Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(39): e2411428121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39284068

RESUMEN

Long COVID occurs in a small but important minority of patients following COVID-19, reducing quality of life and contributing to healthcare burden. Although research into underlying mechanisms is evolving, immunity is understudied. SARS-CoV-2-specific T cell responses are of key importance for viral clearance and COVID-19 recovery. However, in long COVID, the establishment and persistence of SARS-CoV-2-specific T cells are far from clear, especially beyond 12 mo postinfection and postvaccination. We defined ex vivo antigen-specific B cell and T cell responses and their T cell receptors (TCR) repertoires across 2 y postinfection in people with long COVID. Using 13 SARS-CoV-2 peptide-HLA tetramers, spanning 11 HLA allotypes, as well as spike and nucleocapsid probes, we tracked SARS-CoV-2-specific CD8+ and CD4+ T cells and B-cells in individuals from their first SARS-CoV-2 infection through primary vaccination over 24 mo. The frequencies of ORF1a- and nucleocapsid-specific T cells and B cells remained stable over 24 mo. Spike-specific CD8+ and CD4+ T cells and B cells were boosted by SARS-CoV-2 vaccination, indicating immunization, in fully recovered and people with long COVID, altered the immunodominance hierarchy of SARS-CoV-2 T cell epitopes. Meanwhile, influenza-specific CD8+ T cells were stable across 24 mo, suggesting no bystander-activation. Compared to total T cell populations, SARS-CoV-2-specific T cells were enriched for central memory phenotype, although the proportion of central memory T cells decreased following acute illness. Importantly, TCR repertoire composition was maintained throughout long COVID, including postvaccination, to 2 y postinfection. Overall, we defined ex vivo SARS-CoV-2-specific B cells and T cells to understand primary and recall responses, providing key insights into antigen-specific responses in people with long COVID.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Receptores de Antígenos de Linfocitos T , SARS-CoV-2 , Humanos , Linfocitos T CD8-positivos/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Epítopos de Linfocito T/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Persona de Mediana Edad , Masculino , Femenino , Síndrome Post Agudo de COVID-19 , Fenotipo , Linfocitos B/inmunología , Memoria Inmunológica/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Anciano
2.
ACS Nano ; 18(39): 27077-27089, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39298422

RESUMEN

Lipid nanoparticle mRNA vaccines are an exciting but emerging technology used in humans. There is limited understanding of the factors that influence their biodistribution and immunogenicity. Antibodies to poly(ethylene glycol) (PEG), which is on the surface of the lipid nanoparticle, are detectable in humans and boosted by human mRNA vaccination. We hypothesized that PEG-specific antibodies could increase the clearance of mRNA vaccines. To test this, we developed methods to quantify both the vaccine mRNA and ionizable lipid in frequent serial blood samples from 19 subjects receiving Moderna SPIKEVAX mRNA booster immunization. Both the vaccine mRNA and ionizable lipid peaked in blood 1-2 days post vaccination (median peak level 0.19 and 3.22 ng mL-1, respectively). The vaccine mRNA was detectable and quantifiable up to 14-15 days postvaccination in 37% of subjects. We measured the proportion of vaccine mRNA that was relatively intact in blood over time and found that the decay kinetics of the intact mRNA and ionizable lipid were identical, suggesting the intact lipid nanoparticle recirculates in blood. However, the decay rates of mRNA and ionizable lipids did not correlate with baseline levels of PEG-specific antibodies. Interestingly, the magnitude of mRNA and ionizable lipid detected in blood did correlate with the boost in the level of PEG antibodies. Furthermore, the ability of a subject's monocytes to phagocytose lipid nanoparticles was inversely related to the rise in PEG antibodies. This suggests that the circulation of mRNA lipid nanoparticles into the blood and their clearance by phagocytes influence the PEG immunogenicity of the mRNA vaccines. Overall, this work defines the pharmacokinetics of lipid nanoparticle mRNA vaccine components in human blood after intramuscular injection and the factors that influence these processes. These insights should be valuable in improving the future safety and efficacy of lipid nanoparticle mRNA vaccines and therapeutics.


Asunto(s)
Vacunas contra la COVID-19 , Nanopartículas , Humanos , Nanopartículas/química , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/administración & dosificación , SARS-CoV-2/inmunología , Vacunas de ARNm/inmunología , Lípidos/química , Femenino , Adulto , ARN Mensajero/inmunología , ARN Mensajero/genética , Masculino , Polietilenglicoles/química , COVID-19/prevención & control , COVID-19/inmunología , Persona de Mediana Edad , Distribución Tisular , Liposomas
3.
Nat Commun ; 15(1): 8395, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333473

RESUMEN

The ongoing evolution of the SARS-CoV-2 virus has led to a move to update vaccine antigens in 2022 and 2023. These updated antigens were chosen and approved based largely on in vitro neutralisation titres against recent SARS-CoV-2 variants. However, unavoidable delays in vaccine manufacture and distribution meant that the updated booster vaccine was no longer well-matched to the circulating SARS-CoV-2 variant by the time of its deployment. Understanding whether the updating of booster vaccine antigens improves immune responses to subsequent SARS-CoV-2 circulating variants is a major priority in justifying future vaccine updates. Here we analyse all available data on the immunogenicity of variants containing SARS-CoV-2 vaccines and their ability to neutralise later circulating SARS-CoV-2 variants. We find that updated booster antigens give a 1.4-fold [95% CI: 1.07-1.82] greater increase in neutralising antibody levels when compared with a historical vaccine immunogen. We then use this to predict the relative protection that can be expected from an updated vaccine even when the circulating variant has evolved away from the updated vaccine immunogen. These findings help inform the rollout of future booster vaccination programmes.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , SARS-CoV-2 , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Humanos , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología
4.
J Clin Invest ; 134(17)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990644

RESUMEN

BACKGROUNDThere is uncertainty about the timing of booster vaccination against COVID-19 in highly vaccinated populations during the present endemic phase of COVID-19. Studies focused on primary vaccination have previously suggested improved immunity with a longer interval between the first and second vaccine doses.METHODSWe conducted a randomized, controlled trial (November 2022-August 2023) and assigned 52 fully vaccinated adults to an immediate or a 3-month delayed bivalent Spikevax mRNA booster vaccine. Follow-up visits were completed for 48 participants (n = 24 per arm), with collection of saliva and plasma samples following each visit.RESULTSThe rise in neutralizing antibody responses to ancestral and Omicron strains were almost identical between the immediate and delayed vaccination arms. Analyses of plasma and salivary antibody responses (IgG, IgA), plasma antibody-dependent phagocytic activity, and the decay kinetics of antibody responses were similar between the 2 arms. Symptomatic and asymptomatic SARS-CoV-2 infections occurred in 49% (21 of 49) participants over the median 11.5 months of follow-up and were also similar between the 2 arms.CONCLUSIONSOur data suggest that there was no benefit in delaying COVID-19 mRNA booster vaccination in preimmune populations during the present endemic phase of COVID-19.TRIAL REGISTRATIONAustralian New Zealand Clinical Trials Registry number 12622000411741 (https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12622000411741).FUNDINGNational Health and Medical Research Council, Australia (program grant App1149990) and Medical Research Future Fund (App2005544).


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Humanos , COVID-19/prevención & control , COVID-19/inmunología , Masculino , Femenino , Adulto , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Persona de Mediana Edad , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anciano , Vacunas de ARNm/inmunología , Factores de Tiempo
5.
Nat Microbiol ; 9(8): 2073-2083, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38890491

RESUMEN

Influenza exposures early in life are believed to shape future susceptibility to influenza infections by imprinting immunological biases that affect cross-reactivity to future influenza viruses. However, direct serological evidence linked to susceptibility is limited. Here we analysed haemagglutination-inhibition titres in 1,451 cross-sectional samples collected between 1992 and 2020, from individuals born between 1917 and 2008, against influenza B virus (IBV) isolates from 1940 to 2021. We included testing of 'future' isolates that circulated after sample collection. We show that immunological biases are conferred by early life IBV infection and result in lineage-specific cross-reactivity of a birth cohort towards future IBV isolates. This translates into differential estimates of susceptibility between birth cohorts towards the B/Yamagata and B/Victoria lineages, predicting lineage-specific birth-cohort distributions of observed medically attended IBV infections. Our data suggest that immunological measurements of imprinting could be important in modelling and predicting virus epidemiology.


Asunto(s)
Anticuerpos Antivirales , Reacciones Cruzadas , Virus de la Influenza B , Gripe Humana , Humanos , Virus de la Influenza B/inmunología , Reacciones Cruzadas/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Estudios Transversales , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Masculino , Pruebas de Inhibición de Hemaglutinación , Cohorte de Nacimiento , Adulto , Persona de Mediana Edad , Susceptibilidad a Enfermedades/inmunología
6.
Clin Transl Immunology ; 13(3): e1494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433763

RESUMEN

Objectives: Amino acid variations across more than 30 immunoglobulin (Ig) allotypes may introduce structural changes that influence recognition by anti-Ig detection reagents, consequently confounding interpretation of antibody responses, particularly in genetically diverse cohorts. Here, we assessed a panel of commercial monoclonal anti-IgG1 clones for capacity to universally recognise two dominant IgG1 haplotypes (G1m-1,3 and G1m1,17). Methods: Four commercial monoclonal anti-human IgG1 clones were assessed via ELISAs and multiplex bead-based assays for their ability to bind G1m-1,3 and G1m1,17 IgG1 variants. Detection antibodies were validated against monoclonal IgG1 allotype standards and tested for capacity to recognise antigen-specific plasma IgG1 from G1m-1,3 and G1m1,17 homozygous and heterozygous SARS-CoV-2 BNT162b2 vaccinated (n = 28) and COVID-19 convalescent (n = 44) individuals. An Fc-specific pan-IgG detection antibody corroborated differences between hinge- and Fc-specific anti-IgG1 responses. Results: Hinge-specific anti-IgG1 clone 4E3 preferentially bound G1m1,17 compared to G1m-1,3 IgG1. Consequently, SARS-CoV-2 Spike-specific IgG1 levels detected in G1m1,17/G1m1,17 BNT162b2 vaccinees appeared 9- to 17-fold higher than in G1m-1,3/G1m-1,3 vaccinees. Fc-specific IgG1 and pan-IgG detection antibodies equivalently bound G1m-1,3 and G1m1,17 IgG1 variants, and detected comparable Spike-specific IgG1 levels between haplotypes. IgG1 responses against other human coronaviruses and influenza were similarly poorly detected by 4E3 anti-IgG1 in G1m-1,3/G1m-1,3 subjects. Conclusion: Anti-IgG1 clone 4E3 confounds assessment of antibody responses in clinical cohorts owing to bias towards detection of G1m1,17 IgG1 variants. Validation of anti-Ig clones should include evaluation of binding to relevant antibody variants, particularly as the role of immunogenetics upon humoral immunity is increasingly explored in diverse populations.

8.
Expert Rev Vaccines ; 23(1): 39-48, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38037386

RESUMEN

INTRODUCTION: Influenza B viruses (IBV) cause a significant health and economic burden annually. Due to lower antigenic drift rate, less extensive antigenic diversity, and lack of animal reservoirs, the development of highly effective universal vaccines against IBV might be in reach. Current seasonal influenza vaccines are formulated to induce antibodies against the Hemagglutinin (HA) protein, but their effectiveness is reduced by mismatch between vaccine and circulating strains. AREAS COVERED: Given antibodies against the Neuraminidase (NA) have been associated with protection during influenza infection, there is considerable interest in the development of NA-based influenza vaccines. This review summarizes insights into the role of NA-based immunity against IBV and highlights knowledge gaps that should be addressed to inform the design of next-generation influenza B vaccines. We discuss how antibodies recognize broadly cross-reactive epitopes on the NA and the lack of understanding of IBV NA antigenic evolution which would benefit vaccine development in the future. EXPERT OPINION: Demonstrating NA antibodies as correlates of protection for IBV in humans would be paramount. Determining the extent of IBV NA antigenic evolution will be informative. Finally, it will be critical to determine optimal strategies for incorporating the appropriate NA antigens in existing clinically approved vaccine formulations.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Humanos , Virus de la Influenza B , Neuraminidasa , Antígenos Virales , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Infecciones por Orthomyxoviridae/prevención & control
9.
Immunity ; 56(10): 2182-2184, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37820580

RESUMEN

Generating potent neutralizing antibodies is a unifying goal of next-generation vaccines. In this issue of Immunity, Ols et al. show that multivalent nanoparticle vaccines displaying RSV F protein can enable recruitment of more diverse B cell specificities into the vaccine response, resulting in increased potency and breadth of antibody immunity to both RSV and the related human metapneumovirus.


Asunto(s)
Metapneumovirus , Infecciones por Virus Sincitial Respiratorio , Vacunas , Humanos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Linfocitos B
10.
Immunol Cell Biol ; 101(10): 975-983, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670482

RESUMEN

Mucosal antibodies play a key role in protection against breakthrough COVID-19 infections and emerging viral variants. Intramuscular adenovirus-based vaccination (Vaxzevria) only weakly induces nasal IgG and IgA responses, unless vaccinees have been previously infected. However, little is known about how Vaxzevria vaccination impacts the ability of mucosal antibodies to induce Fc responses, particularly against SARS-CoV-2 variants of concern (VoCs). Here, we profiled paired mucosal (saliva, tears) and plasma antibodies from COVID-19 vaccinated only vaccinees (uninfected, vaccinated) and COVID-19 recovered vaccinees (COVID-19 recovered, vaccinated) who both received Vaxzevria vaccines. SARS-CoV-2 ancestral-specific IgG antibodies capable of engaging FcγR3a were significantly higher in the mucosal samples of COVID-19 recovered Vaxzevria vaccinees in comparison with vaccinated only vaccinees. However, when IgG and FcγR3a engaging antibodies were tested against a panel of SARS-CoV-2 VoCs, the responses were ancestral-centric with weaker recognition of Omicron strains observed. In contrast, salivary IgA, but not plasma IgA, from Vaxzevria vaccinees displayed broad cross-reactivity across all SARS-CoV-2 VoCs tested. Our data highlight that while intramuscular Vaxzevria vaccination can enhance mucosal antibodies responses in COVID-19 recovered vaccinees, restrictions by ancestral-centric bias may have implications for COVID-19 protection. However, highly cross-reactive mucosal IgA could be key in addressing these gaps in mucosal immunity and may be an important focus of future SARS-CoV-2 vaccine development.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Formación de Anticuerpos , ChAdOx1 nCoV-19 , Vacunación , COVID-19/prevención & control , Anticuerpos Antivirales , Inmunoglobulina A , Inmunoglobulina G , Anticuerpos Neutralizantes
11.
Immunol Cell Biol ; 101(10): 964-974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37725525

RESUMEN

Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Australia , Inmunoglobulina G , Pueblos Indígenas , Inmunidad , Anticuerpos Antivirales
12.
JCI Insight ; 8(18)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737263

RESUMEN

Understanding mucosal antibody responses from SARS-CoV-2 infection and/or vaccination is crucial to develop strategies for longer term immunity, especially against emerging viral variants. We profiled serial paired mucosal and plasma antibodies from COVID-19 vaccinated only vaccinees (vaccinated, uninfected), COVID-19-recovered vaccinees (recovered, vaccinated), and individuals with breakthrough Delta or Omicron BA.2 infections (vaccinated, infected). Saliva from COVID-19-recovered vaccinees displayed improved antibody-neutralizing activity, Fcγ receptor (FcγR) engagement, and IgA levels compared with COVID-19-uninfected vaccinees. Furthermore, repeated mRNA vaccination boosted SARS-CoV-2-specific IgG2 and IgG4 responses in both mucosa biofluids (saliva and tears) and plasma; however, these rises only negatively correlated with FcγR engagement in plasma. IgG and FcγR engagement, but not IgA, responses to breakthrough COVID-19 variants were dampened and narrowed by increased preexisting vaccine-induced immunity against the ancestral strain. Salivary antibodies delayed initiation following breakthrough COVID-19 infection, especially Omicron BA.2, but rose rapidly thereafter. Importantly, salivary antibody FcγR engagements were enhanced following breakthrough infections. Our data highlight how preexisting immunity shapes mucosal SARS-CoV-2-specific antibody responses and has implications for long-term protection from COVID-19.


Asunto(s)
COVID-19 , Humanos , Infección Irruptiva , SARS-CoV-2 , Receptores de IgG , Inmunoglobulina G , Anticuerpos Antivirales , Membrana Mucosa
13.
Med Microbiol Immunol ; 212(4): 291-305, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37477828

RESUMEN

Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Vacuna BNT162 , Inmunoglobulina G , Mutación , Receptores de IgG , SARS-CoV-2/genética
14.
Sci Adv ; 9(29): eadg5301, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478181

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection of vaccinated individuals is increasingly common with the circulation of highly immune evasive and transmissible Omicron variants. Here, we report the dynamics and durability of recalled spike-specific humoral immunity following Omicron BA.1 or BA.2 breakthrough infection, with longitudinal sampling up to 8 months after infection. Both BA.1 and BA.2 infections robustly boosted neutralization activity against the infecting strain while expanding breadth against BA.4, although neutralization activity was substantially reduced for the more recent XBB and BQ.1.1 strains. Cross-reactive memory B cells against both ancestral and Omicron spike were predominantly expanded by infection, with limited recruitment of de novo Omicron-specific B cells or antibodies. Modeling of neutralization titers predicts that protection from symptomatic reinfection against antigenically similar strains will be durable but is undermined by new emerging strains with further neutralization escape.


Asunto(s)
Anticuerpos Neutralizantes , Infección Irruptiva , COVID-19 , Humanos , SARS-CoV-2
15.
Clin Transl Immunology ; 12(6): e1456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383182

RESUMEN

Objectives: Influenza causes significant morbidity and mortality, especially in high-risk populations. Although current vaccination regimens are the best method to combat annual influenza disease, vaccine efficacy can be low in high-risk groups, such as haematopoietic stem cell transplant (HSCT) recipients. Methods: We comprehensively assessed humoral immunity, antibody landscapes, systems serology and influenza-specific B-cell responses, together with their phenotypes and isotypes, to the inactivated influenza vaccine (IIV) in HSCT recipients in comparison to healthy controls. Results: Inactivated influenza vaccine significantly increased haemagglutination inhibition (HAI) titres in HSCT recipients, similar to healthy controls. Systems serology revealed increased IgG1 and IgG3 antibody levels towards the haemagglutinin (HA) head, but not to neuraminidase, nucleoprotein or HA stem. IIV also increased frequencies of total, IgG class-switched and CD21loCD27+ influenza-specific B cells, determined by HA probes and flow cytometry. Strikingly, 40% of HSCT recipients had markedly higher antibody responses towards A/H3N2 vaccine strain than healthy controls and showed cross-reactivity to antigenically drifted A/H3N2 strains by antibody landscape analysis. These superior humoral responses were associated with a greater time interval after HSCT, while multivariant analyses revealed the importance of pre-existing immune memory. Conversely, in HSCT recipients who did not respond to the first dose, the second IIV dose did not greatly improve their humoral response, although 50% of second-dose patients reached a seroprotective HAI titre for at least one of vaccine strains. Conclusions: Our study demonstrates efficient, although time-dependent, immune responses to IIV in HSCT recipients, and provides insights into influenza vaccination strategies targeted to immunocompromised high-risk groups.

16.
Vaccine ; 41(33): 4888-4898, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37391311

RESUMEN

Countermeasures against Zika virus (ZIKV) epidemics are urgently needed. In this study we generated a ZIKV virus-like particle (VLP) based vaccine candidate and assessed the immunogenicity of these particles in mice. The ZIKV-VLPs were morphologically similar to ZIKV by electron microscopy and were recognized by anti-Flavivirus neutralising antibodies. We observed that a single dose of unadjuvanted ZIKV-VLPs, or inactivated ZIKV, generated an immune response that lasted over 6 months, but did not neutralize ZIKV infection of cells in vitro. However, when we co-administered the ZIKV VLPs with either Aluminium hydroxide (Alhydrogel®; Alum), AddaVax or Pam2Cys we observed that Alum was the most effective in a single dose regime, since it not only produced antibodies that neutralized the virus, but also generated a greater number of antigen-specific memory B cells. We additionally observed that the generation of the neutralising antibodies persisted for up to 6 months. Our results suggest that a single dose ZIKV VLPs could be a suitable single dose vaccine candidate for use in outbreak settings.


Asunto(s)
Vacunas Virales , Infección por el Virus Zika , Virus Zika , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Adenoviridae
17.
Nat Immunol ; 24(6): 966-978, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37248417

RESUMEN

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Linfocitos T CD8-positivos , Australia/epidemiología , SARS-CoV-2 , Inmunoglobulina G , Anticuerpos Neutralizantes , Inmunidad , Anticuerpos Antivirales , Vacunación
18.
EBioMedicine ; 92: 104585, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37146404

RESUMEN

Currently approved COVID-19 vaccines administered parenterally induce robust systemic humoral and cellular responses. While highly effective against severe disease, there is reduced effectiveness of these vaccines in preventing breakthrough infection and/or onward transmission, likely due to poor immunity elicited at the respiratory mucosa. As such, there has been considerable interest in developing novel mucosal vaccines that engenders more localised immune responses to provide better protection and recall responses at the site of virus entry, in contrast to traditional vaccine approaches that focus on systemic immunity. In this review, we explore the adaptive components of mucosal immunity, evaluate epidemiological studies to dissect if mucosal immunity conferred by parenteral vaccination or respiratory infection drives differential efficacy against virus acquisition or transmission, discuss mucosal vaccines undergoing clinical trials and assess key challenges and prospects for mucosal vaccine development.


Asunto(s)
COVID-19 , Vacunas , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Membrana Mucosa , Vacunación , Inmunidad Mucosa , Anticuerpos Antivirales
19.
EBioMedicine ; 92: 104574, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37148585

RESUMEN

BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.


Asunto(s)
COVID-19 , Proteínas Portadoras , Cricetinae , Humanos , Ratones , Ratas , Animales , Vacunas contra la COVID-19 , SARS-CoV-2 , Subunidades de Proteína , COVID-19/prevención & control , Australia , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Anticuerpos Antivirales
20.
Ann N Y Acad Sci ; 1524(1): 65-86, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37020354

RESUMEN

The COVID-19 pandemic has taught us many things, among the most important of which is that vaccines are one of the cornerstones of public health that help make modern longevity possible. While several different vaccines have been successful at stemming the morbidity and mortality associated with various infectious diseases, many pathogens/diseases remain recalcitrant to the development of effective vaccination. Recent advances in vaccine technology, immunology, structural biology, and other fields may yet yield insight that will address these diseases; they may also help improve societies' preparedness for future pandemics. On June 1-4, 2022, experts in vaccinology from academia, industry, and government convened for the Keystone symposium "Progress in Vaccine Development for Infectious Diseases" to discuss state-of-the-art technologies, recent advancements in understanding vaccine-mediated immunity, and new aspects of antigen design to aid vaccine effectiveness.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Vacunas , Humanos , Pandemias/prevención & control , COVID-19/prevención & control , Vacunas/uso terapéutico , Vacunación , Desarrollo de Vacunas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA