Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36626746

RESUMEN

Aurantiochytrium limacinum can accumulate high amounts of omega-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA). Although salinity affects the DHA content, its impact on the metabolic pathway responsible for DHA production in A. limacinum is not completely understood. To address this issue, we investigated the transcriptional profile of A. limacinum under hypoosmotic stress. We first cultured A. limacinum under typical and low salinity for RNA sequencing, respectively. Transcriptome analyses revealed that 933 genes exhibited significant changes in expression under hypoosmotic conditions, of which 81.4% were downregulated. Strikingly, A. limacinum downregulated genes related to polyketide synthesis and fatty acid synthase pathways, while upregulating ß-oxidation-related genes. In accordance with this, DHA production significantly decreased under hypoosmotic conditions, while antioxidant-related genes were significantly upregulated. Considering that ß-oxidation of fatty acids generates energy and reactive oxygen species (ROS), our results suggest that A. limacinum utilizes fatty acids for energy to survive under hypoosmotic conditions and detoxifies ROS using antioxidant systems.


Asunto(s)
Antioxidantes , Ácidos Grasos Omega-3 , Especies Reactivas de Oxígeno , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos , Perfilación de la Expresión Génica , Cloruro de Sodio
2.
Appl Biochem Biotechnol ; 195(2): 1255-1267, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36346562

RESUMEN

Aurantiochytrium limacinum is a heterotrophic eukaryotic microorganism that can accumulate high levels of commercial products such as astaxanthin and docosahexaenoic acid. Due to its rapid growth and relatively simple extraction method, A. limacinum is considered a promising astaxanthin resource to replace the conventional microalgal production. However, the astaxanthin biosynthetic process in A. limacinum remains incompletely understood, especially in those catalysed by ß-carotene hydroxylase (CrtZ) and ketolase. In this study, we overexpressed a crtZ candidate gene to increase astaxanthin production and expand our understanding of the conversion from beta-carotene to astaxanthin. The resultant transformant AlcrtZ#10 cultivated for 5 days showed a significant increase in astaxanthin production per culture (2.8-fold) and per cell (4.5-fold) compared with that of the wild-type strain. Strikingly, longer light exposure increased astaxanthin production and decreased the beta-carotene content in the wild-type strain, suggesting that light exposure duration is important for astaxanthin production in A. limacinum. Among several predicted intermediates, furthermore, the cantaxanthin produced from ß-carotene by ketolase activity were enhanced in the transformant AlcrtZ#10. Although the further investigation is needed, this result suggested that the main route of astaxanthin was via cantaxanthin. Thus, our findings will be valuable not only for its application, but also for understanding the astaxanthin biosynthetic process in A. limacinum.


Asunto(s)
Oxigenasas , beta Caroteno , Oxigenasas/genética , Oxigenasas de Función Mixta/genética
3.
J Appl Microbiol ; 132(6): 4330-4337, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35279928

RESUMEN

AIMS: Astaxanthin-producing protist Aurantiochytrium limacinum can accumulate higher amounts of astaxanthin under light conditions; however, little is known about the impact of light exposure on its metabolism. Here, we investigated the transcriptional profile of A. limacinum under light conditions. METHODS AND RESULTS: Transcriptomic analyses revealed that 962 genes of A. limacinum showed a significant change in expression under light conditions, most of which (94.5%) were downregulated. Furthermore, gene ontology enrichment analysis indicated that A. limacinum mainly downregulated genes associated with cell motility, proliferation and gene expression processes, whose activities depend on ATP as an energy source. Additionally, the quantification of carotenoid and its transcripts suggested that ß-carotene and astaxanthin biosynthesis pathways were rate-limiting and tightly regulated steps, respectively. In comparison, these processes were enhanced under light conditions. CONCLUSIONS: Considering that astaxanthin accumulation was highly correlated with reactive oxygen species (ROS) levels in microalgae, our results suggest that A. limacinum reduces ATP consumption to decrease the occurrence of ROS in mitochondria while accumulating astaxanthin to prevent ROS damage. SIGNIFICANCE AND IMPACT OF STUDY: This study provides novel insights into the impact of light exposure on A. limacinum metabolism, thereby facilitating a complete understanding of this protist for efficient astaxanthin production.


Asunto(s)
Microalgas , Estramenopilos , Adenosina Trifosfato/metabolismo , Perfilación de la Expresión Génica , Microalgas/genética , Especies Reactivas de Oxígeno/metabolismo , Estramenopilos/genética , Estramenopilos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA