorofim. We showed that this antagonism was the result of an azole-induced upregulation of the pyrimidine biosynthesis pathway. Intriguingly, we showed that loss of function in the higher order transcription factor, HapB a member of the heterotrimeric HapB/C/E (CBC) complex or the regulator of nitrogen metabolic genes AreA, led to cross-resistance to both the azoles and olorofim, indicating that factors that govern resistance were under common regulatory control. However, the loss of azole-induced antagonism required decoupling of the pyrimidine biosynthetic pathway in a manner independent of the action of a single transcription factor. Our study provided evidence for complex transcriptional crosstalk between the pyrimidine and ergosterol biosynthetic pathways. IMPORTANCE Aspergillosis is a spectrum of diseases and a major cause of morbidity and mortality. To treat these diseases, there are a few classes of antifungal drugs approved for clinical use. Resistance to the first line treatment, the azoles, is increasing. The first antifungal, olorofim, which is in the novel class of orotomides, is currently in development. Here, we showed an antagonistic effect between the azoles and olorofim, which was a result of dysregulation of the pyrimidine pathway, the target of olorofim, and the ergosterol biosynthesis pathway, the target of the azoles.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/genética , Azoles/farmacología , Antifúngicos/farmacología , Redes Reguladoras de Genes , Aspergilosis/microbiología , Pirimidinas/metabolismo , Triazoles/farmacología , Factores de Transcripción/metabolismo , Ergosterol , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana , Proteínas Fúngicas/genética
13.
Antimicrob Agents Chemother ; 66(9): e0070122, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35916517

RESUMEN

Aspergillus fumigatus is the main etiological agent of aspergillosis. The antifungal drug caspofungin (CSP) can be used against A. fumigatus, and CSP tolerance is observed. We have previously shown that the transcription factor FhdA is important for mitochondrial activity. Here, we show that FhdA regulates genes transcribed by RNA polymerase II and III. FhdA influences the expression of tRNAs that are important for mitochondrial function upon CSP. Our results show a completely novel mechanism that is impacted by CSP.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Antifúngicos/metabolismo , Antifúngicos/farmacología , Caspofungina/farmacología , Uso de Codones , Equinocandinas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipopéptidos/farmacología , Mitocondrias/genética , Mitocondrias/metabolismo , ARN Polimerasa II/genética , Factores de Transcripción/genética
14.
mBio ; 13(3): e0044722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35420487

RESUMEN

Cell responses against antifungals other than resistance have rarely been studied in filamentous fungi, while terms such as tolerance and persistence are well-described for bacteria and increasingly examined in yeast-like organisms. Aspergillus fumigatus is a filamentous fungal pathogen that causes a disease named aspergillosis, for which caspofungin (CAS), a fungistatic drug, is used as a second-line therapy. Some A. fumigatus clinical isolates can survive and grow in CAS concentrations above the minimum effective concentration (MEC), a phenomenon known as "caspofungin paradoxical effect" (CPE). Here, we evaluated the CPE in 67 A. fumigatus clinical isolates by calculating recovery rate (RR) values, where isolates with an RR of ≥0.1 were considered CPE+ while isolates with an RR of <0.1 were classified as CPE-. Conidia produced by three CPE+ clinical isolates, CEA17 (RR = 0.42), Af293 (0.59), and CM7555 (0.38), all showed the ability to grow in high levels of CAS, while all conidia produced by the CPE- isolate IFM61407 (RR = 0.00) showed no evidence of paradoxical growth. Given the importance of the calcium/calcineurin/transcription factor-CrzA pathway in CPE regulation, we also demonstrated that all ΔcrzACEA17 (CPE+) conidia exhibited CPE while 100% of ΔcrzAAf293 (CPE-) did not exhibit CPE. Because all spores derived from an individual strain were phenotypically indistinct with respect to CPE, it is likely that CPE is a genetically encoded adaptive trait that should be considered an antifungal-tolerant phenotype. Because the RR parameter showed that the strength of the CPE was not uniform between strains, we propose that the mechanisms which govern this phenomenon are multifactorial. IMPORTANCE The "Eagle effect," initially described for bacterial species, which reflects the capacity of some strains to growth above the minimum inhibitory concentration (MIC) of specific antimicrobial agents, has been known for more than 70 years. However, its underlying mechanism of action in fungi is not fully understood and its connection with other phenomena such as tolerance or persistence is not clear yet. Here, based on the characterization of the "caspofungin paradoxical effect" in several Aspergillus fumigatus clinical isolates, we demonstrate that all conidia from A. fumigatus CPE+ strains are able to grow in high levels of the drug while all conidia produced by CPE- strains show no evidence of paradoxical growth. This work fills a gap in the understanding of this multifactorial phenomenon by proposing that CPE in A. fumigatus should be considered a tolerant but not persistent phenotype.


Asunto(s)
Aspergillus fumigatus , Águilas , Animales , Antifúngicos/metabolismo , Antifúngicos/farmacología , Caspofungina/farmacología , Águilas/metabolismo , Equinocandinas/metabolismo , Equinocandinas/farmacología , Proteínas Fúngicas/metabolismo , Pruebas de Sensibilidad Microbiana , Esporas Fúngicas/metabolismo
15.
PLoS Genet ; 18(1): e1010001, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007279

RESUMEN

Invasive Pulmonary Aspergillosis, which is caused by the filamentous fungus Aspergillus fumigatus, is a life-threatening infection for immunosuppressed patients. Chromatin structure regulation is important for genome stability maintenance and has the potential to drive genome rearrangements and affect virulence and pathogenesis of pathogens. Here, we performed the first A. fumigatus global chromatin profiling of two histone modifications, H3K4me3 and H3K9me3, focusing on the two most investigated A. fumigatus clinical isolates, Af293 and CEA17. In eukaryotes, H3K4me3 is associated with active transcription, while H3K9me3 often marks silent genes, DNA repeats, and transposons. We found that H3K4me3 deposition is similar between the two isolates, while H3K9me3 is more variable and does not always represent transcriptional silencing. Our work uncovered striking differences in the number, locations, and expression of transposable elements between Af293 and CEA17, and the differences are correlated with H3K9me3 modifications and higher genomic variations among strains of Af293 background. Moreover, we further showed that the Af293 strains from different laboratories actually differ in their genome contents and found a frequently lost region in chromosome VIII. For one such Af293 variant, we identified the chromosomal changes and demonstrated their impacts on its secondary metabolites production, growth and virulence. Overall, our findings not only emphasize the influence of genome heterogeneity on A. fumigatus fitness, but also caution about unnoticed chromosomal variations among common laboratory strains.


Asunto(s)
Aspergillus fumigatus/clasificación , Cromosomas Fúngicos/genética , Heterogeneidad Genética , Histonas/metabolismo , Aspergilosis Pulmonar/microbiología , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Cromatina , Elementos Transponibles de ADN , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica de las Plantas , Aptitud Genética , Código de Histonas , Humanos , Regiones Promotoras Genéticas , Metabolismo Secundario , Virulencia
16.
J Fungi (Basel) ; 9(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36675880

RESUMEN

Diagnosis of endemic mycoses is still challenging. The moderated availability of reliable diagnostic methods, the lack of clinical suspicion out of endemic areas and the limitations of conventional techniques result in a late diagnosis that, in turn, delays the implementation of the correct antifungal therapy. In recent years, molecular methods have emerged as promising tools for the rapid diagnosis of endemic mycoses. However, the absence of a consensus among laboratories and the reduced availability of commercial tests compromises the diagnostic effectiveness of these methods. In this review, we summarize the advantages and limitations of molecular methods for the diagnosis of endemic mycoses.

17.
Sensors (Basel) ; 21(23)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34884137

RESUMEN

Current Internet of Things (IoT) stacks are frequently focused on handling an increasing volume of data that require a sophisticated interpretation through analytics to improve decision making and thus generate business value. In this paper, a cognitive IoT architecture based on FIWARE IoT principles is presented. The architecture incorporates a new cognitive component that enables the incorporation of intelligent services to the FIWARE framework, allowing to modernize IoT infrastructures with Artificial Intelligence (AI) technologies. This allows to extend the effective life of the legacy system, using existing assets and reducing costs. Using the architecture, a cognitive service capable of predicting with high accuracy the vessel port arrival is developed and integrated in a legacy sea traffic management solution. The cognitive service uses automatic identification system (AIS) and maritime oceanographic data to predict time of arrival of ships. The validation has been carried out using the port of Valencia. The results indicate that the incorporation of AI into the legacy system allows to predict the arrival time with higher accuracy, thus improving the efficiency of port operations. Moreover, the architecture is generic, allowing an easy integration of the cognitive services in other domains.


Asunto(s)
Inteligencia Artificial , Internet de las Cosas , Cognición , Tecnología
18.
mBio ; 12(4): e0168221, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34311583

RESUMEN

Aspergillus fumigatus is a major opportunistic fungal pathogen of immunocompromised and immunocompetent hosts. To successfully establish an infection, A. fumigatus needs to use host carbon sources, such as acetate, present in the body fluids and peripheral tissues. However, utilization of acetate as a carbon source by fungi in the context of infection has not been investigated. This work shows that acetate is metabolized via different pathways in A. fumigatus and that acetate utilization is under the regulatory control of a transcription factor (TF), FacB. A. fumigatus acetate utilization is subject to carbon catabolite repression (CCR), although this is only partially dependent on the TF and main regulator of CCR CreA. The available extracellular carbon source, in this case glucose and acetate, significantly affected A. fumigatus virulence traits such as secondary metabolite secretion and cell wall composition, with the latter having consequences for resistance to oxidative stress, antifungal drugs, and human neutrophil-mediated killing. Furthermore, deletion of facB significantly impaired the in vivo virulence of A. fumigatus in both insect and mammalian models of invasive aspergillosis. This is the first report on acetate utilization in A. fumigatus, and this work further highlights the importance of available host-specific carbon sources in shaping fungal virulence traits and subsequent disease outcome, and a potential target for the development of antifungal strategies. IMPORTANCE Aspergillus fumigatus is an opportunistic fungal pathogen in humans. During infection, A. fumigatus is predicted to use host carbon sources, such as acetate, present in body fluids and peripheral tissues, to sustain growth and promote colonization and invasion. This work shows that A. fumigatus metabolizes acetate via different pathways, a process that is dependent on the transcription factor FacB. Furthermore, the type and concentration of the extracellular available carbon source were determined to shape A. fumigatus virulence determinants such as secondary metabolite secretion and cell wall composition. Subsequently, interactions with immune cells are altered in a carbon source-specific manner. FacB is required for A. fumigatus in vivo virulence in both insect and mammalian models of invasive aspergillosis. This is the first report that characterizes acetate utilization in A. fumigatus and highlights the importance of available host-specific carbon sources in shaping virulence traits and potentially subsequent disease outcome.


Asunto(s)
Acetatos/metabolismo , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Animales , Aspergilosis/microbiología , Aspergillus fumigatus/genética , Proteínas Fúngicas/metabolismo , Humanos , Larva/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mariposas Nocturnas/microbiología , Neutrófilos/microbiología , Fenotipo , Metabolismo Secundario , Virulencia
19.
Microbiol Spectr ; 9(1): e0001021, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34106569

RESUMEN

The ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19), first described in Wuhan, China. A subset of COVID-19 patients has been reported to have acquired secondary infections by microbial pathogens, such as opportunistic fungal pathogens from the genus Aspergillus. To gain insight into COVID-19-associated pulmonary aspergillosis (CAPA), we analyzed the genomes and characterized the phenotypic profiles of four CAPA isolates of Aspergillus fumigatus obtained from patients treated in the area of North Rhine-Westphalia, Germany. By examining the mutational spectrum of single nucleotide polymorphisms, insertion-deletion polymorphisms, and copy number variants among 206 genes known to modulate A. fumigatus virulence, we found that CAPA isolate genomes do not exhibit significant differences from the genome of the Af293 reference strain. By examining a number of factors, including virulence in an invertebrate moth model, growth in the presence of osmotic, cell wall, and oxidative stressors, secondary metabolite biosynthesis, and the MIC of antifungal drugs, we found that CAPA isolates were generally, but not always, similar to A. fumigatus reference strains Af293 and CEA17. Notably, CAPA isolate D had more putative loss-of-function mutations in genes known to increase virulence when deleted. Moreover, CAPA isolate D was significantly more virulent than the other three CAPA isolates and the A. fumigatus reference strains Af293 and CEA17, but similarly virulent to two other clinical strains of A. fumigatus. These findings expand our understanding of the genomic and phenotypic characteristics of isolates that cause CAPA. IMPORTANCE The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has already killed millions of people. COVID-19 patient outcome can be further complicated by secondary infections, such as COVID-19-associated pulmonary aspergillosis (CAPA). CAPA is caused by Aspergillus fungal pathogens, but there is little information about the genomic and phenotypic characteristics of CAPA isolates. We conducted genome sequencing and extensive phenotyping of four CAPA isolates of Aspergillus fumigatus from Germany. We found that CAPA isolates were often, but not always, similar to other reference strains of A. fumigatus across 206 genetic determinants of infection-relevant phenotypes, including virulence. For example, CAPA isolate D was more virulent than other CAPA isolates and reference strains in an invertebrate model of fungal disease, but similarly virulent to two other clinical strains. These results expand our understanding of COVID-19-associated pulmonary aspergillosis.


Asunto(s)
Aspergillus fumigatus/genética , COVID-19/complicaciones , Genómica , Fenotipo , Aspergilosis Pulmonar/complicaciones , Anciano , Antifúngicos , Aspergillus , Aspergillus fumigatus/clasificación , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/aislamiento & purificación , Femenino , Humanos , Masculino , Metabolómica , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mutación , Polimorfismo de Nucleótido Simple , SARS-CoV-2 , Metabolismo Secundario/genética , Virulencia/genética
20.
G3 (Bethesda) ; 11(6)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33822048

RESUMEN

The genomes of a large number of Cryptococcus neoformans isolates have been sequenced and analyzed in recent years. These genomes have been used to understand the global population structure of this opportunistic pathogen. However, only a small number of South American isolates have been considered in these studies, and the population structure of C. neoformans in this part of the world remains elusive. Here, we analyzed the genomic sequences of 53 Brazilian Cryptococcus isolates and deciphered the C. neoformans population structure in this country. Our data reveal an African-like structure that suggested repeated intercontinental transports from Africa to South America. We also identified a mutator phenotype in one VNBII Brazilian isolate, exemplifying how fast-evolving isolates can shape the Cryptococcus population structure. Finally, phenotypic analyses revealed wide diversity but not lineage specificity in the expression of classical virulence traits within the set of isolates.


Asunto(s)
Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Brasil , Metagenómica , Cryptococcus neoformans/genética , Genómica , Cryptococcus gattii/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA