Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 758
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Esthet Restor Dent ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095320

RESUMEN

OBJECTIVE: To evaluate the fracture behavior of human molars with extensive MOD restorations using short-fiber-reinforced resin composite of varying viscosities. MATERIALS AND METHODS: Human molars were randomly divided into seven groups (n = 12): intact teeth (control); restoration using conventional high-viscosity resin composite without (Filtek Z350XT, 3M) or with fibers (everX Posterior, GC); conventional low-viscosity resin composite without (Filtek Supreme Flowable, 3M) or with fibers (everX Flow Dentin Shade, GC); bulk-fill low-viscosity resin composite (Filtek Bulk Fill Flow, 3M) or with fibers (everX Flow Bulk Shade, GC). Restorations were performed on extensive MOD preparations, following the manufacturers' recommendations for each material. Specimens underwent fracture strength testing (N) and fracture pattern (%) categorized as repairable, possibly repairable, or non-repairable. Results were analyzed using a generalized linear model (N) and Fisher's exact test (%), with α = 0.05. RESULTS: Restorations performed with high-viscosity materials showed fracture strength values similar to the control and higher than those of restorations using low-viscosity resin composites (p < 0.0001), except for the bulk-fill low-viscosity resin composite with fibers (p > 0.05). Teeth restored using low-viscosity resin composite with fibers showed a higher % of repairable and possibly repairable fractures than the control (p = 0.0091). CONCLUSIONS: The viscosity of materials mediated the fracture strength, with restorations using high-viscosity resin composites promoting values similar to the intact tooth; however, the presence of fibers influenced the fracture pattern. CLINICAL SIGNIFICANCE: Teeth with MOD cavities restored with high-viscosity resin composites showed similar fracture strength to intact teeth. Fiber-reinforced low-viscosity resin composite for the base of restoration resulted in a more repairable/possibly repairable fracture pattern.

2.
BMC Musculoskelet Disord ; 25(1): 626, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107768

RESUMEN

BACKGROUND: This study investigates the potential of novel meniscal parameters as predictive factors for incident radiographic knee osteoarthritis (ROA) over a span of four years, as part of the Osteoarthritis Initiative (OAI) study. OBJECTIVES: Quantitative measurements of meniscal parameters alteration could serve as predictors of OA's occurrence and progression. METHODS AND MATERIALS: A nested matched case-control study design was used to select participants from OAI study. Case knees (n = 178) were defined as those with incident ROA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline (BL), evolving into KLG 2 or above by year 4). Control knees were matched one-to-one by sex, age and radiographic status with case knees. The mean distance from medial-to-lateral meniscal lesions [Mean(MLD)], mean value of tibial plateau width [Mean(TPW)] and the mean of the relative percentage of the medial-to-lateral meniscal lesions distance [Mean(RMLD)] were evaluated through coronal T2-weighted turbo spin echo (TSE) MRI at P-0 (visit when incident ROA was found on radiograph), P-1(one year prior to P-0) and baseline, respectively. Using the imaging data of one patient, the mechanism was investigated by finite element analysis. RESULTS: Participants were on average 60.22 years old, predominantly female (66.7%) and overweight (mean BMI: 28.15). Mean(MLD) and Mean(RMLD) were significantly greater for incident knees compared to no incident knees at baseline, P-1 and P-0. [Mean(MLD), Mean(RMLD); (42.56-49.73) mean ± (7.70-9.52) mm SD vs. (38.14-40.78) mean ± (5.51-7.05)mm SD; (58.61-68.95) mean ± (8.52-11.40) mm SD vs. (52.52-56.35) mean ± (6.53-7.85)mm SD, respectively]. Baseline Mean(MLD) and Mean(RMLD), [Adjusted OR, 95%CI: 1.11(1.07 to 1.16) and 1.13(1.09 to 1.17), respectively], were associated with incident ROA during 4 years, However, Mean(TPW) [Adjusted OR, 95%CI: 0.98(0.94 to 1.02)] was not associated with incident ROA during 4 years. While Mean(TPW) at P-1 and P-0 was not associated with the risk of incident ROA, Mean(MLD) and Mean(RMLD) at P-1 and P-0 were significantly positively associated with the risk of incident ROA. CONCLUSIONS: The meniscal parameters alteration could be an important imaging biomarker to predict the occurrence of ROA.


Asunto(s)
Imagen por Resonancia Magnética , Meniscos Tibiales , Osteoartritis de la Rodilla , Radiografía , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Estudios de Casos y Controles , Meniscos Tibiales/diagnóstico por imagen , Meniscos Tibiales/patología , Valor Predictivo de las Pruebas , Incidencia , Progresión de la Enfermedad , Lesiones de Menisco Tibial/diagnóstico por imagen , Lesiones de Menisco Tibial/epidemiología
3.
J Anat ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086103

RESUMEN

The mammalian skull is very malleable and has notably radiated into highly diverse morphologies, fulfilling a broad range of functional needs. Although gnawing is relatively common in mammals, this behavior and its associated morphology are diagnostic features for rodents. These animals possess a very versatile and highly mechanically advantageous masticatory apparatus, which, for instance, allowed caviomorph rodents to colonize South America during the Mid-Eocene and successfully radiate in over 200 extant species throughout most continental niches. Previous work has shown that differences in bite force within caviomorphs could be better explained by changes in muscle development than in mechanical advantages (i.e., in cranial overall morphology). Considering the strong bites they apply, it is interesting to assess how the reaction forces upon the incisors (compression) and the powerful adductor musculature pulling (tension) mechanically affect the cranium, especially between species with different ecologies (e.g., chisel-tooth digging). Thus, we ran finite element analyses upon crania of the subterranean Talas' tuco-tuco Ctenomys talarum, the semi-fossorial common degu Octodon degus, and the saxicolous long-tailed chinchilla Chinchilla lanigera to simulate: (A) in vivo biting in all species, and (B) rescaled muscle forces in non-ctenomyid rodents to match those of the tuco-tuco. Results show that the stress patterns correlate with the mechanical demands of distinctive ecologies, on in vivo-based simulations, with the subterranean tuco-tuco being the most stressed species. In contrast, when standardizing all three species (rescaled models), non-ctenomyid models exhibited a several-fold increase in stress, in both magnitude and affected areas. Detailed observations evidenced that this increase in stress was higher in lateral sections of the snout and, mainly, the zygomatic arch; between approximately 2.5-3.5 times in the common degu and 4.0-5.0 times in the long-tailed chinchilla. Yet, neither species, module, nor simulation condition presented load factor levels that would imply structural failure by strong, incidental biting. Our results let us conclude that caviomorphs have a high baseline for mechanical strength of the cranium because of the inheritance of a very robust "rodent" model, while interspecific differences are associated with particular masticatory habits and the concomitant level of development of the adductor musculature. Especially, the masseteric and zygomaticomandibular muscles contribute to >80% of the bite force, and therefore, their contraction is responsible for the highest strains upon their origin sites, that is, the zygomatic arch and the snout. Thus, the robust crania of the subterranean and highly aggressive tuco-tucos allow them to withstand much stronger forces than degus or chinchillas, such as the ones produced by their hypertrophied jaw adductor muscles or imparted by the soil reaction.

4.
Plant Physiol Biochem ; 215: 109021, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39137679

RESUMEN

VIP1, an Arabidopsis thaliana basic leucine zipper transcription factor, and its close homologs are imported from the cytoplasm to the nucleus when cells are exposed to mechanical stress. They bind to AGCTG (G/T) and regulate mechanical stress responses in roots. However, their role in leaves is unclear. To clarify this, mutant lines (QM1 and QM2) that lack the functions of VIP1 and its close homologs (bZIP29, bZIP30 and PosF21) were generated. Brushing more severely damaged QM1 and QM2 leaves than wild-type leaves. Genes regulating stress responses and cell wall properties were downregulated in brushed QM2 leaves and upregulated in brushed VIP1-GFP-overexpressing (VIP1-GFPox) leaves compared to wild-type leaves in a transcriptome analysis. The VIP1-binding sequence AGCTG (G/T) was enriched in the promoters of genes downregulated in brushed QM2 leaves compared to wild-type leaves and in those upregulated in brushed VIP1-GFPox leaves. Calmodulin-binding transcription activators (CAMTAs) are known regulators of mechanical stress responses, and the CAMTA-binding sequence CGCGT was enriched in the promoters of genes upregulated in the brushed QM2 leaves and in those downregulated in the brushed VIP1-GFPox leaves. These findings suggest that VIP1 and its homologs upregulate genes via AGCTG (G/T) and influence CAMTA-dependent gene expression to enhance mechanical stress tolerance in leaves.

5.
FEBS Lett ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152526

RESUMEN

Stiffening of the brain extracellular matrix (ECM) in glioblastoma promotes tumor progression. Previously, we discovered that protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) plays a role in glioblastoma stem cell (GSC) adaptation to matrix stiffness through PERK/FLNA-dependent F-actin remodeling. Here, we examined the involvement of PERK in detecting stiffness changes via focal adhesion complex (FAC) formation. Compared to control GSCs, PERK-deficient GSCs show decreased vinculin and tensin expression, while talin and integrin-ß1 remain constant. Furthermore, vimentin was also reduced while tubulin increased, and a stiffness-dependent increase of the differentiation marker GFAP expression was absent in PERK-deficient GSCs. In conclusion, our study reveals a novel role for PERK in FAC formation during matrix stiffening, which is likely linked to its regulation of F-actin remodeling.

6.
Soft Robot ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078805

RESUMEN

Soft robots have morphological characteristics that make them preferred candidates, over their traditionally rigid counterparts, for executing physical interaction tasks with the environment. Therefore, equipping them with force sensing is essential for ensuring safety, enhancing their controllability, and adding autonomy. At the same time, it is necessary to preserve their inherent flexibility when integrating sensory units. Soft-fluidic actuators (SFAs) with hydraulic actuation address some of the challenges posed by the compressibility of pneumatic actuation while maintaining system compliance. This research further investigates the feasibility of utilizing the incompressible actuation fluid as the means of actuation and of multiaxial sensing. We have developed a hyperelastic model for the actuation pressure, acting as a baseline pressure. Any disparities from the baseline have been mapped to external forces, using the principle of pressure-based fluidic soft sensor. Computed tomography imaging has been used to examine inner deformation and validate the analytically derived actuation-pressure model. The induced stresses within the SFA are examined using COMSOL simulations, contributing to the development of a calibration algorithm, which accounts for geometric and cross-sectional nonlinearities and maps pressure variations with tip forces. Two force types (concentrated and distributed) acting on our SFA under different configurations are examined, using two experimental setups described as "Point Load" and "Distributed Force." The force sensing algorithm achieves high accuracy with a maximum absolute error of 0.32N for forces with a magnitude of up to 6N.

7.
New Phytol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044722

RESUMEN

The initial free expansion of the embryo within a seed is at some point inhibited by its contact with the testa, resulting in its formation of folds and borders. Although less obvious, mechanical forces appear to trigger and accelerate seed maturation. However, the mechanistic basis for this effect remains unclear. Manipulation of the mechanical constraints affecting either the in vivo or in vitro growth of oilseed rape embryos was combined with analytical approaches, including magnetic resonance imaging and computer graphic reconstruction, immunolabelling, flow cytometry, transcriptomic, proteomic, lipidomic and metabolomic profiling. Our data implied that, in vivo, the imposition of mechanical restraints impeded the expansion of testa and endosperm, resulting in the embryo's deformation. An acceleration in embryonic development was implied by the cessation of cell proliferation and the stimulation of lipid and protein storage, characteristic of embryo maturation. The underlying molecular signature included elements of cell cycle control, reactive oxygen species metabolism and transcriptional reprogramming, along with allosteric control of glycolytic flux. Constricting the space allowed for the expansion of in vitro grown embryos induced a similar response. The conclusion is that the imposition of mechanical constraints over the growth of the developing oilseed rape embryo provides an important trigger for its maturation.

8.
Oral Dis ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039759

RESUMEN

OBJECTIVES: Periodontitis is a common oral disease that is aggravated by occlusal trauma. Fibrin is a protein that participates in blood clotting and is involved in several human diseases. The deposition of fibrin in periodontal tissues can induce periodontitis, while mechanical forces may regulate the degradation of fibrin. Our study investigated how occlusal trauma aggravating periodontitis through regulating the plasminogen/plasmin system and fibrin deposition. MATERIALS AND METHODS: This study included 84 C57BL/6 mice in which periodontitis was induced with or without occlusal trauma. Micro-computed tomography was used to assess bone resorption. Fibrin, fibrinogen, plasminogen, plasmin, tissue plasminogen activator (t-PA), and urokinase plasminogen activator (u-PA) levels were measured using Frazer-Lendrum staining, quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting, immunofluorescence staining, and immunohistochemistry staining. RESULTS: Occlusal trauma aggravated inflammation and bone resorption. The periodontitis group showed significant fibrin deposition. Occlusal trauma increased fibrin deposition and neutrophil aggregation. The periodontitis with occlusal trauma group had decreased fibrinogen, t-PA, and u-PA expression and plasmin and fibrin degradation product levels, as well as increased plasminogen levels. CONCLUSION: Occlusal trauma promotes excessive fibrin deposition by suppressing the plasminogen/plasmin system, thus exacerbating periodontitis.

9.
J Orthop Surg Res ; 19(1): 385, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951850

RESUMEN

BACKGROUND: In recent years, the use of tapered-wedge short stems has increased due to their ability to preserve bones and tendons. Surgical techniques occasionally result in a varus position of the stem, which is particularly pronounced in short stems. Although the varus position is not clinically problematic, there are reports of an increased incidence of stress shielding and cortical hypertrophy. Thus, we evaluated and examined the acceptable range of varus angles using finite element analysis. METHODS: Patients diagnosed with osteoarthritis of the hip joint who had undergone arthroplasty were selected and classified into three types [champagne-flute (type A), intermediate (type B), and stovepipe (type C)]. Finite element analysis was performed using Mechanical Finder. The model was created using a Taperloc microplasty stem with the varus angle increased by 1° from 0° to 5° from the bone axis and classified into seven zones based on Gruen's zone classification under loading conditions in a one-leg standing position. The volume of interest was set, the mean equivalent stress for each zone was calculated. RESULTS: A significant decrease in stress was observed in zone 2, and increased stress was observed in zones 3 and 4, suggesting the emergence of a distal periosteal reaction, similar to the results of previous studies. In zone 2, there was a significant decrease in stress in all groups at a varus angle ≥ 3°. In zone 3, stress increased from ≥ 3° in type B and ≥ 4° in type C. In zone 4, there was a significant increase in stress at varus angles of ≥ 2° in types A and B and at ≥ 3° in type C. CONCLUSION: In zone 2, the varus angle at which stress shielding above Engh classification grade 3 may appear is expected to be ≥ 3°. Distal cortical hypertrophy may appear in zones 3 and 4; the narrower the medullary cavity shape, the smaller the allowable angle of internal recession, and the wider the medullary cavity shape, the wider the allowable range. Long-term follow-up is required in patients with varus angles > 3°.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Análisis de Elementos Finitos , Prótesis de Cadera , Estrés Mecánico , Humanos , Artroplastia de Reemplazo de Cadera/métodos , Masculino , Femenino , Diseño de Prótesis , Anciano , Osteoartritis de la Cadera/cirugía , Osteoartritis de la Cadera/diagnóstico por imagen , Persona de Mediana Edad
10.
Proc Natl Acad Sci U S A ; 121(29): e2404551121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990945

RESUMEN

Confined cell migration hampers genome integrity and activates the ATR and ATM mechano-transduction pathways. We investigated whether the mechanical stress generated by metastatic interstitial migration contributes to the enhanced chromosomal instability observed in metastatic tumor cells. We employed live cell imaging, micro-fluidic approaches, and scRNA-seq to follow the fate of tumor cells experiencing confined migration. We found that, despite functional ATR, ATM, and spindle assembly checkpoint (SAC) pathways, tumor cells dividing across constriction frequently exhibited altered spindle pole organization, chromosome mis-segregations, micronuclei formation, chromosome fragility, high gene copy number variation, and transcriptional de-regulation and up-regulation of c-MYC oncogenic transcriptional signature via c-MYC locus amplifications. In vivo tumor settings showed that malignant cells populating metastatic foci or infiltrating the interstitial stroma gave rise to cells expressing high levels of c-MYC. Altogether, our data suggest that mechanical stress during metastatic migration contributes to override the checkpoint controls and boosts genotoxic and oncogenic events. Our findings may explain why cancer aneuploidy often does not correlate with mutations in SAC genes and why c-MYC amplification is strongly linked to metastatic tumors.


Asunto(s)
Movimiento Celular , Amplificación de Genes , Proteínas Proto-Oncogénicas c-myc , Estrés Mecánico , Humanos , Movimiento Celular/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Línea Celular Tumoral , Ratones , Mitosis/genética , Inestabilidad Cromosómica , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(29): e2320470121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990951

RESUMEN

Although the formation of new walls during plant cell division tends to follow maximal tensile stress direction, analyses of individual cells over time reveal a much more variable behavior. The origin of such variability as well as the exact role of interphasic microtubule behavior before cell division have remained mysterious so far. To approach this question, we took advantage of the Arabidopsis stem, where the tensile stress pattern is both highly anisotropic and stable. Although cortical microtubules (CMTs) generally align with maximal tensile stress, we detected a specific time window, ca. 3 h before cell division, where cells form a radial pattern of CMTs. This microtubule array organization preceded preprophase band (PPB) formation, a transient CMT array predicting the position of the future division plane. It was observed under different growth conditions and was not related to cell geometry or polar auxin transport. Interestingly, this cortical radial pattern correlated with the well-documented increase of cytoplasmic microtubule accumulation before cell division. This radial organization was prolonged in cells of the trm678 mutant, where CMTs are unable to form a PPB. Whereas division plane orientation in trm678 is noisier, we found that cell division symmetry was in contrast less variable between daughter cells. We propose that this "radial step" reflects a trade-off in robustness for two essential cell division attributes: symmetry and orientation. This involves a "reset" stage in G2, where an increased cytoplasmic microtubule accumulation transiently disrupts CMT alignment with tissue stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , División Celular , Microtúbulos , Arabidopsis/metabolismo , Arabidopsis/citología , Microtúbulos/metabolismo , División Celular/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo
12.
FASEB J ; 38(13): e23776, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958998

RESUMEN

This study aimed to explore how mechanical stress affects osteogenic differentiation via the miR-187-3p/CNR2 pathway. To conduct this study, 24 female C57BL/6 mice, aged 8 weeks, were used and divided into four groups. The Sham and OVX groups did not undergo treadmill exercise, while the Sham + EX and OVX + EX groups received a 8-week treadmill exercise. Post-training, bone marrow and fresh femur samples were collected for further analysis. Molecular biology analysis, histomorphology analysis, and micro-CT analysis were conducted on these samples. Moreover, primary osteoblasts were cultured under osteogenic conditions and divided into GM group and CTS group. The cells in the CTS group underwent a sinusoidal stretching regimen for either 3 or 7 days. The expression of early osteoblast markers (Runx2, OPN, and ALP) was measured to assess differentiation. The study findings revealed that mechanical stress has a regulatory impact on osteoblast differentiation. The expression of miR-187-3p was observed to decrease, facilitating osteogenic differentiation, while the expression of CNR2 increased significantly. These observations suggest that mechanical stress, miR-187-3p, and CNR2 play crucial roles in regulating osteogenic differentiation. Both in vivo and in vitro experiments have confirmed that mechanical stress downregulates miR-187-3p and upregulates CNR2, which leads to the restoration of distal femoral bone mass and enhancement of osteoblast differentiation. Therefore, mechanical stress promotes osteoblasts, resulting in improved osteoporosis through the miR-187-3p/CNR2 signaling pathway. These findings have broad prospect and provide molecular biology guidance for the basic research and clinical application of exercise in the prevention and treatment of PMOP.


Asunto(s)
Diferenciación Celular , MicroARNs , Osteoblastos , Osteogénesis , Osteoporosis Posmenopáusica , Estrés Mecánico , Animales , Femenino , Humanos , Ratones , Células Cultivadas , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Osteoblastos/metabolismo , Osteoporosis Posmenopáusica/metabolismo , Osteoporosis Posmenopáusica/terapia , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/patología , Transducción de Señal
13.
J Mol Med (Berl) ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002004

RESUMEN

Physiological root resorption of deciduous teeth is a normal phenomenon occurring during the developmental stages of children. Previous research has indicated the pivotal role of the inflammatory microenvironment in this process, although the specific mechanisms remain unclear. This study is aimed at elucidating the involvement of the alpha7 nicotinic acetylcholine receptors (α7 nAChR)-autophagy axis in the regulation of the inflammatory microenvironment during physiological root resorption in deciduous teeth. Samples were collected from deciduous teeth at various stages of physiological root resorption, and deciduous dental pulp stem cells (DDPSCs) were isolated and cultured during the mid-phase of root resorption. The findings revealed a substantial infiltration of the pulp of deciduous teeth at the mid-phase of root resorption, characterized by elevated expression levels of α7 nAChR and IL-1ß. Significantly increased IL-1ß and α7 nAChR expressions were observed in DDPSCs during the mid-phase of root resorption, with α7 nAChR demonstrating a regulatory effect on IL-1ß. Moreover, evidence suggested that mechanical stress may act as a trigger, regulating autophagy and IL-1 expression via α7 nAChR. In conclusion, mechanical stress was identified as a regulator of autophagy in DDPSCs through α7 nAChR, influencing the expression of IL-1ß and contributing to the formation of the inflammatory microenvironment. This mechanism plays a crucial role in the physiological root resorption of deciduous teeth. KEY MESSAGES: The pulp of deciduous teeth at mid-phase of root resorption was heavily infiltrated with high expression of α7nAChR and IL-1ß. α7 nAChR acts as an initiating factor to regulate IL-1ß through autophagy in DDPSCs. Mechanical stress can regulate autophagy of DDPSCs through α7 nAChR and thus affect IL-1ß expression and inflammatory microenvironment formation in physiological root resorption in deciduous teeth.

14.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G295-G305, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954823

RESUMEN

Crohn's disease (CD) is an inflammatory bowel disease characterized by transmural inflammation and intestinal fibrosis. Mechanisms of fibrosis in CD are not well understood. Transmural inflammation is associated with inflammatory cell infiltration, stenosis, and distention, which present mechanical stress (MS) to the bowel wall. We hypothesize that MS induces gene expression of profibrotic mediators such as connective tissue growth factor (CTGF), which may contribute to fibrosis in CD. A rodent model of CD was induced by intracolonic instillation of TNBS to the distal colon. TNBS instillation induced a localized transmural inflammation (site I), with a distended colon segment (site P) proximal to site I. We detected significant fibrosis and collagen content not only in site I but also in site P in CD rats by day 7. CTGF expression increased significantly in sites P and I, but not in the segment distal to the inflammation site. Increased CTGF expression was detected mainly in the smooth muscle cells (SMCs). When rats were fed exclusively with clear liquid diet to prevent mechanical distention in colitis, expression of CTGF in sites P and I was blocked. Direct stretch led to robust expression of CTGF in colonic SMC. Treatment of CD rats with anti-CTGF antibody FG-3149 reduced fibrosis and collagen content in both sites P and I and exhibited consistent trends toward normalizing expression of collagen mRNAs. In conclusion, our studies suggest that mechanical stress, by upregulating profibrotic mediators, i.e., CTGF, may play a critical role in fibrosis in CD.NEW & NOTEWORTHY We found that CTGF expression increased significantly not only in the inflammation site but in the distended segment proximal to inflammation in a rodent model of CD-like colitis. Release of mechanical distention prevented CTGF expression in CD rats, whereas direct stretch induced CTGF expression. Treatment with anti-CTGF antibody reduced fibrosis and collagen contents in CD rats. Thus, mechanical stress, via upregulating profibrotic mediators, i.e., CTGF, may play a critical role in fibrosis in CD.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Enfermedad de Crohn , Fibrosis , Ratas Sprague-Dawley , Estrés Mecánico , Animales , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Ratas , Masculino , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/patología , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Ácido Trinitrobencenosulfónico , Colágeno/metabolismo
15.
Nano Lett ; 24(30): 9129-9136, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38916205

RESUMEN

Mechanical stress significantly affects the physiological functions of cells, including tissue homeostasis, cytoskeletal alterations, and intracellular transport. As a major cytoskeletal component, microtubules respond to mechanical stimulation by altering their alignment and polymerization dynamics. Previously, we reported that microtubules may modulate cargo transport by one of the microtubule-associated motor proteins, dynein, under compressive mechanical stress. Despite the critical role of tensile stress in many biological functions, how tensile stress on microtubules regulates cargo transport is yet to be unveiled. The present study demonstrates that the low-level tensile stress-induced microtubule deformation facilitates dynein-driven transport. We validate our experimental findings using all-atom molecular dynamics simulation. Our study may provide important implications for developing new therapies for diseases that involve impaired intracellular transport.


Asunto(s)
Dineínas , Microtúbulos , Simulación de Dinámica Molecular , Estrés Mecánico , Microtúbulos/metabolismo , Microtúbulos/química , Dineínas/metabolismo , Dineínas/química , Resistencia a la Tracción , Transporte Biológico
16.
Ultrasonics ; 142: 107374, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875881

RESUMEN

This study investigates the size-dependent dynamics of bubbles and their interaction with soft boundaries under various ultrasound (US) conditions. We found that bubble behavior is influenced by size, with smaller bubbles displaying reduced inertial motion in similar ultrasound environments. Detailed analyses of three bubble sizes (1.5 µm, 15 µm, and 150 µm) next to a soft 1 kPa boundary revealed distinct patterns in radial oscillation, bubble center displacement, and boundary deflection for different ultrasound frequencies (5 kHz - 4 MHz). The smallest bubble maintained a spherical shape, while the largest experienced significant shape changes, indicative of impending jet formation. Investigating interactions at various frequencies highlighted the collapse tendency of the larger bubbles, showcasing maximum radial amplitude, displacement, and bubble wall velocity around its natural frequency. The presence of a soft boundary minimally affected radial amplitude and velocity, while the bubble displacement was contingent on the soft boundary modulus. Furthermore, boundary responses demonstrated that softer boundaries experienced less stress during bubble oscillations, exhibiting sharper peaks at resonance frequencies for larger bubbles. These findings provide valuable insights into optimizing ultrasound conditions for a variety of applications, highlighting the influence of bubble size and boundary properties on outcomes.

17.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891788

RESUMEN

In the process of tissue engineering, several types of stresses can influence the outcome of tissue regeneration. This outcome can be understood by designing hydrogels that mimic this process and studying how such hydrogel scaffolds and cells behave under a set of stresses. Here, a hydrogel formulation is proposed to create biomimetic scaffolds suitable for fibroblast cell culture. Subsequently, we examine the impact of external stresses on fibroblast cells cultured on both solid and porous hydrogels. These stresses included mechanical tension and altered-gravity conditions experienced during the 83rd parabolic flight campaign conducted by the European Space Agency. This study shows distinct cellular responses characterized by cell aggregation and redistribution in regions of intensified stress concentration. This paper presents a new biomimetic hydrogel that fulfills tissue-engineering requirements in terms of biocompatibility and mechanical stability. Moreover, it contributes to our comprehension of cellular biomechanics under diverse gravitational conditions, shedding light on the dynamic cellular adaptations versus varying stress environments.


Asunto(s)
Fibroblastos , Hidrogeles , Ingeniería de Tejidos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/citología , Hidrogeles/química , Ingeniería de Tejidos/métodos , Técnicas de Cultivo de Célula/métodos , Estrés Mecánico , Biomimética/métodos , Animales , Andamios del Tejido/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Humanos , Ratones
18.
Front Immunol ; 15: 1385006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895122

RESUMEN

Osteoarthritis (OA) is the most common form of arthritis, characterized by osteophyte formation, cartilage degradation, and structural and cellular alterations of the synovial membrane. Activated fibroblast-like synoviocytes (FLS) of the synovial membrane have been identified as key drivers, secreting humoral mediators that maintain inflammatory processes, proteases that cause cartilage and bone destruction, and factors that drive fibrotic processes. In normal tissue repair, fibrotic processes are terminated after the damage has been repaired. In fibrosis, tissue remodeling and wound healing are exaggerated and prolonged. Various stressors, including aging, joint instability, and inflammation, lead to structural damage of the joint and micro lesions within the synovial tissue. One result is the reduced production of synovial fluid (lubricants), which reduces the lubricity of the cartilage areas, leading to cartilage damage. In the synovial tissue, a wound-healing cascade is initiated by activating macrophages, Th2 cells, and FLS. The latter can be divided into two major populations. The destructive thymocyte differentiation antigen (THY)1─ phenotype is restricted to the synovial lining layer. In contrast, the THY1+ phenotype of the sublining layer is classified as an invasive one with immune effector function driving synovitis. The exact mechanisms involved in the transition of fibroblasts into a myofibroblast-like phenotype that drives fibrosis remain unclear. The review provides an overview of the phenotypes and spatial distribution of FLS in the synovial membrane of OA, describes the mechanisms of fibroblast into myofibroblast activation, and the metabolic alterations of myofibroblast-like cells.


Asunto(s)
Fibroblastos , Fibrosis , Osteoartritis , Fenotipo , Sinoviocitos , Humanos , Osteoartritis/patología , Osteoartritis/inmunología , Osteoartritis/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/inmunología , Animales , Sinoviocitos/metabolismo , Sinoviocitos/patología , Sinoviocitos/inmunología , Membrana Sinovial/patología , Membrana Sinovial/inmunología , Membrana Sinovial/metabolismo
19.
J Oral Biosci ; 66(3): 546-553, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936470

RESUMEN

OBJECTIVES: The present study aimed to elucidate the pathogenesis of temporomandibular joint (TMJ) osteoarthritis (TMJ-OA) in a mouse model. We investigated morphological and histological changes in the head of mandible cartilage and early immunohistochemical (IHC) changes in transforming growth factor (TGF)-ß, phosphorylated Smad-2/3 (p-Smad2/3), a TGF-ß signaling molecule, and asporin. METHODS: TMJ-OA was induced in a mouse model through unilateral partial discectomy. Micro-computed tomography (micro-CT) and safranin-O staining were performed to morphologically and histologically evaluate the degeneration of the head of mandible caused by TMJ-OA. IHC staining for TGF-ß, p-Smad2/3, and asporin was performed to evaluate the changes in protein expression. RESULTS: In the experimental group, three-dimensional (3D) morphometry revealed an enlarged head of mandible and safranin-O staining showed degeneration of cartilage tissue in the early stages of TMJ-OA compared to the control group. IHC staining revealed that TGF-ß, p-Smad2/3, and asporin expression increased in the head of mandible cartilage before the degeneration of cartilage tissue, and subsequently decreased for a short period. CONCLUSION: The findings suggested a negative feedback relationship between the expression of asporin and the TGF-ß/Smad transduction pathway, which may be involved in the degeneration of the head of mandible in the early stages of TMJ-OA. Asporin is a potential biomarker of the early stages of TMJ-OA, which ultimately leads to the irreversible degeneration of TMJ tissues.


Asunto(s)
Modelos Animales de Enfermedad , Inmunohistoquímica , Osteoartritis , Factor de Crecimiento Transformador beta , Animales , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/diagnóstico por imagen , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Microtomografía por Rayos X , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Articulación Temporomandibular/diagnóstico por imagen , Masculino , Trastornos de la Articulación Temporomandibular/metabolismo , Trastornos de la Articulación Temporomandibular/patología , Trastornos de la Articulación Temporomandibular/diagnóstico por imagen , Proteína smad3/metabolismo , Proteína smad3/genética , Proteína Smad2/metabolismo
20.
Stem Cell Rev Rep ; 20(6): 1521-1531, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848014

RESUMEN

Non-coding RNA has many types which has rich functions and plays an important role in the study of basic molecular mechanisms. Many non-coding RNA have important implications for pluripotent stem cells and embryonic stem cells. It has been found to affect the self-renewal and osteogenesis of many types of stem cells. They have also been found to regulate stem cell proliferation and induct bone differentiation. Periodontal ligament stem cells are essential for the regeneration of periodontal tissue. In recent years, in the field of stomatology, studies have found that many non-coding RNA also have significant regulatory effects on the proliferation and differentiation of periodontal stem cells and may become potential therapeutic targets for many common periodontal diseases such as periodontitis, bone/tooth/soft tissue loss and orthodontic treatment. Therefore, we summarized the current research status of non-coding RNA in the field of molecular mechanism of periodontal ligament stem cells and prospected its future progress.


Asunto(s)
Diferenciación Celular , Ligamento Periodontal , ARN no Traducido , Células Madre , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Humanos , Células Madre/metabolismo , Células Madre/citología , ARN no Traducido/genética , ARN no Traducido/metabolismo , Diferenciación Celular/genética , Animales , Proliferación Celular/genética , Osteogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA