Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 797
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Chem ; 18(1): 131, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010206

RESUMEN

A fast eco-friendly colorimetric method was developed for the determination of Tobramycin in drug substance, ophthalmic formulations, and spiked human plasma using silver nanoparticles optical sensor. Even though tobramycin is non-UV-visible absorbing, the developed method is based on measuring the absorbance quenching of silver nanoparticles resulting from the interaction with tobramycin. Different factors affecting the absorbance intensity were studied as; silver nanoparticle concentration, pH, buffer type, and reaction time using quality by design approach. Validation of the proposed method was performed according to ICH guidelines and was found to be accurate, precise, and sensitive. The linearity range of tobramycin was 0.35-4.0 µg/mL. The optical sensor was successfully applied for the determination of Tobramycin in ophthalmic formulations and spiked human plasma without pre-treatment. Additionally, the binding between Tobramycin and PVP- capped silver nanoparticles was studied using molecular docking software. The method was assessed and compared to colorimetric reported methods for the green character using Green Analytical Procedure Index (GAPI) and Analytical GREEnness calculator (AGREE) tools and found to be greener.

2.
Talanta ; 278: 126545, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39002257

RESUMEN

Controlling glucose (Glu) intake is a "required course" for diabetics, thus quickly and precisely measuring the amount of Glu in food is crucial. For this purpose, a novel smartphone-assisted portable swab for the dual-mode visual detection of Glu was constructed combined the selectivity of natural enzymes with the controllable catalytic activity of nanozymes. Glu was specifically decomposed by glucose oxidase (natural enzyme) to produce H2O2, which was catalyzed by carbon dots (FeMn/N-CDs, nanozyme) to accelerate the reaction of o-phenylenediamine (OPD, colorless) to produce 2,3-diaminophenazine (DAP, yellow). As a result, the absorbance at 450 nm gradually increased with the increasing concentration of Glu, leading to a color change in the system from colorless to yellow. Meanwhile, the fluorescence of FeMn/N-CDs gradually decreased at 450 nm, while the fluorescence of DAP gradually increased at 550 nm, allowing for both ratiometric fluorescence and colorimetric dual-mode detection. Furthermore, natural enzyme and nanozyme together with OPD were co-loaded on the swabs to achieve cascade catalysis of Glu. The assembled portable swabs have detection ranges of 1-600 µM (LOD = 0.37 µM) and 4-1200 µM (LOD = 1.19 µM) for the colorimetric and fluorometric detection, respectively. The field test results on real samples demonstrated that the portable swabs have great promise for use in efficiently and accurately guiding the dietary intake of diabetics.

3.
Food Chem ; 459: 140369, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39002338

RESUMEN

The improper use of organophosphate pesticides (OPs) can lead to residue posing a serious threat to human health and environment. Therefore, the development of a simple, portable, and sensitive detection method is crucial. Herein, a bioenzyme-nanozyme-chromogen all-in-one paper-based sensor was synthesized. Initially, the Ce/Zr-MOF with peroxidase-like activity was grown on filter paper (FP) using in-situ solvent thermal method, resulting in Ce/Zr-MOF@FP. Subsequently, the AChE-ChO-TMB system was immobilized onto Ce/Zr-MOF@FP using biocompatible gelatin, which enhanced cascade catalysis efficiency through the proximity effect. Based on the inhibition principle of OPs on AChE, we integrated this sensor with Python-based image recognition algorithm to achieve detection of OPs. Using 2,2-dichlorovinyl dimethyl phosphate (DDVP) as a model of OPs, it has good detection performance with a detection limit of 0.32 ng mL-1 and a recovery rate range of 95-107%. The potential for on-site detection of DDVP residues in vegetables and fruit samples is highly promising.

4.
J Pharm Biomed Anal ; 248: 116323, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972227

RESUMEN

Taking advantage of the competitive binding affinity towards Ti(IV) between 4-(2-pyridylazo) resorcinol (PAR) and phthalate, a simple indicator displacement (ID)-based colorimetric assay was designed for indirect determination of a well-known phthalic acid ester, dibutyl phthalate (DBP). The indicator PAR and Ti(IV) formed a purplish-red-colored Ti(IV)-PAR complex (λmax = 540 nm) at a 1:1 ratio. In the presence of pre-hydrolyzed DBP, colorless complex formation of phthalate ion (emerging from alkaline hydrolysis of DBP) with Ti(IV) resulted in a hypsochromic shift in absorbance maximum, accompanying a color change from purplish-red to yellowish-orange (λmax = 390 nm) by the release of PAR from Ti(IV)-PAR system. Based on this mechanism, the linear response range of the system for DBP was found to lie between 0.16 and 0.37 mmol L-1 with an experimental detection limit of 11.6 µmol L-1. The recommended Ti(IV)-PAR system was successfully applied to DBP-containing pharmaceutical products (as real sample) after a simple clean-up process for removing possible water-soluble interferents. The analytical results obtained from the recommended method (by applying the standard addition approach) and the reference liquid chromatography-tandem mass spectrometric (LC-MS/MS) method were statistically compared using DBP-extract of the drug samples. Consequently, a simple and selective colorimetric ID strategy was proposed for the analysis of DBP in pharmaceuticals for the first time.


Asunto(s)
Colorimetría , Dibutil Ftalato , Límite de Detección , Resorcinoles , Titanio , Colorimetría/métodos , Resorcinoles/química , Resorcinoles/análisis , Titanio/química , Dibutil Ftalato/análisis , Dibutil Ftalato/química , Espectrometría de Masas en Tándem/métodos , Hidrólisis , Cromatografía Líquida de Alta Presión/métodos
5.
Clin Exp Optom ; : 1-7, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844079

RESUMEN

CLINICAL RELEVANCE: Colour overlays and lenses are used to relieve symptoms in some patients diagnosed with visual stress, but evidence to support this practice is lacking. In this small randomised crossover trial, a range of colours are beneficial and precise colour specification does not enhance this effect. BACKGROUND: This randomised, double-masked crossover trial aimed to test effectiveness of precisely selected lens tints for visual stress. METHODS: Twenty-nine participants aged 11 to 72 (mean 30) years diagnosed with visual stress were issued with their selected coloured overlay then with tinted lenses at two colour settings. An eye examination and coloured overlay test were followed by intuitive colorimetry to select a colour to minimise symptoms (optimal tint) and the closest setting at which the symptoms returned (sub-optimal, or placebo tint). The tints were worn for one month each in randomised order. Reading speed was measured using the Wilkins Rate of Reading Test, a subjective scale was used to gauge symptoms, and the patient was asked to indicate whether one of the tints alleviated their symptoms more than the other. RESULTS: Reading speed was significantly higher with colour than without (p < 0.001), but was similar with the overlay and both tints (p = 1.0). Discomfort/distortion rating (1-7) was lower with colour than without (p < 0.001), but no difference was found between the overlay and both tints (p > 0.1). About half (47%) of the patients preferred/strongly preferred their optimal tint, and 39% preferred/strongly preferred their sub-optimal tint, while 14% had no preference. CONCLUSIONS: While our patients read more quickly and were more comfortable when using a tint, there was no difference in outcome between the optimal and sub-optimal tints. These results suggest that for patients diagnosed with visual stress, precision tints are no more helpful than sub-optimal, placebo tints.

6.
Anal Chim Acta ; 1314: 342769, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38876513

RESUMEN

Echinococcosis and tuberculosis are two common zoonotic diseases that can cause severe pulmonary infections. Early screening and treatment monitoring are of great significance, especially in areas with limited medical resources. Herein, we designed an operation-friendly and rapid magnetic enrichment-silver acetylene chromogenic immunoassay (Me-Sacia) to monitor the antibody. The main components included secondary antibody-modified magnetic nanoparticles (MNP-Ab2) as capture nanoparticles, specific peptide (EG95 or CFP10)-modified silver nanoparticles (AgNP-PTs) as detection nanoparticles, and alkyne-modified gold nanoflowers as chromogenic nanoparticles. Based on the magnetic separation and plasma luminescence techniques, Me-Sacia could completely replace the colorimetric assay of biological enzymes. It reduced the detection time to approximately 1 h and simplified the labor-intensive and equipment-intensive processes associated with conventional ELISA. Meanwhile, the Me-Sacia showed universality for various blood samples and intuitive observation with the naked eye. Compared to conventional ELISA, Me-Sacia lowered the detection limit by approximately 96.8 %, increased the overall speed by approximately 15 times, and improved sensitivity by approximately 7.2 %, with a 100 % specificity and a coefficient of variation (CV) of less than 15 %.


Asunto(s)
Equinococosis , Tuberculosis Pulmonar , Humanos , Animales , Tuberculosis Pulmonar/diagnóstico , Equinococosis/diagnóstico , Inmunoensayo/métodos , Plata/química , Oro/química , Nanopartículas del Metal/química , Zoonosis/diagnóstico , Límite de Detección
7.
Food Res Int ; 189: 114567, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876609

RESUMEN

This work incorporated bioactives extracted from jabuticaba peel in the form of concentrated extract (JBE) and microencapsulated powders with maltodextrin (MDP) and gum arabic (GAP) in a dairy drink, evaluating its stability, in vitro bioaccessibility, and glycemic response. We evaluated the pH, acidity, colorimetry, total phenolics and anthocyanins, antioxidant capacity, degradation kinetics and half-life of anthocyanins, bioaccessibility, and postprandial glycemic physicochemical characteristics response in healthy individuals. The drinks incorporated with polyphenols (JBE, GAP, and MDP) and the control dairy drink (CDD) maintained stable pH and acidity over 28 days. In color, the parameter a*, the most relevant to the study, was reduced for all formulations due to degradation of anthocyanins. Phenolic and antioxidant content remained constant. In bioaccessibility, we found that after the gastrointestinal simulation, there was a decrease in phenolics and anthocyanins in all formulations. In the glycemic response, we observed that the smallest incremental areas of glucose were obtained for GAP and JBE compared to CDD, demonstrating that polyphenols reduced glucose absorption. Then, the bioactives from jabuticaba peel, incorporated into a dairy drink, showed good storage stability and improved the product's functional aspects.


Asunto(s)
Antocianinas , Antioxidantes , Goma Arábiga , Polifenoles , Polisacáridos , Polifenoles/análisis , Humanos , Polisacáridos/química , Antioxidantes/análisis , Goma Arábiga/química , Antocianinas/análisis , Extractos Vegetales/química , Productos Lácteos/análisis , Glucemia/metabolismo , Frutas/química , Disponibilidad Biológica , Concentración de Iones de Hidrógeno , Digestión , Myrtaceae/química , Composición de Medicamentos , Índice Glucémico , Femenino , Masculino , Adulto
8.
Biosensors (Basel) ; 14(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38920573

RESUMEN

Optical bioassays are challenged by the growing requirements of sensitivity and simplicity. Recent developments in the combination of redox cycling with different optical methods for signal amplification have proven to have tremendous potential for improving analytical performances. In this review, we summarized the advances in optical bioassays based on the signal amplification of redox cycling, including colorimetry, fluorescence, surface-enhanced Raman scattering, chemiluminescence, and electrochemiluminescence. Furthermore, this review highlighted the general principles to effectively couple redox cycling with optical bioassays, and particular attention was focused on current challenges and future opportunities.


Asunto(s)
Técnicas Biosensibles , Oxidación-Reducción , Espectrometría Raman , Bioensayo/métodos , Colorimetría , Mediciones Luminiscentes
9.
Biosensors (Basel) ; 14(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38920588

RESUMEN

Gold nanoparticle (AuNP) fabrication via the oxidation of D-glucose is applied for detecting two foodborne pathogens, Enterococcus faecium (E. faecium) and Staphylococcus aureus (S. aureus). D-glucose is used as a reducing agent due to its oxidation to gluconic acid by sodium hydroxide (NaOH), resulting in the formation of AuNPs. Based on this mechanism, we develop AuNP-based colorimetric detection in conjunction with loop-mediated isothermal amplification (LAMP) for accurately identifying the infectious bacteria. Here, Au+ ions bind to the base of double-stranded DNA. In the presence of D-glucose and NaOH, the LAMP amplicon-Au+ complex maintains its bound state at 65 °C for 10 min while it is reduced to AuNPs in a dispersed form, exhibiting a red color. We aimed to pre-mix D-glucose with LAMP reagents before amplification and induce successful colorimetry without inhibiting amplification to simplify the experimental process and decrease the reaction time. Therefore, the entire process, including LAMP and colorimetric detection, is accomplished in approximately 1 h. The limit of detection of E. faecium and S. aureus is confirmed using the introduced method as 101 CFU/mL and 100 fg/µL, respectively. We expect that colorimetric detection using D-glucose-mediated AuNP synthesis offers an application for simple and immediate molecular diagnosis.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Enterococcus faecium , Glucosa , Oro , Nanopartículas del Metal , Técnicas de Amplificación de Ácido Nucleico , Staphylococcus aureus , Oro/química , Nanopartículas del Metal/química , Staphylococcus aureus/aislamiento & purificación , Microbiología de Alimentos , Técnicas de Diagnóstico Molecular
10.
Mikrochim Acta ; 191(7): 394, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877187

RESUMEN

Sulfur-doped BCNO quantum dots (S-BCNO QDs) emitting green fluorescence were prepared by elemental doping method. The ratiometric fluorescence probe with dual emissions was simply established by mixed S-BCNO QDs with gold nanoclusters (GSH-Au NCs). Because the emission spectrum of Au NCs (donor) at 615 nm overlapped well with the ultraviolet absorption of malachite green (MG), fluorescence resonance energy transfer (FRET) can be achieved. When the concentration of MG increased, the fluorescence intensity (F495) of S-BCNO QDs decreased slowly, while the fluorescence intensity (F615) of Au NCs decreased sharply. The fluorescence intensity ratio of F615/F495 decreased with the increase of MG. By plotting the F615/F495 values against MG concentration, a sensitive and rapid detection of MG was possible with a wide detection range (0.1-50 µM) and a low detection limit of 10 nM. Due to the accompanying fluorescence color change from pink to blue-green, it can be used for visual detection. A three dimensional-printing device utilizing digital image colorimetry to capture color changes through the built-in camera, enables quantitative detection of MG with a good linearity between the values of red/green ratio and MG concentrations at the range 1-50 µM. This sensing platform had a range of advantages, including high cost-effectiveness, portability, ease of operation, and high sensitivity. Furthermore, the sensing platform was successfully applied to the detection of MG in real water sample and fish samples, thereby verifying the reliability and effectiveness of this sensing platform in water quality monitoring and food safety.

11.
Mikrochim Acta ; 191(7): 411, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900245

RESUMEN

Ratiometric fluorescence and colorimetric strategies for detecting activity of butyrylcholinesterase (BChE) in human serum were developed by using g-C3N4 nanosheets, silver ion (Ag+) and o-phenylenediamine (OPD) as chromogenic agents. The oxidation-reduction reaction of OPD and Ag+ generates 2,3-diaminophenazine (oxOPD). Under exciation at 370 nm, g-C3N4 nanosheets and oxOPD emit fluorescence at 440 nm (F440) and 560 nm (F560), respectively. Additionally, oxOPD exhibits quenching ability towards g-C3N4 nanosheets via photoinduced electron transfer (PET) process. Thiocholine (TCh), as a product of BChE-catalyzed hydrolysis reaction of butylthiocholine iodide (BTCh), can coordinate with Ag+ intensively, and consequently diminish the amount of free Ag+ in the testing system. Less amount of free Ag+ leads to less production of oxOPD, resulting in less fluorescence quenching towards g-C3N4 nanosheets as well as less fluorescence emission of oxOPD. Therefore, by using g-C3N4 nanosheets and oxOPD as fluorescence indicators, the intensity ratio of their fluorescence (F440/F560) was calculated and employed to evaluate the activity of BChE. Similarly, the color variation of oxOPD indicated by the absorbance at 420 nm (ΔA420) was monitored for the same purpose. These strategies were validated to be sensitive and selective for detecting BChE activity in human serum, with limits of detection (LODs) of 0.1 U L-1 for ratiometric fluorescence mode and 0.7 U L-1 for colorimetric mode.


Asunto(s)
Butirilcolinesterasa , Colorimetría , Nanoestructuras , Fenilendiaminas , Plata , Espectrometría de Fluorescencia , Humanos , Colorimetría/métodos , Plata/química , Fenilendiaminas/química , Butirilcolinesterasa/sangre , Butirilcolinesterasa/química , Espectrometría de Fluorescencia/métodos , Nanoestructuras/química , Compuestos de Nitrógeno/química , Límite de Detección , Nitrilos/química , Grafito , Fenazinas
12.
Heliyon ; 10(11): e32239, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882362

RESUMEN

This study proposes a novel colorimetric method based on the ultraviolet/visible spectrophotometry-colorimetric method (UV/Vis-CM) for detecting and quantifying total triterpenoids in traditional Chinese medicine. By incorporating the colourants 2-hydroxy-5-methylbenzaldehyde and concentrated sulfuric acid, triterpenoid compounds colour development became more sensitive, and the detection accuracy was significantly improved. 2-hydroxy-5-methylbenzaldehyde and concentrated sulfuric acid were incorporated in a 1:3 vol ratio at room temperature to react with the total triterpenes for 25 min, incorporated to an ice bath for 5 min, and then detected at the optimal absorption wavelength. The accuracy and reliability of this method were verified by comparison with high-performance liquid chromatography and four other colorimetric methods. Additionally, this approach has the advantages of not requiring heating during operation, high sensitivity, short usage time, low solvent usage, and low equipment costs. This study not only offers a reliable method for detecting total triterpenes in traditional Chinese medicine but also offers a rapid detection tool for on-site testing and large-scale screening, laying a foundation for the modernization of traditional Chinese medicine research, quality control, and drug development.

13.
Nanotechnology ; 35(35)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38821044

RESUMEN

Recent studies have shown that abnormalmiRNA-378expression is a rule, rather than an exception, in cervical cancer and can be used as a diagnostic and prognostic biomarker to assess tumor initiation. In this study, we developed a general, sensitive strategy for detectingmiRNA-378using catalytic hairpin self-assembly (CHA) combined with gold nanoparticles (AuNP) colorimetry. The presence ofmiRNA-378triggers the repeated self-assembly of two designed hairpin DNAs (H1 and H2) into dsDNA polymers, which leads to changes in the surface plasmon resonance absorption band and the macroscopic color of the AuNP colloids due to the formation of nanoparticle-DNA conjugates. This experimental phenomenon can be observed by ultraviolet-visible spectrometry or even with the naked eye. Using this method,miRNA-378could be quantitatively detected at the picomolar level (as low as 20.7 pM). Compared with traditional methods, such as quantitative polymerase chain reaction and RNA blotting, this strategy has a simple operation, low cost, and high sensitivity and selectivity, and thus, exhibits significant potential for miRNA detection.


Asunto(s)
Colorimetría , Oro , Nanopartículas del Metal , MicroARNs , MicroARNs/genética , MicroARNs/análisis , Oro/química , Nanopartículas del Metal/química , Humanos , Colorimetría/métodos , Resonancia por Plasmón de Superficie/métodos , ADN/química , ADN/genética , Catálisis
14.
Mikrochim Acta ; 191(6): 329, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743300

RESUMEN

A miniaturized analytical methodology was introduced based on the combination of a direct and online hollow fiber microextraction method with smartphone color detection. The method was used for the determination of formaldehyde (target analyte) in fabric and wastewater samples. In this regard, two reagents including ammonium acetate buffer and acetylacetone were added to the formaldehyde samples to create a colored compound. The colored compound was extracted from the sample by using the hollow fiber liquid-phase microextraction method, the extracted phase was not taken out of the extraction box and was directly transferred into a specially designed detection cell, and a smartphone was applied for in-situ color sensing and data readout. This combination gathered the advantages of both state-of-the-art microextraction techniques and smartphone sensing. Formaldehyde, as a carcinogenic compound widely used in paint and clothing industries, was selected as a model test. Factors affecting extraction efficiency were investigated and optimized, including the type of organic solvents, reagent concentration, salt, pH, stirring speed, reaction temperature, and extraction time. The linear region of the method under optimal conditions was 40-1500 µg L-1 for wastewater samples and 0.3-11.2 mg kg-1 for fabrics. The limit of detection and limit of qualification were 13 and 40 µg L-1, respectively. The relative standard deviations for concentrations of 100 and 1000 µg L-1 were 6% and 4%, respectively. To evaluate the application of the method for real samples, types of fabric and two samples of oil refinery wastewater were selected. The relative recovery in real samples was 84-98%. The results of the analytical parameters of the method show that the developed method can be used as an efficient method to determine formaldehyde in real samples.

15.
Talanta ; 276: 126217, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759361

RESUMEN

In this manuscript, a 3D-printed analytical device has been successfully developed to classify illicit drugs using smartphone-based colorimetry. Representative compounds of different families, including cocaine, 3,4-methylenedioxy-methamphetamine (MDMA), amphetamine and cathinone derivatives, pyrrolidine cathinones, and 3,4-methylenedioxy cathinones, have been analyzed and classified after appropriate reaction with Marquis, gallic acid, sulfuric acid, Simon and Scott reagents. A picture of the colored products was acquired using a smartphone, and the corrected RGB values were used as input data in the chemometric treatment. ANN using two active layers of nodes (6 nodes in layer 1 and 2 nodes in layer 2) with a sigmoidal transfer function and a minimum strict threshold of 0.50 identified illicit drug samples with a sensitivity higher than 83.4 % and a specificity of 100 % with limits of detection in the microgram range. The 3D printed device can operate connected to a rechargeable lithium-ion cell portable battery, is inexpensive, and requires minimal training. The analytical device has been able to discriminate the analyzed psychoactive substances from cutting and mixing agents, being a useful tool for law enforcement agents to use as a screening method.


Asunto(s)
Drogas Ilícitas , Redes Neurales de la Computación , Impresión Tridimensional , Teléfono Inteligente , Drogas Ilícitas/análisis , Colorimetría/instrumentación , Colorimetría/métodos , Detección de Abuso de Sustancias/métodos , Detección de Abuso de Sustancias/instrumentación , Humanos
16.
Talanta ; 276: 126254, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759362

RESUMEN

A quantitative method for acid-base titrations in paper-based devices (PADs) is described to analyze acetic acid in vinegar samples. In this work, two different types of PADs were developed: a device for individual spot testing and a microfluidic device. Digital colorimetry was used as the detection method, and the images were acquired using a smartphone and a homemade box with LED lights for controlled image acquisition. Titration curves were built with just eight points, using the R channel based on the gradual color transition from red to blue of litmus, a natural indicator. The endpoint was accurately determined by second derivative calculations. Both systems were applied to fifteen vinegar samples of different types, and good concentration results were obtained in comparison to the reference method. The proposed methodology is simple, fast, environmentally friendly, and surpasses the need for calibration curve construction. Moreover, the subjective endpoint identification is eliminated, and the method was automated to provide a high throughput workflow, suitable for quality control processes and real-time measurements.

17.
Anal Bioanal Chem ; 416(16): 3835-3846, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38809460

RESUMEN

An environmentally conscious methodology is investigated for the precise and discerning identification of trace concentrations of gold ions in diverse matrices. A novel optical sensor membrane is proposed for the determination of Au3+ ions, utilizing the immobilization of ß-2-hydroxybenzyl-3-methoxy-2-hydroxyazastyrene (HMHS) entrapped in polyvinyl chloride (PVC). The sensor incorporates sodium tetraphenylborate (Na-TPB) as the ionic additive and dibutyl phthalate (DBP) as a plasticizer. Under optimal conditions, the suggested sensor exhibits a linear calibration response to Au3+ ions within a concentration range of 5.0 to 165 ng mL-1. Detection and quantification limits are specified as 1.5 and 4.8 ng mL-1, respectively, with a rapid response time of 5.0 min. Upon presentation, this optical sensor not only affirms high reproducibility, stability, and an extended operational lifespan but also showcases exceptional selectivity for Au3+ ions. Notably, no discernible interference is observed when assessing the potential influence of other cations and anions on Au3+ ion detection. The adaptability of this optical sensor is validated through its successful application in determining Au3+ ion concentrations across various sample types, including water, environmental, cosmetics, and soil matrices.

18.
Methods Mol Biol ; 2804: 127-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753145

RESUMEN

Within the vast field of medical biotechnology, the biopharmaceutical industry is particularly fast-growing and highly competitive, so reducing time and costs associated to process optimization becomes instrumental to ensure speed to market and, consequently, profitability. The manufacturing of biopharmaceutical products, namely, monoclonal antibodies (mAbs), relies mostly on mammalian cell culture processes, which are highly dynamic and, consequently, difficult to optimize. In this context, there is currently an unmet need of analytical methods that can be integrated at-line in a bioreactor, for systematic monitoring and quantification of key metabolites and proteins. Microfluidic-based assays have been extensively and successfully applied in the field of molecular diagnostics; however, this technology remains largely unexplored for Process Analytical Technology (PAT), despite holding great potential for the at-line measurement of different analytes in bioreactor processes, combining low reagent/molecule consumption with assay sensitivity and rapid turnaround times.Here, the fabrication and handling of a microfluidic cartridge for protein quantification using bead-based affinity assays is described. The device allows geometrical multiplexed immunodetection of specific protein analytes directly from bioreactor samples within 2.5 h and minimal hands-on time. As a proof-of-concept, quantification of Chinese hamster ovary (CHO) host cell proteins (HCP) as key impurities, IgG as product of interest, and lactate dehydrogenase (LDH) as cell viability marker was demonstrated with limits of detection (LoD) in the low ng/mL range. Negligible matrix interference and no cross-reactivity between the different immunoassays on chip were found. The results highlight the potential of the miniaturized analytical method for PAT at reduced cost and complexity in comparison with sophisticated instruments that are currently the state-of-the-art in this context.


Asunto(s)
Cricetulus , Células CHO , Animales , Anticuerpos Monoclonales/inmunología , Reactores Biológicos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Microfluídica/métodos , Microfluídica/instrumentación , Cricetinae
19.
Anal Chim Acta ; 1308: 342661, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740461

RESUMEN

BACKGROUND: Timely diagnosis and prevention of diseases require rapid and sensitive detection of biomarkers from blood samples without external interference. Abnormal electrolyte ion levels in the blood are closely linked to various physiological disorders, including hypertension. Therefore, accurate, interference-free, and precise measurement of electrolyte ion concentrations in the blood is particularly important. RESULTS: In this work, a colorimetric sensor based on a biphasic microdroplet extraction is proposed for the detection of electrolyte ions in the blood. This sensor employs mini-pillar arrays to facilitate contact between adjacent blood microdroplets and organic microdroplets serving as sensing phases, with any color changes being monitored through a smartphone's colorimetric software. The sensor is highly resistant to interference and does not require pre-treatment of the blood samples. Remarkably, the sensor exhibits exceptional reliability and stability, allowing for rapid enrichment and detection of K+, Na+, and Cl- in the blood within 10 s (Cl-), 15 s (K+) and 40 s (Na+) respectively. SIGNIFICANCE: The colorimetric sensor based on biphasic microdroplet extraction offers portability due to its compact size and ease of operation without the need for large instruments. Additionally, it is location-independent, making it a promising tool for real-time biomarker detection in body fluids such as blood.


Asunto(s)
Colorimetría , Electrólitos , Potasio , Colorimetría/métodos , Electrólitos/química , Humanos , Potasio/sangre , Sodio/sangre , Cloruros/sangre , Iones/química
20.
Anal Sci ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748392

RESUMEN

The development of a highly selective and ultra-sensitive optical sensor for detecting scandium (Sc3+) ions involves incorporating the reagent 2,3-dichloro-6-(3-carboxy-2-hydroxy-1-naphthylazo)quinoxaline (DCHNAQ) into a silica sol-gel thin film on a glass substrate. This innovative approach utilizes tetraethoxy-silane (TEOS) as the precursor, maintaining a sol-gel pH level of 4.5, a water-to-alkoxide ratio of 5:1, and a DCHNAQ concentration of 5.0 × 10-4 M. A detailed exploration of the impact of sol-gel parameters on the sensing capabilities of the developed sensor has been meticulously undertaken. This innovative sensor demonstrates remarkable selectivity in evaluating Sc3+ ions over a dynamic range of 7.5-170 ng/mL, with limits of quantification and detection recorded at 7.3 and 2.20 ng/mL, respectively. Consistent results are achieved with a minimal RSD of 1.47 and 0.94% for Sc3+ ions at 50 and 100 ng/mL, respectively, coupled with a swift response time of three min. Assessments of interference demonstrate a noteworthy preference for Sc3+ions, accomplished by enclosing DCHNAQ within the sol-gel framework and making optimal structural modifications to the doped sol-gel. The sensor offers straightforward regeneration using a 0.25 M EDTA solution, exhibiting complete reversibility. Comparative analysis with other methodologies underscores the efficacy in determining Sc3+ions in various reference materials, including plant leaves, fish, water, alloys, ores, and monazite samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA