Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Med ; 121: 103363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653119

RESUMEN

Dosimetry audits for passive motion management require dynamically-acquired measurements in a moving phantom to be compared to statically calculated planned doses. This study aimed to characterise the relationship between planning and delivery errors, and the measured dose in the Imaging and Radiation Oncology Core (IROC) thorax phantom, to assess different audit scoring approaches. Treatment plans were created using a 4DCT scan of the IROC phantom, equipped with film and thermoluminescent dosimeters (TLDs). Plans were created on the average intensity projection from all bins. Three levels of aperture complexity were explored: dynamic conformal arcs (DCAT), low-, and high-complexity volumetric modulated arcs (VMATLo, VMATHi). Simulated-measured doses were generated by modelling motion using isocenter shifts. Various errors were introduced including incorrect setup position and target delineation. Simulated-measured film doses were scored using gamma analysis and compared within specific regions of interest (ROIs) as well as the entire film plane. Positional offsets were estimated based on isodoses on the film planes, and point doses within TLD contours were compared. Motion-induced differences between planned and simulated-measured doses were evident even without introduced errors Gamma passing rates within target-centred ROIs correlated well with error-induced dose differences, while whole film passing rates did not. Isodose-based setup position measurements demonstrated high sensitivity to errors. Simulated point doses at TLD locations yielded erratic responses to introduced errors. ROI gamma analysis demonstrated enhanced sensitivity to simulated errors compared to whole film analysis. Gamma results may be further contextualized by other metrics such as setup position or maximum gamma.


Asunto(s)
Movimiento , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador , Tórax , Tórax/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Radiometría/instrumentación , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada , Tomografía Computarizada Cuatridimensional , Movimiento (Física)
2.
Phys Med ; 119: 103321, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38394979

RESUMEN

BACKGROUND: End-to-end dosimetry audit for brachytherapy is challenging due to the steep dose gradient. However, it is an efficient method to detect unintended errors in actual clinical practice. PURPOSE: We aimed to develop an on-site end-to-end test phantom for three-dimensional image-guided brachytherapy (IGBT) for cervical cancer. METHODS: The test phantom we developed consisted of a water tank with an applicator/detector holder. The holder was designed to accommodate the applicator and insert an ionization chamber (PinPoint; PTW, Freiburg, Germany) to measure the dose at point A. Imaging and reconstruction were performed in the same way as performed for a patient. The feasibility of our test phantom was assessed in two different hospitals using tandem and ovoid (made of either metal or carbon) applicators that the hospitals provided. RESULTS: The measured and calculated doses at point A were compared for each applicator. We observed that the values obtained using metal applicators were consistently lower, on an average by -2.3%, than the calculated values, while those obtained using carbon applicators were comparable to the calculated values. This difference can be attributed to the attenuation of the dose by the metal applicators, resulting in a lower dose at point A. The majority of treatment planning system, including the one used in this study, do not account for the material of applicator. CONCLUSIONS: An end-to-end test phantom for IGBT was developed, tested, and applied in a dosimetry audit in hospitals and showed favorable results for evaluating the point A dose.


Asunto(s)
Braquiterapia , Neoplasias del Cuello Uterino , Femenino , Humanos , Imagenología Tridimensional/métodos , Braquiterapia/métodos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/radioterapia , Radiometría/métodos , Dosificación Radioterapéutica , Carbono
3.
Phys Imaging Radiat Oncol ; 29: 100544, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38327761

RESUMEN

Background and purpose: A dosimetry audit program based on alanine electron paramagnetic resonance (EPR) and radiochromic film dosimetry, may be a valuable tool for monitoring and improving the quality of lung stereotactic body radiotherapy (SBRT). The aim of this study was to report the initial, independent assessment of the dosimetric accuracy for lung SBRT practice using these dosimeters in combination with a novel phantom design. Materials and Methods: The audit service was a remote audit program performed on a commercial lung phantom preloaded with film and alanine detectors. An alanine pellet was placed in the centre of the target simulated using silicone in a 3D-printed mould. Large film detectors were placed coronally through the target and the lung/tissue interface and analysed using gamma analysis. The beam output was always checked on the same day with alanine dosimetry in water. We audited 29 plans from 14 centres up to now. Results: For the alanine results 28/29 plans were within 5 % with 19/29 plans being within 3 %. The passing rates were > 95 % for the film through the target for 27/29 plans and 17/29 plans for the film at the lung/tissue interface. For three plans the passing rate was < 90 % for the film on top of the lungs. Conclusions: The preliminary results were very satisfactory for both detectors. The high passing rates for the film in the interface region indicate good performance of the treatment planning systems. The phantom design was robust and performed well on several treatment systems.

4.
Biomed Phys Eng Express ; 10(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38269653

RESUMEN

The treatment of head and neck (H&N) cancer presents formidable challenges due to the involvement of normal tissue and organs at risk (OARs) in the close vicinity. Ensuring the precise administration of the prescribed dose demands prior dose verification. Considering contour irregularity and heterogeneity in the H&N region, an anthropomorphic and heterogeneous H&N phantom was developed and fabricated locally for conducting the dosimetry audit in advanced radiotherapy treatments. This specialized phantom emulates human anatomy and incorporates a removable cylindrical insert housing a C-shaped planning target volume (PTV) alongside key OARs including the spinal cord, oral cavity, and bilateral parotid glands. Acrylonitrile Butadiene Styrene (ABS) was chosen for PTV and parotid fabrication, while Delrin was adopted for spinal cord fabrication. A pivotal feature of this phantom is the incorporation of thermoluminescent dosimeters (TLDs) within the PTV and OARs, enabling the measurement of delivered dose. To execute the dosimetry audit, the phantom, accompanied by dosimeters and comprehensive guidelines, was disseminated to multiple radiotherapy centers. Subsequently, hospital physicists acquired computed tomography (CT) scans to generate treatment plans for phantom irradiation. The treatment planning system (TPS) computed the anticipated dose distribution within the phantom, and post-irradiation TLD readings yielded actual dose measurements. The TPS calculated and TLD measured dose values at most of the locations inside the PTV were found comparable within ± 4%. The outcomes affirm the suitability of the developed anthropomorphic H&N phantom for precise dosimetry audits of advanced radiotherapy treatments.


Asunto(s)
Cabeza , Radiometría , Humanos , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA