Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Neurophysiol ; 156: 69-75, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37890232

RESUMEN

OBJECTIVE: To clarify whether preoperative language magnetoencephalography (MEG) predicts postoperative verbal memory (VM) changes in left mesial temporal lobe epilepsy (LMTLE). METHODS: We reviewed 18 right-handed patients with LMTLE who underwent anterior temporal lobectomy or selective amygdala hippocampectomy, 12 with (HS+) and 6 without hippocampal sclerosis (HS-). Patients underwent neuropsychological assessment before and after surgery. MEG was measured with an auditory verbal learning task in patients preoperatively and in 15 right-handed controls. Dynamic statistical parametric mapping (dSPM) was used for source imaging of task-related activity. Language laterality index (LI) was calculated by z-score of dSPM in language-related regions. LI in the region of HS+ and HS- was compared to controls. The correlation between LI and postoperative VM change was assessed in HS+ and HS-. RESULTS: Preoperative LI in supramarginal gyrus showed greater right-shifted lateralization in both HS+ and HS- than in controls. Right-shifted LI in supramarginal gyrus was correlated with postoperative VM increase in HS+ (p = 0.019), but not in HS-. CONCLUSIONS: Right-shifted language lateralization in dSPM of MEG signals may predict favorable VM outcome in HS+ of LMTLE. SIGNIFICANCE: Findings warrant further investigation of the relation between regional language laterality index and postoperative verbal memory changes.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Magnetoencefalografía , Memoria/fisiología , Lóbulo Temporal , Lenguaje , Pruebas Neuropsicológicas , Lateralidad Funcional/fisiología , Imagen por Resonancia Magnética , Hipocampo/diagnóstico por imagen , Hipocampo/cirugía
2.
Front Neurosci ; 17: 1151885, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332870

RESUMEN

Introduction: The single equivalent current dipole (sECD) is the standard clinical procedure for presurgical language mapping in epilepsy using magnetoencephalography (MEG). However, the sECD approach has not been widely used in clinical assessments, mainly because it requires subjective judgements in selecting several critical parameters. To address this limitation, we developed an automatic sECD algorithm (AsECDa) for language mapping. Methods: The localization accuracy of the AsECDa was evaluated using synthetic MEG data. Subsequently, the reliability and efficiency of AsECDa were compared to three other common source localization methods using MEG data recorded during two sessions of a receptive language task in 21 epilepsy patients. These methods include minimum norm estimation (MNE), dynamic statistical parametric mapping (dSPM), and dynamic imaging of coherent sources (DICS) beamformer. Results: For the synthetic single dipole MEG data with a typical signal-to-noise ratio, the average localization error of AsECDa was less than 2 mm for simulated superficial and deep dipoles. For the patient data, AsECDa showed better test-retest reliability (TRR) of the language laterality index (LI) than MNE, dSPM, and DICS beamformer. Specifically, the LI calculated with AsECDa revealed excellent TRR between the two MEG sessions across all patients (Cor = 0.80), while the LI for MNE, dSPM, DICS-event-related desynchronization (ERD) in the alpha band, and DICS-ERD in the low beta band ranged lower (Cor = 0.71, 0.64, 0.54, and 0.48, respectively). Furthermore, AsECDa identified 38% of patients with atypical language lateralization (i.e., right lateralization or bilateral), compared to 73%, 68%, 55%, and 50% identified by DICS-ERD in the low beta band, DICS-ERD in the alpha band, MNE, and dSPM, respectively. Compared to other methods, AsECDa's results were more consistent with previous studies that reported atypical language lateralization in 20-30% of epilepsy patients. Discussion: Our study suggests that AsECDa is a promising approach for presurgical language mapping, and its fully automated nature makes it easy to implement and reliable for clinical evaluations.

3.
J Neurosurg Pediatr ; : 1-5, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604322

RESUMEN

Advanced dynamic statistical parametric mapping (AdSPM) with magnetoencephalography (MEG) was used to identify MRI-negative epileptogenic lesions in this report. A 15-year-old girl had MRI-negative and pharmacology-resistant focal-onset epilepsy. She experienced two types of seizures. Type I consisted of her arousal from sleep, staring, and a forced head-turning movement to the left, followed by secondary generalization. Type II began with an aura of dizziness followed by staring and postictal headache with fatigue. Scalp video-electroencephalography (EEG) captured two type I seizures originating from the right frontocentral region. MEG showed scattered dipoles over the right frontal region. AdSPM identified the spike source at the bottom of the right inferior frontal sulcus. Intracranial video-EEG captured one type I seizure, which originated from the depth electrode at the bottom of the sulcus and correlated with the AdSPM spike source. Accordingly, the patient underwent resection of the middle and inferior frontal gyri, including the AdSPM-identified spike source. Histopathological examination revealed that the patient had focal cortical dysplasia type IIB. To date, the patient has been seizure free for 2 years while receiving topiramate treatment. This is the first preliminary report to identify MRI-negative epilepsy using AdSPM. Further investigation of AdSPM would be valuable for cases of MRI-negative focal epilepsy.

5.
Clin Neurophysiol ; 129(6): 1182-1191, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29649770

RESUMEN

OBJECTIVE: To investigate whether advanced dynamic statistical parametric mapping (AdSPM) using magnetoencephalography (MEG) can better localize focal cortical dysplasia at bottom of sulcus (FCDB). METHODS: We analyzed 15 children with diagnosis of FCDB in surgical specimen and 3 T MRI by using MEG. Using AdSPM, we analyzed a ±50 ms epoch relative to each single moving dipole (SMD) and applied summation technique to estimate the source activity. The most active area in AdSPM was defined as the location of AdSPM spike source. We compared spatial congruence between MRI-visible FCDB and (1) dipole cluster in SMD method; and (2) AdSPM spike source. RESULTS: AdSPM localized FCDB in 12 (80%) of 15 children whereas dipole cluster localized six (40%). AdSPM spike source was concordant within seizure onset zone in nine (82%) of 11 children with intracranial video EEG. Eleven children with resective surgery achieved seizure freedom with follow-up period of 1.9 ±â€¯1.5 years. Ten (91%) of them had an AdSPM spike source in the resection area. CONCLUSION: AdSPM can noninvasively and neurophysiologically localize epileptogenic FCDB, whether it overlaps with the dipole cluster or not. SIGNIFICANCE: This is the first study to localize epileptogenic FCDB using MEG.


Asunto(s)
Encéfalo/fisiopatología , Malformaciones del Desarrollo Cortical/fisiopatología , Convulsiones/diagnóstico , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Niño , Preescolar , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/cirugía , Estudios Retrospectivos , Convulsiones/diagnóstico por imagen , Convulsiones/fisiopatología , Convulsiones/cirugía , Resultado del Tratamiento
6.
Neuroimage Clin ; 2: 663-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24179817

RESUMEN

The analysis of epileptic discharges in magnetoencephalography with minimum norm estimates (MNE) is expected to provide more precise localization of epileptic discharges compared with electroencephalographic estimations. However, the clinical feasibility of MNE remains unclear. In this study, we aimed to elucidate the onset and propagation patterns of interictal spikes using MNE. Seven patients with intractable epilepsy whose epileptogenicity was assumed to exist in the convexity of the cerebral cortex were studied. For MNE and electrocorticography (ECoG), we characterized the propagation patterns of interictal epileptic discharges according to the area in which they originated and where they extended; we then examined whether the propagation patterns observed in MNE were identified by ECoG. We also examined the relationship between the positions of spikes estimated by the equivalent current dipole (ECD) method and MNE. Among the seven patients, nine propagation patterns of epileptic discharges were observed by MNE, all of which were also identified by ECoG. In seven patterns, the epileptic activity propagated around the initial portion. However, in two patterns, the center of activities moved according to propagation with maintained activity of the initial portion. The locations of spikes identified by the ECD method were within the areas estimated by MNE when the epileptic activity propagated. However, the ECD method failed to detect onset activities identified by MNE in three of nine patterns. Thus, MNE is more useful as a means of presurgical evaluation for epilepsy than the ECD method because it can delineate the onset of epileptic activities as shown in ECoG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA