Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 45(3): 1439-1447, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38471859

RESUMEN

The Yangtze River, the largest river in China, has not been comprehensively studied for its basin's microplastic pollution status. Therefore, a comprehensive investigation and assessment system of microplastics was developed at the river basin scale to characterize the spatial distribution and composition of microplastics in the Yangtze River Basin in order to analyze their influencing factors and assess their ecological risks. The results showed that the microplastic abundance in the study area ranged from 21 to 44 080 n·m-3, with an average abundance of 4 483 n·m-3. The spatial distribution of microplastic abundance was higher in the tributaries than in the main streams (except the Ganjiang Basin), with the Chengdu of the Minjiang Basin being the tributary area with the highest abundance of microplastics detected. The size of microplastics in the river basin was concentrated in the 0-1 mm range; the shapes were mainly fiber and fragment; and the colors were mainly colored and transparent. Further, introducing the diversity index of microplastics, it was found that both the Simpson index and the Shannon-Wiener index could quantify the diversity of microplastic characteristic composition in the river basin, but there were certain differences in the changing trends between the two. Regression analysis showed that anthropogenic activities were significantly and positively correlated with microplastic abundance (P<0.05), and among the eight anthropogenic activity factors, civilian vehicle ownership and tourism income were the most strongly correlated with microplastic abundance, indicating that transportation and tourism were the main factors influencing microplastic distribution. From the perspective of the potential ecological risk index of microplastics, microplastics in the Yangtze River Basin posed a certain ecological risk, with 68.97% of the area falling within risk zones III and IV, with the ecological risk of microplastics in Taihu Lake warranting more widespread attention.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ríos , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , China , Medición de Riesgo
2.
Cell Rep ; 42(11): 113416, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37967007

RESUMEN

Differentiated cardiomyocytes (CMs) must undergo diverse morphological and functional changes during postnatal development. However, the mechanisms underlying initiation and coordination of these changes remain unclear. Here, we delineate an integrated, time-ordered transcriptional network that begins with expression of genes for cell-cell connections and leads to a sequence of structural, cell-cycle, functional, and metabolic transitions in mouse postnatal hearts. Depletion of histone H2B ubiquitin ligase RNF20 disrupts this gene network and impairs CM polarization. Subsequently, assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis confirmed that RNF20 contributes to chromatin accessibility in this context. As such, RNF20 is likely to facilitate binding of transcription factors at the promoters of genes involved in cell-cell connections and actin organization, which are crucial for CM polarization and functional integration. These results suggest that CM polarization is one of the earliest events during postnatal heart development and provide insights into how RNF20 regulates CM polarity and the postnatal gene program.


Asunto(s)
Miocitos Cardíacos , Ubiquitina-Proteína Ligasas , Animales , Ratones , Miocitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Histonas/metabolismo , Cromatina , Epigénesis Genética , Expresión Génica
3.
Int J Ophthalmol ; 16(9): 1521-1526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37724262

RESUMEN

AIM: To describe the clinical and radiologic features of retrolaminar migration silicone oil (SiO) and observe the dynamic position of ventricular oil accumulation in supine and prone. METHODS: For this retrospective study, 29 patients who had a history of SiO injection treatment and underwent unenhanced head computed tomography (CT) were included from January 2019 to October 2022. The patients were divided into migration-positive and negative groups. Clinical history and CT features were compared using Whitney U and Fisher's exact tests. The dynamic position of SiO was observed within the ventricular system in supine and prone. CT images were visually assessed for SiO migration along the retrolaminar involving pathways for vision (optic nerve, chiasm, and tract) and ventricular system. RESULTS: Intraocular SiO migration was found in 5 of the 29 patients (17.24%), with SiO at the optic nerve head (n=1), optic nerve (n=4), optic chiasm (n=1), optic tract (n=1), and within lateral ventricles (n=1). The time interval between SiO injection and CT examination of migration-positive cases was significantly higher than that of migration-negative patients (22.8±16.5mo vs 13.1±2.6mo, P<0.001). The hyperdense lesion located in the frontal horns of the right lateral ventricle migrated to the fourth ventricle when changing the position from supine to prone. CONCLUSION: Although SiO retrolaminar migration is unusual, the clinician and radiologist should be aware of migration routes. The supine combined with prone examination is the first-choice method to confirm the presence of SiO in the ventricular system.

4.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768628

RESUMEN

Activating transcription factor 3 (ATF3) is a stress-induced transcription factor and a familiar neuronal marker for nerve injury. This factor has been shown to protect neurons from hypoxic insult in vitro by suppressing carboxyl-terminal modulator protein (CTMP) transcription, and indirectly activating the anti-apoptotic Akt/PKB cascade. Despite prior studies in vitro, whether this neuroprotective pathway also exists in the brain in vivo after ischemic insult remains to be determined. In the present study, we showed a rapid and marked induction of ATF3 mRNA throughout ischemia-reperfusion in a middle cerebral artery (MCA) occlusion model. Although the level of CTMP mRNA was quickly induced upon ischemia, its level showed only a mild increase after reperfusion. With the gain-of-function approach, both pre- and post-ischemic administration of Ad-ATF3 ameliorated brain infarct and neurological deficits. Whereas, with the loss-of-function approach, ATF3 knockout (KO) mice showed bigger infarct and worse functional outcome after ischemia. In addition, these congenital defects were rescued upon reintroducing ATF3 to the brain of KO mice. ATF3 overexpression led to a lower level of CTMP and a higher level of p-Akt(473) in the ischemic brain. On the contrary, ATF3 KO resulted in upregulation of CTMP and downregulation of p-Akt(473) instead. Furthermore, post-ischemic CTMP siRNA knockdown led to smaller infarct and better behaviors. CTMP siRNA knockdown increased the level of p-Akt(473), but did not alter the ATF3 level in the ischemic brain, upholding the ATF3→CTMP signal cascade. In summary, our proof-of-principle experiments support the existence of neuroprotective ATF3→CTMP signal cascade regulating the ischemic brain. Furthermore, these results suggest the therapeutic potential for both ATF3 overexpression and CTMP knockdown for stroke treatment.


Asunto(s)
Isquemia Encefálica , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Proteínas Portadoras/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Ratones Noqueados , Infarto Encefálico/genética , ARN Interferente Pequeño/genética , Infarto Cerebral , Palmitoil-CoA Hidrolasa/metabolismo
5.
Circulation ; 146(25): 1950-1967, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36420731

RESUMEN

BACKGROUND: Cardiac regeneration after injury is limited by the low proliferative capacity of adult mammalian cardiomyocytes (CMs). However, certain animals readily regenerate lost myocardium through a process involving dedifferentiation, which unlocks their proliferative capacities. METHODS: We bred mice with inducible, CM-specific expression of the Yamanaka factors, enabling adult CM reprogramming and dedifferentiation in vivo. RESULTS: Two days after induction, adult CMs presented a dedifferentiated phenotype and increased proliferation in vivo. Microarray analysis revealed that upregulation of ketogenesis was central to this process. Adeno-associated virus-driven HMGCS2 overexpression induced ketogenesis in adult CMs and recapitulated CM dedifferentiation and proliferation observed during partial reprogramming. This same phenomenon was found to occur after myocardial infarction, specifically in the border zone tissue, and HMGCS2 knockout mice showed impaired cardiac function and response to injury. Finally, we showed that exogenous HMGCS2 rescues cardiac function after ischemic injury. CONCLUSIONS: Our data demonstrate the importance of HMGCS2-induced ketogenesis as a means to regulate metabolic response to CM injury, thus allowing cell dedifferentiation and proliferation as a regenerative response.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Corazón , Miocardio/metabolismo , Ratones Noqueados , Regeneración/genética , Proliferación Celular , Mamíferos
6.
NPJ Regen Med ; 7(1): 37, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906243

RESUMEN

The balance among quiescence, differentiation, and self-renewal of skeletal muscle stem cells (MuSCs) is tightly regulated by their intrinsic and extrinsic properties from the niche. How the niche controls MuSC fate remains unclear. Ribonucleotide reductase M2B (Rrm2b) modulates MuSC quiescence/differentiation in muscle in response to injury. Rrm2b knockout in myofibers, but not in MuSCs, led to weakness of muscles, such as a loss of muscle mass and strength. After muscle injury, damaged myofibers were more efficiently repaired in the Rrm2b myofiber-specific knockout mice than the control mice, but these myofibers were thinner and showed weak functioning. Rrm2b-deleted myofibers released several myokines, which trigger MuSCs to differentiate but not re-enter the quiescent stage to replenish the stem cell pool. Overall, Rrm2b in the myofibers plays a critical role in modulating the MuSC fate by modifying the microenvironment, and it may lead to a possible strategy to treat muscle disorders.

7.
Mol Med ; 28(1): 71, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739477

RESUMEN

BACKGROUND: Complete healing of diabetic wounds continues to be a clinically unmet need. Although robust therapies such as stem cell therapy and growth factor treatment are clinically applied, these treatments are costly for most diabetic wound patients. Therefore, a cheaper alternative is needed. Cobalt protoporphyrin (CoPP) has recently been demonstrated to promote tissue regeneration. In this study, the therapeutic benefits of CoPP in diabetic wound healing were examined. METHODS: An in vitro wound healing model that mimics re-epithelialization was established to examine the effect of CoPP on the migratory capability of human keratinocytes (HaCaT) in either normal glucose (NG) or high glucose (HG) media, as well as in the presence of either H2O2 or lipopolysaccharide (LPS). At the end of the migration assays, cells were collected and subjected to Western blotting analysis and immunostaining. RESULTS: HaCaT were found to migrate significantly more slowly in the HG media compared to the NG media. CoPP treatment was found to enhance cell migration in HG media, but was found to decrease cell migration and proliferation when HaCaT were cultured in NG media. CoPP treatment induced high levels of expression of Nrf-2/HO-1 and FoxO1 in HaCaT cultured in either glucose concentration, although the FoxO1 expression was found to be significantly higher in HaCaT that underwent the migration assay in NG media compared to those in HG media. The higher level of FoxO1 expression seen in CoPP-treated HaCaT cultured in NG media resulted in upregulation of CCL20 and downregulation of TGFß1. In contrast, HaCaT migrated in HG media were found to have high levels of expression of TGFß1, and low levels of expression of CCL20. Interestingly, in the presence of H2O2, CoPP-pretreated HaCaT cultured in either NG or HG media had similar expression level of Nrf-2/HO-1 and FoxO1 to each other. Moreover, the anti-apoptotic effect of CoPP pretreatment was noticed in HaCaT cultured in either glucose concentration. Additionally, CoPP pretreatment was shown to promote tight junction formation in HaCaT suffering from LPS-induced damage. CONCLUSIONS: CoPP enhances cell migratory capacity under hyperglycemic conditions, and protects cells from oxidative and LPS-induced cellular damage in HG media containing either H2O2 or LPS.


Asunto(s)
Peróxido de Hidrógeno , Lipopolisacáridos , Movimiento Celular , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Peróxido de Hidrógeno/metabolismo , Queratinocitos , Protoporfirinas
8.
Eur J Haematol ; 105(3): 326-334, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32421883

RESUMEN

BACKGROUND: In multiple myeloma (MM), impact of specific chromosomal translocations involving IgH (14q21 locus, including t(4;14), t(11;14), and t(14;16)) has been explored extensively. However, over 15% MM patients harboring IgH translocation with undefined partners have long been ignored. METHODS: A prospective non-randomized cohort study with a total of 715 newly-diagnosed MM cases was conducted, 13.6% of whom were t(14;undefined) positive. The whole cohort was divided into four groups: no IgH split (47.7%); t(14;undefined) (13.6%); t(11;14) (17.6%); and t(4;14) or t(14;16) group (21.1%). RESULTS: Median OS for the four groups was 84.2, not reached (NR), 58.7, and 44.2 months, respectively, with P values for t(14;undefined) vs no IgH split, t(11;14), and t(4;14)/t(14;16) groups of 0.197, 0.022, and 0.001, respectively. In bortezomib-based group, the survival advantage gained by t(14;undefined) group was much more significant compared to t(11;14) and t(4;14)/t(14;16) groups. Importantly, t(14;undefined) turned out to be an independent predictive factor for longer OS of MM patients in multivariate analysis, especially in the context of bortezomib treatment. Similar results were also observed in the PUMCH external validation cohort. CONCLUSION: Collectively, our data confirmed and externally validated the favorable prognosis of the t(14;undefined) groups, especially in the era of novel agents.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina/genética , Mieloma Múltiple/genética , Mieloma Múltiple/mortalidad , Translocación Genética , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Cromosomas Humanos Par 11 , Cromosomas Humanos Par 14 , Cromosomas Humanos Par 16 , Cromosomas Humanos Par 4 , Femenino , Frecuencia de los Genes , Humanos , Hibridación Fluorescente in Situ , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/terapia , Pronóstico , Modelos de Riesgos Proporcionales
9.
Proc Natl Acad Sci U S A ; 117(13): 7418-7429, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32170006

RESUMEN

The striatal complex of basal ganglia comprises two functionally distinct districts. The dorsal district controls motor and cognitive functions. The ventral district regulates the limbic function of motivation, reward, and emotion. The dorsoventral parcellation of the striatum also is of clinical importance as differential striatal pathophysiologies occur in Huntington's disease, Parkinson's disease, and drug addiction disorders. Despite these striking neurobiologic contrasts, it is largely unknown how the dorsal and ventral divisions of the striatum are set up. Here, we demonstrate that interactions between the two key transcription factors Nolz-1 and Dlx1/2 control the migratory paths of striatal neurons to the dorsal or ventral striatum. Moreover, these same transcription factors control the cell identity of striatal projection neurons in both the dorsal and the ventral striata including the D1-direct and D2-indirect pathways. We show that Nolz-1, through the I12b enhancer, represses Dlx1/2, allowing normal migration of striatal neurons to dorsal and ventral locations. We demonstrate that deletion, up-regulation, and down-regulation of Nolz-1 and Dlx1/2 can produce a striatal phenotype characterized by a withered dorsal striatum and an enlarged ventral striatum and that we can rescue this phenotype by manipulating the interactions between Nolz-1 and Dlx1/2 transcription factors. Our study indicates that the two-tier system of striatal complex is built by coupling of cell-type identity and migration and suggests that the fundamental basis for divisions of the striatum known to be differentially vulnerable at maturity is already encoded by the time embryonic striatal neurons begin their migrations into developing striata.


Asunto(s)
Ganglios Basales/citología , Cuerpo Estriado/citología , Estriado Ventral/citología , Animales , Ganglios Basales/metabolismo , Diferenciación Celular , Cuerpo Estriado/metabolismo , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Interneuronas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estriado Ventral/metabolismo
10.
PLoS Biol ; 17(10): e3000508, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31593566

RESUMEN

CDGSH iron-sulfur domain-containing protein 2 (Cisd2) is pivotal to mitochondrial integrity and intracellular Ca2+ homeostasis. In the heart of Cisd2 knockout mice, Cisd2 deficiency causes intercalated disc defects and leads to degeneration of the mitochondria and sarcomeres, thereby impairing its electromechanical functioning. Furthermore, Cisd2 deficiency disrupts Ca2+ homeostasis via dysregulation of sarco/endoplasmic reticulum Ca2+-ATPase (Serca2a) activity, resulting in an increased level of basal cytosolic Ca2+ and mitochondrial Ca2+ overload in cardiomyocytes. Most strikingly, in Cisd2 transgenic mice, a persistently high level of Cisd2 is sufficient to delay cardiac aging and attenuate age-related structural defects and functional decline. In addition, it results in a younger cardiac transcriptome pattern during old age. Our findings indicate that Cisd2 plays an essential role in cardiac aging and in the heart's electromechanical functioning. They highlight Cisd2 as a novel drug target when developing therapies to delay cardiac aging and ameliorate age-related cardiac dysfunction.


Asunto(s)
Envejecimiento Prematuro/genética , Envejecimiento/fisiología , Bloqueo Atrioventricular/genética , Proteínas Relacionadas con la Autofagia/genética , Corazón/fisiopatología , Proteínas del Tejido Nervioso/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/fisiopatología , Animales , Bloqueo Atrioventricular/diagnóstico por imagen , Bloqueo Atrioventricular/metabolismo , Bloqueo Atrioventricular/fisiopatología , Proteínas Relacionadas con la Autofagia/deficiencia , Calcio/metabolismo , Electrocardiografía , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Corazón/fisiología , Homeostasis/fisiología , Masculino , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Proteínas del Tejido Nervioso/deficiencia , Sarcómeros/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transcriptoma
11.
Mol Cell ; 68(1): 89-103.e7, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28943313

RESUMEN

Genomic imprinting is an allelic gene expression phenomenon primarily controlled by allele-specific DNA methylation at the imprinting control region (ICR), but the underlying mechanism remains largely unclear. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and mutation of human Naa10p is linked to severe developmental delays. Here we report that Naa10-null mice display partial embryonic lethality, growth retardation, brain disorders, and maternal effect lethality, phenotypes commonly observed in defective genomic imprinting. Genome-wide analyses further revealed global DNA hypomethylation and enriched dysregulation of imprinted genes in Naa10p-knockout embryos and embryonic stem cells. Mechanistically, Naa10p facilitates binding of DNA methyltransferase 1 (Dnmt1) to DNA substrates, including the ICRs of the imprinted allele during S phase. Moreover, the lethal Ogden syndrome-associated mutation of human Naa10p disrupts its binding to the ICR of H19 and Dnmt1 recruitment. Our study thus links Naa10p mutation-associated Ogden syndrome to defective DNA methylation and genomic imprinting.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Discapacidades del Desarrollo/genética , Epigénesis Genética , Impresión Genómica , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , ARN Largo no Codificante/genética , Animales , ADN/genética , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Eliminación de Gen , Genes Letales , Estudio de Asociación del Genoma Completo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/patología , Acetiltransferasa A N-Terminal/deficiencia , Acetiltransferasa E N-Terminal/deficiencia , Unión Proteica , ARN Largo no Codificante/metabolismo , Fase S/genética
12.
PLoS Genet ; 13(8): e1006984, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28827800

RESUMEN

HSPB7 is a member of the small heat-shock protein (HSPB) family and is expressed in the cardiomyocytes from cardiogenesis onwards. A dramatic increase in HSPB7 is detected in the heart and blood plasma immediately after myocardial infarction. Additionally, several single-nucleotide polymorphisms of HSPB7 have been identified to be associated with heart failure caused by cardiomyopathy in human patients. Although a recent study has shown that HSPB7 is required for maintaining myofiber structure in skeletal muscle, its molecular and physiological functions in the heart remain unclear. In the present study, we generated a cardiac-specific inducible HSPB7 knockout mouse and demonstrated that the loss of HSPB7 in cardiomyocytes results in rapid heart failure and sudden death. The electrocardiogram showed cardiac arrhythmia with abnormal conduction in the HSPB7 mutant mice before death. In HSPB7 CKO cardiomyocytes, no significant defect was detected in the organization of contractile proteins in sarcomeres, but a severe structural disruption was observed in the intercalated discs. The expression of connexin 43, a gap-junction protein located at the intercalated discs, was downregulated in HSPB7 knockout cardiomyocytes. Mislocalization of desmoplakin, and N-cadherin, the intercalated disc proteins, was also observed in the HSPB7 CKO hearts. Furthermore, filamin C, the interaction protein of HSPB7, was upregulated and aggregated in HSPB7 mutant cardiomyocytes. In conclusion, our findings characterize HSPB7 as an intercalated disc protein and suggest it has an essential role in maintaining intercalated disc integrity and conduction function in the adult heart.


Asunto(s)
Cardiomiopatías/genética , Proteínas de Choque Térmico HSP27/genética , Insuficiencia Cardíaca/genética , Miocitos Cardíacos/metabolismo , Animales , Síndrome de Brugada/genética , Síndrome de Brugada/patología , Cadherinas/genética , Trastorno del Sistema de Conducción Cardíaco , Cardiomiopatías/fisiopatología , Conexina 43/genética , Modelos Animales de Enfermedad , Electrocardiografía , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Sarcómeros/metabolismo , Sarcómeros/patología
13.
Huan Jing Ke Xue ; 38(9): 3787-3792, 2017 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-29965260

RESUMEN

In order to examine the continuous growth capacity of the nitrosation granular sludge (NGS), the sludge was inoculated to start up the columnar sequencing batch reactor (SBR). During 130 d, the concentration of mixed liquor suspended solids (MLSS) in SBR increased from 0.1 g·L-1 to 11.8 g·L-1, corresponding to the nitrite-nitrogen accumulation rate of 0.4-4.9 kg·(m3·d)-1, promoted by a higher ammonia-nitrogen loading rate (NLR) from 0.74 kg·(m3·d)-1 to 6.66 kg·(m3·d)-1in the influent. Because of the obvious increase in small granules (size<200 µm), the mean average diameter of NGS decreased significantly at NLR<4.44 kg·(m3·d)-1. At higher NLR values, the growth of the mean average diameter of NGS could be fitted well using a modified logistic model. The specific growth rate of the k value was 0.0229 d-1. In addition, the combined inhibition of nitrite oxidizing bacteria (NOB) was expected at relatively high concentrations of both free ammonia (FA) and free nitrite acid (FNA); thus, the nitrite accumulation ratio (NAR) in the effluent was always higher than 80%. These results provide a feasible approach to start up a high-performance NGS reactor at the industrial-scale.


Asunto(s)
Bacterias/metabolismo , Reactores Biológicos , Nitritos/metabolismo , Nitrosación , Aguas del Alcantarillado , Amoníaco , Nitrógeno , Eliminación de Residuos Líquidos
14.
EMBO Mol Med ; 9(2): 251-264, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28011860

RESUMEN

Although remnant cardiomyocytes (CMs) possess a certain degree of proliferative ability, efficiency is too low for cardiac regeneration after injury. In this study, we identified a distinct stage within the initiation phase of CM reprogramming before the MET process, and microarray analysis revealed the strong up-regulation of several mitosis-related genes at this stage of reprogramming. Several candidate genes were selected and tested for their ability to induce CM proliferation. Delivering a cocktail of three genes, FoxM1, Id1, and Jnk3-shRNA (FIJs), induced CMs to re-enter the cell cycle and complete mitosis and cytokinesis in vitro More importantly, this gene cocktail increased CM proliferation in vivo and significantly improved cardiac function and reduced fibrosis after myocardial infarction. Collectively, our findings present a cocktail FIJs that may be useful in cardiac regeneration and also provide a practical strategy for probing reprogramming assays for regeneration of other tissues.


Asunto(s)
Proliferación Celular , Terapia Genética/métodos , Infarto del Miocardio/terapia , Miocitos Cardíacos/fisiología , Regeneración , Animales , Dependovirus/genética , Proteína Forkhead Box M1/genética , Vectores Genéticos , Proteína 1 Inhibidora de la Diferenciación/genética , Ratones Endogámicos C57BL , Proteína Quinasa 10 Activada por Mitógenos/genética , ARN Interferente Pequeño/genética , Medicina Regenerativa/métodos , Transducción Genética , Resultado del Tratamiento
15.
J Cell Sci ; 129(8): 1661-70, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929074

RESUMEN

HSPB7 belongs to the small heat-shock protein (sHSP) family, and its expression is restricted to cardiac and skeletal muscles from embryonic stages to adulthood. Here, we found that skeletal-muscle-specific ablation of the HspB7 does not affect myogenesis during embryonic stages to postnatal day 1 (P1), but causes subsequent postnatal death owing to a respiration defect, with progressive myopathy phenotypes in the diaphragm. Deficiency of HSPB7 in the diaphragm muscle resulted in muscle fibrosis, sarcomere disarray and sarcolemma integrity loss. We identified dimerized filamin C (FLNC) as an interacting partner of HSPB7. Immunofluorescence studies demonstrated that the aggregation and mislocalization of FLNC occurred in the muscle of HspB7 mutant adult mice. Furthermore, the components of dystrophin glycoprotein complex, γ- and δ-sarcoglycan, but not dystrophin, were abnormally upregulated and mislocalized in HSPB7 mutant muscle. Collectively, our findings suggest that HSPB7 is essential for maintaining muscle integrity, which is achieved through its interaction with FLNC, in order to prevent the occurrence and progression of myopathy.


Asunto(s)
Diafragma/patología , Filaminas/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Músculo Esquelético/fisiología , Enfermedades Musculares/metabolismo , Animales , Células Cultivadas , Dimerización , Fibrosis , Proteínas de Choque Térmico HSP27/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Desarrollo de Músculos/genética , Enfermedades Musculares/genética , Unión Proteica , Transporte de Proteínas/genética , Respiración/genética , Sarcoglicanos/metabolismo
16.
J Cell Sci ; 128(22): 4196-209, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26430214

RESUMEN

Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) is a Ca(2+)-dependent calmodulin-binding protein. In this study, we newly identify NRIP as a Z-disc protein in skeletal muscle. NRIP-knockout mice were generated and found to have reduced muscle strength, susceptibility to fatigue and impaired adaptive exercise performance. The mechanisms of NRIP-regulated muscle contraction depend on NRIP being downstream of Ca(2+) signaling, where it stimulates activation of both 'calcineurin-nuclear factor of activated T-cells, cytoplasmic 1' (CaN-NFATc1; also known as NFATC1) and calmodulin-dependent protein kinase II (CaMKII) through interaction with calmodulin (CaM), resulting in the induction of mitochondrial activity and the expression of genes encoding the slow class of myosin, and in the regulation of Ca(2+) homeostasis through the internal Ca(2+) stores of the sarcoplasmic reticulum. Moreover, NRIP-knockout mice have a delayed regenerative capacity. The amount of NRIP can be enhanced after muscle injury and is responsible for muscle regeneration, which is associated with the increased expression of myogenin, desmin and embryonic myosin heavy chain during myogenesis, as well as for myotube formation. In conclusion, NRIP is a novel Z-disc protein that is important for skeletal muscle strength and regenerative capacity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calmodulina/metabolismo , Músculo Esquelético/fisiología , Proteínas Nucleares/metabolismo , Regeneración/fisiología , Animales , Ratones , Ratones Noqueados , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Transducción de Señal
17.
Cell Rep ; 12(12): 1960-7, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26365191

RESUMEN

Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs). We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs. Delivering four of these microRNAs, miR-125b-5p, miR-199a-5p, miR-221, and miR-222 (miR-combo), to m/hESC-CMs resulted in improved sarcomere alignment and calcium handling, a more negative resting membrane potential, and increased expression of cardiomyocyte maturation markers. Although this could not fully phenocopy all adult cardiomyocyte characteristics, these effects persisted for two months following delivery of miR-combo. A luciferase assay demonstrated that all four miRNAs target ErbB4, and siRNA knockdown of ErbB4 partially recapitulated the effects of miR-combo. In summary, a combination of miRNAs induced via endothelial coculture improved ESC-CM maturity, in part through suppression of ErbB4 signaling.


Asunto(s)
MicroARNs/genética , Miocitos Cardíacos/metabolismo , Receptor ErbB-4/genética , Animales , Biomarcadores/metabolismo , Calcio/metabolismo , Comunicación Celular , Diferenciación Celular , Técnicas de Cocultivo , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Potenciales de la Membrana , Ratones , MicroARNs/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Miocitos Cardíacos/ultraestructura , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor ErbB-4/antagonistas & inhibidores , Receptor ErbB-4/metabolismo , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Transducción de Señal
18.
Stem Cells ; 33(12): 3468-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26303070

RESUMEN

Leukemia inhibitory factor (LIF) regulates mouse embryonic stem cell (mESC) pluripotency through STAT3 activation, but the downstream signaling remains largely unelucidated. Using cDNA microarrays, we verified B cell leukemia/lymphoma 3 (Bcl3) as the most significantly downregulated factor following LIF withdrawal in mESCs. Bcl3 knockdown altered mESC morphology, reduced expression of pluripotency genes including Oct4, Sox2, and Nanog, and downregulated DNA binding of acetylated histone 3 and RNA polymerase II on the Oct4 promoter. Conversely, Bcl3 overexpression partially prevented cell differentiation and promoted Oct4 and Nanog promoter activities. Furthermore, coimmunoprecipitation and chromatin immunoprecipitation experiments demonstrated that Bcl3 regulation of mESC pluripotency may be through its association with Oct4 and ß-catenin and its promoter binding capability. These results establish that Bcl3 positively regulates pluripotency genes and thus shed light on the mechanism of Bcl3 as a downstream molecule of LIF/STAT3 signaling in pluripotency maintenance.


Asunto(s)
Factor Inhibidor de Leucemia/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Proteínas del Linfoma 3 de Células B , Regulación de la Expresión Génica , Factor Inhibidor de Leucemia/genética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Proto-Oncogénicas/genética , Factor de Transcripción STAT3/genética , Factores de Transcripción/genética
19.
Mol Cancer Ther ; 14(6): 1317-26, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25852063

RESUMEN

Polyethylene glycol (PEG) is attached to many peptides, proteins, liposomes, and nanoparticles to reduce their immunogenicity and improve their pharmacokinetic and therapeutic properties. Here, we describe hybrid antibodies that can selectively deliver PEGylated medicines, imaging agents, or nanomedicines to target cells. Human IgG1 hybrid antibodies αPEG:αHER2 and αPEG:αCD19 were shown by ELISA, FACS, and plasmon resonance to bind to both PEG and HER2 receptors on SK-BR-3 breast adenocarcinoma and BT-474 breast ductal carcinoma cells or CD19 receptors on Ramos and Raji Burkitt's lymphoma cells. In addition, αPEG:αHER2 specifically targeted PEGylated proteins, liposomes, and nanoparticles to SK-BR-3 cells that overexpressed HER2, but not to HER2-negative MCF-7 breast adenocarcinoma cells. Endocytosis of PEGylated nanoparticles into SK-BR-3 cells was induced specifically by the αPEG:αHER2 hybrid antibody, as observed by confocal imaging of the accumulation of Qdots inside SK-BR-3 cells. Treatment of HER2(+) SK-BR-3 and BT-474 cancer cells with αPEG:αHER2 and the clinically used chemotherapeutic agent PEGylated liposomal doxorubicin for 3 hours enhanced the in vitro effectiveness of PEGylated liposomal doxorubicin by over two orders of magnitude. Hybrid anti-PEG antibodies offer a versatile and simple method to deliver PEGylated compounds to cellular locations and can potentially enhance the therapeutic efficacy of PEGylated medicines.


Asunto(s)
Anticuerpos/metabolismo , Nanomedicina/métodos , Nanopartículas , Polietilenglicoles/metabolismo , Antígenos CD19/metabolismo , Unión Competitiva , Línea Celular Tumoral , Supervivencia Celular , Doxorrubicina/metabolismo , Endocitosis , Ensayo de Inmunoadsorción Enzimática , Femenino , Células HEK293 , Células HT29 , Humanos , Liposomas/metabolismo , Células MCF-7 , Microscopía Confocal , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Proteínas/metabolismo , Receptor ErbB-2/metabolismo
20.
PLoS Genet ; 11(3): e1005043, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25760041

RESUMEN

Production of protein containing lengthy stretches of polyglutamine encoded by multiple repeats of the trinucleotide CAG is a hallmark of Huntington's disease (HD) and of a variety of other inherited degenerative neurological and neuromuscular disorders. Earlier work has shown that interference with production of the transcription elongation protein SUPT4H results in decreased cellular capacity to transcribe mutant huntingtin gene (Htt) alleles containing long CAG expansions, but has little effect on expression of genes containing short CAG stretches. zQ175 and R6/2 are genetically engineered mouse strains whose genomes contain human HTT alleles that include greatly expanded CAG repeats and which are used as animal models for HD. Here we show that reduction of SUPT4H expression in brains of zQ175 mice by intracerebroventricular bolus injection of antisense 2'-O-methoxyethyl oligonucleotides (ASOs) directed against Supt4h, or in R6/2 mice by deletion of one copy of the Supt4h gene, results in a decrease in mRNA and protein encoded specifically by mutant Htt alleles. We further show that reduction of SUPT4H in mouse brains is associated with decreased HTT protein aggregation, and in R6/2 mice, also with prolonged lifespan and delay of the motor impairment that normally develops in these animals. Our findings support the view that targeting of SUPT4H function may be useful as a therapeutic countermeasure against HD.


Asunto(s)
Proteínas de Unión al ADN/genética , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Expansión de Repetición de Trinucleótido/genética , Alelos , Animales , Conducta Animal , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al ADN/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/patología , Ratones , Mutación , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/metabolismo , Neuronas/patología , Proteínas Nucleares/biosíntesis , Agregación Patológica de Proteínas/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA