Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 253, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982403

RESUMEN

BACKGROUND: Gut microbes play an important role in the growth and health of neonatal piglets. Probiotics can promote the healthy growth of neonatal piglets by regulating their gut microbes. The study investigated the effects of spraying Lactiplantibacillus plantarum P-8 (L. plantarum P-8) fermentation broth on the growth performance and gut microbes of neonatal piglets. RESULTS: The animals were randomly divided into probiotics groups (109 neonatal piglets) and control groups (113 neonatal piglets). The probiotics group was sprayed with L. plantarum P-8 fermented liquid from 3 day before the expected date of the sow to the 7-day-old of piglets, while the control group was sprayed with equal dose of PBS. Average daily gain (ADG), immune and antioxidant status and metagenome sequencing were used to assess the changes in growth performance and gut microbiota of neonatal piglets. The results showed that L. plantarum P-8 treatment significantly improved the average daily gain (P < 0.05) of neonatal piglets. L. plantarum P-8 increased the activities of CAT and SOD but reduced the levels of IL-2 and IL-6, effectively regulating the antioxidant capacity and immunity in neonatal piglets. L. plantarum P-8 adjusted the overall structure of gut microflora improving gut homeostasis to a certain extent, and significantly increased the relative abundance of gut beneficial bacteria such as L. mucosae and L. plantarum. CONCLUSION: Spraying L. plantarum P-8 can be a feasible and effective probiotic intervention not only improving the growth of neonatal piglets, regulating the antioxidant capacity and immunity of neonatal piglets, but also improving the gut homeostasis to a certain extent.


Asunto(s)
Animales Recién Nacidos , Microbioma Gastrointestinal , Probióticos , Animales , Probióticos/administración & dosificación , Probióticos/farmacología , Porcinos , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus plantarum , Fermentación , Antioxidantes/metabolismo , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Heces/microbiología
2.
Vet Microbiol ; 293: 110090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636177

RESUMEN

Macleaya cordata was a kind of traditional herbal medicine, which may a potential substitute for antibiotics. However, the effects of Macleaya cordata on neonatal piglets have rarely been reported. In this study, three groups were designed, including normal saline (Control group, CON), 8 mg/mL Macleaya cordata extract (MCE group, MCE) and 5 mg/mL Chlortetracycline Hydrochloride (CCH group, CCH), to investigate the effects of MCE on growth performance, blood parameters, inflammatory cytokines, regenerating islet-derived 3 gamma (REG3γ) expression and the transcriptomes of neonatal piglets. The results showed that, compared with the control group, MCE significantly increased the average daily gain (p < 0.01); spleen index (p < 0.05) contents of IL-10, TGF-ß, IgG in serum and sIgA in the ileum mucus of neonatal piglets at 7 d and 21 d (p < 0.01). The diarrhoea incidence and serum TNF-α and IFN-γ contents of neonatal piglets at 7 d and 21 d were significantly decreased (p < 0.01). In addition, MCE significantly increased the mRNA expression of TGF-ß, IL-10, and REG3γ (p < 0.01) and significantly decreased the mRNA expression of IL-33, TNF-α and IFN-γ in the ileal mucosa of neonatal piglets at 21 d (p < 0.01). The differentially expressed genes and the signal pathways, related to cytokine generation and regulation, immunoregulation and inflammation were identified. In conclusion, MCE can significantly improve growth performance, reduce diarrhoea incidence, relieve inflammation, improve immune function, and improve disease resistance in neonatal piglets. MCE can be used as a potential substitute for antibiotics in neonatal piglets.


Asunto(s)
Animales Recién Nacidos , Antiinflamatorios , Citocinas , Extractos Vegetales , Animales , Porcinos , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Citocinas/genética , Citocinas/metabolismo , Papaveraceae/química , Enfermedades de los Porcinos/inmunología , Diarrea/veterinaria , Diarrea/tratamiento farmacológico
3.
Virology ; 592: 109996, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38301448

RESUMEN

While vaccination and therapeutics for prevention/treatment of influenza are available, new strategies are needed to combat influenza disease in susceptible populations, particularly young children and newborns. Host associated microbiota play an important role in modulating the virulence of numerous pathogens, including the influenza A virus. In this study, we examined microbiome-influenza interactions in a neonatal piglet model system. The nasal microbiome of newborn piglets was longitudinally sampled before and after intranasal infection with recombinant viruses expressing hemagglutinins (HAs) derived from distinct zoonotic H1 subtypes. We found that viruses expressing different parental HAs manifested unique patterns of pathogenicity, and varied impacts on microbial community diversity. Despite these virus specific differences, a consistent microbial signature of viral infection was detected. Our results indicate that influenza A virus infection associates with the restructuring of nasal microbiome and such shifts in microbial diversity may contribute to outcomes of viral infection in neonatal piglets.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Microbiota , Infecciones por Orthomyxoviridae , Recién Nacido , Niño , Animales , Humanos , Porcinos , Preescolar , Virus de la Influenza A/genética , Hemaglutininas
4.
Transl Anim Sci ; 8: txad138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304120

RESUMEN

Twenty-six nulliparous sows were fed conventional gestation and lactation diets supplemented (N = 13) or not (N = 13) with extra daily supplements of 25-hydroxy-cholecalciferol (25-OH-D3; 4 ĸIU), ß-carotene (24 ĸIU), and copper (Cu)-proteinate (45 mg) from day 90 of gestation to 21 d of lactation (L21). In each litter, 10 piglets were divided into 5 pairs received, at 2 (L2) and 8 d (L8) of age, one of the five combinations of micronutrient sources and routes of administration (N = 260 piglets total). These neonatal treatments (N = 26 pairs or 52 piglets each) consisted of oral vitamin D3, retinol acetate and CuSO4 (T1); oral 25-OH-D3, ß-carotene, and Cu proteinate (T2); exposure to ultraviolet light (UVB), oral retinol palmitate and Cu gluconate (T3); intramuscular vitamin D3 and retinyl propionate and oral Cu acetate (T4); oral saline (CTRL). Oral or intramuscular provisions corresponded to 12 mg of Cu and 70 and 12 ĸIU of vitamins A and D, respectively. Blood samples were collected from all piglets at L2, L8, and L21 for determination of serum Cu, retinol, and 25-OH-D3. Body weight was measured at birth, L2, L8, and L21. Piglets were weaned at L21, and liver and blood samples were collected 2 d later to evaluate oxidative enzymes in blood and liver and hepatic ATP concentrations and expression of genes associated with antioxidant status. Sow treatments had marginal or no impacts on Cu, retinol, 25-OH-D3, or antioxidant status in piglet blood serum and liver. However, when supplements were given to piglets, hepatic Cu was 38% greater in for all treated piglets compared to CTRL (P < 0.01), hepatic retinol was 3 times higher in T1 than in CTRL (P < 0.01) and intermediate for other treatments whereas serum 25-OH-D3 was markedly increased with T2 and T3 at L8 and L21, respectively, compared to CTRL (Piglet treatment × Age interaction, P < 0.01). Concerning antioxidant activities, glutathione peroxidase, and superoxide dismutase were increased (P < 0.03) in plasma of T2 piglets whereas the highest values (P < 0.03) for indicators of oxidative damage to proteins were observed in T4 piglets. The study revealed that oral Cu proteinate from T2, oral retinol acetate from T1, oral 25-hydroxy-cholecalciferol from T2, and UVB light exposure from T3 were the most efficient ways of increasing the postnatal status of these micronutrients in suckling piglets and this may have some impacts on their peri-weaning antioxidant status.

5.
Mol Nutr Food Res ; 67(16): e2200677, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37436085

RESUMEN

SCOPE: Colostrum composition is an important indicator of newborn piglet survival and growth. However, limited information is available on the association between colostrum metabolites in sows and serum metabolites in neonates. Therefore, the present study aims to determine the metabolites in the colostrum of sows, in the serum of their offspring piglets, and mother-offspring metabolite correlations in different pig breeds. METHODS AND RESULTS: Colostrum and serum samples are collected from 30 sows and their piglets from three pig breeds (Taoyuan black, TB; Xiangcun black, XB; and Duroc) to analyze the targeted metabolomics. This study identifies 191 metabolites in the colostrum of sows, including fatty acids, amino acids, bile acids, carnitines, carbohydrates, and organic acids, and the concentrations of these metabolites are highest in the TB pigs. Metabolite profiles in sow colostrum and piglet serum differ among Duroc, TB, and XB pigs, and the matching metabolites are mainly enriched in the digestive system and transportation pathways. Furthermore, identification of the associations between metabolites in the colostrum of sows and their neonate sera suggests that metabolite compounds from colostrum are transported to suckling piglets. CONCLUSION: The present study findings deepen the understanding of the composition of sow colostrum metabolites and the transportation of metabolites from sow colostrum to piglets. The findings also provide insight regarding the development of dietary formulas that resemble the sow colostrum for newborn animals to maintain health and improve the early growth of offspring.


Asunto(s)
Calostro , Dieta , Embarazo , Porcinos , Animales , Femenino , Calostro/química , Animales Recién Nacidos , Ácidos Grasos/análisis , Metabolómica , Lactancia
6.
Benef Microbes ; : 1-12, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37026367

RESUMEN

The objective of this study was to examine the effects of early-life host specific probiotic and lactoferrin (LF) supplementations on diarrhoea incidence, iron (Fe)-zinc (Zn) balance and antioxidant capabilities in serum of neonatal piglets. A total of eight sow litters obtained from parity matched sows were randomly divided into four groups and assigned to one of the four interventions: control (2.0 ml normal saline), bovine lactoferrin (bLF) (100 mg bLF in normal saline), probiotic (Pb) (1×109 cfu of swine origin Pediococcus acidilactici FT28 strain) and bLF+Pb (both 100 mg bLF and 1×109 cfu of P. acidilactici FT28). All the piglets received supplementations once daily orally for first 7 days of life. The incidence of diarrhoea markedly decreased in bLF group compared to control group. Notably, no incidences of diarrhoea were recorded in Pb and bLF+Pb groups. The Zn and Fe concentrations were significantly increased from day 7 to 21 in bLF and on day 21 in bLF+Pb group. No such changes were noted in Pb group. Total antioxidant capacity (TAC) in serum was significantly increased on days 7 and 15 in bLF group and on days 7 and 21 in bLF+Pb group. Malonaldehyde concentration was markedly reduced from day 7 to 21 in bLF and bLF+Pb groups. The concentrations of nitrate on days 15 and 21 and malonaldehyde on day 7 were significantly higher in Pb group, but mean TAC was unaltered from day 0 to 21. Although no correlation between the incidence of diarrhoea and Zn/Fe and oxidant/antioxidant homeostasis was noted in the Pb group, the supplementation of P. acidilactici FT28 alone was sufficient to prevent the incidence of diarrhoea in neonatal piglets. Taken together, it is concluded that strategic supplementation of P. acidilactici FT28 in early life could help in preventing diarrhoea until weaning of piglets.

7.
Metabolites ; 13(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36837833

RESUMEN

Data on the evolution of blood metabolites and metabolic markers in neonatal piglets are scarce, although this information is vital to detect physiological aberrations from normal development. We aimed to characterize age- and nutrition-related changes in the plasma metabolome and serum biochemistry of suckling and newly weaned piglets and assess metabolite patterns as physiological markers for the two phases. In two replicate batches (n = 10 litters/group), piglets either received sow milk alone or were additionally offered creep feed from day 10 until weaning (day 28). Blood was collected from one piglet/litter on days 7, 14, 21, 28, 31 and 35 of life, totaling five females and five males/group/day. Signature feature ranking identified plasma triglycerides (TG) as discriminative for age and nutrition during the suckling phase. Influential TG 20:4_36:5, TG 17:0_34:2 and TG 18:2_38:6 were higher in creep-fed piglets on days 14, 21 and 28 of life, respectively, compared to only sow milk-fed piglets. Metabolites belonging to pathways within histidine, D-glutamine and D-glutamate metabolism as well as hippuric acid were distinctive for the postweaning compared to the suckling period. In conclusion, plasma lipid profiles especially corresponded to the type of nutrition in the suckling phase and showed a strong weaning effect.

8.
Vet Microbiol ; 274: 109575, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36191572

RESUMEN

The pre- and post-weaning stages for piglets are critical periods for the maturation of intestinal functions and contamination with antibiotic resistant bacterial pathogens will threaten their intestinal health. The presence of bacteriophage can also alter bacterial populations in the intestine but whether transmission of antibiotic resistance genes (ARG) is affected by phage during maturation of the neonatal piglet intestine is not known. We therefore identified the intestinal virome along with ARGs and mobile genetic elements (MGE) from piglet fecal samples collected from 3 to 28 days representing the different growth stages. We found wide fluctuations for the intestinal virome of weaning piglets and most virus - related antibiotic resistance was derived from temperate phage suggesting a reservoir of multidrug resistance was present in the neonatal porcine gut. Our results provide a comprehensive understanding of ARGs associated with the intestinal virome that therefore represents a potential risk for horizontal ARG transfer to pathogenic bacteria.


Asunto(s)
Antibacterianos , Bacteriófagos , Animales , Porcinos , Antibacterianos/farmacología , Viroma , Farmacorresistencia Microbiana/genética , Bacterias , Genes Bacterianos , Bacteriófagos/genética
9.
J Virol ; 96(14): e0047722, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758666

RESUMEN

The mechanisms of colostrum-mediated virus transmission are difficult to elucidate because of the absence of experimental animal models and the difficulties in tissue sample collection from mothers in the peripartum period. Porcine epidemic diarrhea virus (PEDV) is a reemerging enteropathogenic coronavirus that has catastrophic impacts on the global pig industry. PEDV primarily infects neonatal piglets by multiple routes, especially 1- to 2-day-old neonatal piglets. Here, our epidemiological investigation and animal challenge experiments revealed that PEDV could be vertically transmitted from sows to neonatal piglets via colostrum, and CD3+ T cells in the colostrum play an important role in this process. The results showed that PEDV colonizing the intestinal epithelial cells (IECs) of orally immunized infected sows could be transferred to CD3+ T cells located just beneath the IECs. Next, PEDV-carrying CD3+ T cells, with the expression of integrin α4ß7 and CCR10, migrate from the intestine to the mammary gland through blood circulation. Arriving in the mammary gland, PEDV-carrying CD3+ T cells could be transported across mammary epithelial cells (MECs) into the lumen (colostrum), as illustrated by an autotransfusion assay and an MECs/T coculture system. The PEDV-carrying CD3+ T cells in colostrum could be interspersed between IECs of neonatal piglets, causing intestinal infection via cell-to-cell contact. Our study demonstrates for the first time that colostrum-derived CD3+ T cells comprise a potential route for the vertical transmission of PEDV. IMPORTANCE The colostrum represents an important infection route for many viruses. Here, we demonstrate the vertical transmission of porcine epidemic diarrhea virus (PEDV) from sows to neonatal piglets via colostrum. PEDV colonizing the intestinal epithelial cells could transfer the virus to CD3+ T cells located in the sow intestine. The PEDV-carrying CD3+ T cells in the sow intestine, with the expression of integrin α4ß7 and CCR10, arrive at the mammary gland through blood circulation and are transported across mammary epithelial cells into the lumen, finally leading to intestinal infection via cell-to-cell contact in neonatal piglets. Our study not only demonstrates an alternative route of PEDV infection but also provides an animal model of vertical transmission of human infectious disease.


Asunto(s)
Calostro , Infecciones por Coronavirus , Transmisión Vertical de Enfermedad Infecciosa , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Animales Recién Nacidos , Calostro/virología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/veterinaria , Femenino , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Linfocitos T/virología
10.
Trop Anim Health Prod ; 54(1): 41, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013815

RESUMEN

This study aimed to evaluate the effects of Saccharomyces cerevisiae var. boulardii (SB) for sows on their productive performance, colostrum and milk composition, and litter performance, in tropical humid climatic conditions. A total of 105 sows (Topigs Norsvin®) were allotted to a 5 × 3 completely randomized factorial design, with five diets (control diet; SBGL4 and SBGL8: 0.04 and 0.08% SB supplementation from the 90th day of gestation until 24th day of lactation; SBL4 and SBL8: 0.04 and 0.08% SB supplementation during lactation) and three parity order groups (PO: 1st and 2nd; 3rd and 4th; 5th to 7th), considering each sow and their litter as experimental unit. Sows above the 5th PO that fed control diet had a lower daily milk production (DMP), number of weaned piglets (NWP), and daily weight gain of litter (DWGL) than sows from 1st to 4th PO that fed the same diet (P < 0.05). Dietary supply of SBGL4 and SBGL8 to older sows provided a higher DMP, NWP, and DWGL when compared to sows of same PO that fed the control diet (P < 0.05). Dietary supply of SBGL4, SBGL8, SBL4, and SBL8 provided a higher dry matter and protein contents in sows' milk of 1st and 2nd PO when compared to sows from same PO that fed control diet (P < 0.05). Dietary supply of SB enhances milk yield of older sows and their litter performance, as well as the dry matter and protein content of younger sows' milk in tropical humid climatic conditions.


Asunto(s)
Calostro , Leche , Alimentación Animal/análisis , Animales , Dieta , Suplementos Dietéticos , Femenino , Lactancia , Paridad , Embarazo , Saccharomyces cerevisiae , Porcinos
11.
Animals (Basel) ; 11(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34573638

RESUMEN

Significant variation in the birth weight of piglets has arisen due to increased sow prolificacy. Intestinal development and function may be affected by birth weight. Low birth weight (LBW) pigs may also have reduced feed intake, leading to further impairment of intestinal development. The objective of this study was to examine the intestinal development pattern of LBW and normal birth weight (NBW) piglets with normal nutrition (NN) or restricted nutrition (RN) in the pre-weaning period. Jejunal intestinal samples were analyzed for target gene expression and enzyme activity at d 28 (weaning) and d 56 (post-weaning). At d 28, excitatory amino acid transporter (EAAC1) and sodium-dependent neutral amino acid transporter (B0AT1) were downregulated in LBW compared to NBW pigs (p < 0.05). On d 56, B0AT1 and ASCT2 (glutamine transporter) were downregulated in RN compared to NN pigs (p < 0.05), regardless of birth weight. Peptide transporter 1 (PepT1) expression was downregulated in LBW compared to NBW pigs at 28 d (p < 0.05), with no effects of treatments at 56 d. Sodium-glucose transporter-1 (SGLT1) was upregulated in NBW-NN compared to LBW-NN pigs (p < 0.05) at 28 d. Alkaline phosphatase (ALP) was upregulated in LBW-RN at d 28. At d 56, claudin-3 (CLDN-3) and Zonular occludin-1 (ZO-1) were upregulated in NN compared to RN pigs (p < 0.05). There were no treatment effects on ALP, maltase, or sucrase activity at 28 d. However, at 56 d, ALP was upregulated in NBW-NN pigs while sucrase activity was upregulated in NN pigs (p < 0.05). The results demonstrate differences in jejunal gene expression associated with birth weight, with reduced gene expression of amino acid transporters (PepT1, EAAC1, B0AT1) in LBW compared to NBW pigs (p < 0.05). While neonatal nutrient restriction had minimal effects at 28 d and d 56 for tight junction protein transcript abundance, neutral amino acid transporter abundance was upregulated in NN pigs compared to RN piglets (p < 0.05).

12.
Front Microbiol ; 12: 712212, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381436

RESUMEN

Administration of all-trans retinoic acid (ATRA) to pregnant sows improves developmental defects of Hoxa1-/- fetal pigs, and this study aimed to explore the influence of maternal ATRA administration during pregnancy on gut microbiota of neonatal piglets. Samples of jejunal and ileal meconium of neonatal piglets before suckling were collected including 5 Hoxa1-/- and 20 non-Hoxa1-/- (Hoxa1+/+ and Hoxa1+/-) neonatal piglets from the control group and 5 Hoxa1-/- and 7 non-Hoxa1-/- neonatal piglets from the experimental group. Results indicated that Hoxa1 mutation shaped the bacterial composition of the jejunum and ileum of neonatal piglets and Hoxa1-/- neonatal piglets had significantly higher diversity and species richness, higher relative abundance of phylum Bacteroidetes, lower relative abundances of phylum Firmicutes and genus Lactobacillus, and lower ratio of Firmicutes to Bacteroidetes than non-Hoxa1-/- neonatal piglets. After maternal ATRA administration, Hoxa1-/- neonatal piglets had significantly higher diversity and species richness, higher relative abundances of two bacterial phyla (Bacteroidetes and Proteobacteria), and lower relative abundances of phylum Firmicutes and genus Lactobacillus in the jejunum than non-Hoxa1-/- neonatal piglets. Hoxa1-/- neonatal piglets delivered by sows with maternal ATRA administration had lower diversity and species richness and higher relative abundance of phylum Firmicutes in the jejunum than Hoxa1-/- neonatal piglets born by sows with no maternal ATRA administration. Non-Hoxa1-/- neonatal piglets delivered by sows with maternal ATRA administration had higher diversity and species richness and significantly lower relative abundances of phyla Firmicutes and Actinobacteria and genus Lactobacillus in the ileum than non-Hoxa1-/- neonatal piglets born by sows with no maternal ATRA administration. Hoxa1 mutation decreased the expression of bacterial genes involved in ABC transporters, purine metabolism, and aminoacyl-tRNA biosynthesis and increased the expression of bacterial genes involved in two-component system, starch and sucrose metabolism, and arginine and proline metabolism. Maternal ATRA administration decreased the expression of bacterial genes involved in arginine and proline metabolism, peptidoglycan biosynthesis, and fatty acid biosynthesis. Hoxa1 mutation resulted in bacterial dysbiosis of the small intestine of Hoaxa1-/- neonatal piglets, and maternal ATRA administration restored the bacterial dysbiosis of Hoxa1-/- neonatal piglets and altered the bacterial composition of the small intestine of non-Hoxa1-/- neonatal piglets.

13.
Animals (Basel) ; 11(8)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34438922

RESUMEN

A thoracic squeeze has been observed to cause both healthy and low vigour neonatal foals to enter a 'less-responsive state', characterised by loss of posture, eye closure and cessation of movement, from which they rapidly recover to express normal healthy behaviours when the squeeze is released. To date, there have been no systematic studies characterising the responses of healthy neonates of other mammalian species to a thoracic squeeze. We describe the responses of healthy newborn piglets (n = 17) to a standardised application of the thoracic squeeze and evaluate the effect of the method of squeeze application on the response. Neonatal piglets were squeezed around the chest with either a soft fabric rope as has been used in foals (n = 8) or a novel purpose-made inflation cuff (n = 9). Both methods were effective at inducing a less-responsive behavioural state in all piglets, with neural reflexes reduced or absent in over half of them. The inflation cuff appeared to induce the less-responsive state faster than the rope, and more piglets squeezed with the cuff remained in this state for the full 10-min squeeze. These findings suggest that the behavioural response of foals to thoracic squeezing can be generalised to neonates of other precocial mammalian species. This initial study provides a foundation for further research using the inflation cuff to explore mechanisms underlying the thoracic squeeze and ways in which it may be applied whilst performing husbandry procedures.

14.
Viruses ; 13(3)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809123

RESUMEN

Porcine epidemic diarrhea virus (PEDV) can cause intestinal infection in neonatal piglets through the nasal cavity. A process in which CD3+ T cells carry PEDV plays a key role. However, the modes through which PEDV bridles CD3+ T cells as a vehicle for migration to the intestinal epithelium have not been clarified. In this study, we first demonstrated that PEDV could survive in blood-derived CD3+ T cells for several hours, depending on the multiplicity of infection. In addition, PEDV preferentially survived in CD4+ T cells over CD8+ T cells. Moreover, viral transmission was mediated by cell-to-cell contact between mesenteric lymph-node-derived CD3+ T cells, but did not occur in blood-derived CD3+ T cells. Following an increase in gut-homing integrin α4ß7, blood-derived CD3+ T cells carrying PEDV migrated to the intestines via blood circulation and transferred the virus to intestinal epithelial cells through cell-to-cell contact in neonatal piglets. Our findings have significant implications for understanding PEDV pathogenesis in neonatal piglets, which is essential for developing innovative therapies to prevent PEDV infection.


Asunto(s)
Infecciones por Coronavirus , Mucosa Intestinal/virología , Virus de la Diarrea Epidémica Porcina/fisiología , Enfermedades de los Porcinos , Linfocitos T , Animales , Animales Recién Nacidos , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Mucosa Intestinal/inmunología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Linfocitos T/inmunología , Linfocitos T/virología , Células Vero
15.
Vet Microbiol ; 257: 109081, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33901803

RESUMEN

As the most abundant cell type in the blood, red blood cells (RBCs) are serving for transporting oxygen. However, the mechanism by which RBCs binding virus remains largely unknown. Here, we demonstrated that porcine epidemic diarrhea virus (PEDV), a kind of coronavirus, could hijack RBCs and cause typical diarrhea in neonatal piglets. In an epidemiology investigation of PEDV, the RBCs samples from diarrheic pigs in several pig farms were found to be PEDV-positive. PEDV could bind to neonatal RBCs through CD71 and clathrin-mediated endocytosis, and its viability was maintained for 12 h. PEDV-loaded RBCs could transfer the virus to CD3+ T cells by conjugation and reach the intestine mucosa, where it caused infection. Finally, a further animal challenge revealed that transfusing with PEDV-loaded RBCs could cause intestinal epithelial cells (IECs) infection and typical diarrhea symptom. Therefore, our studies illustrated the mechanism by which PEDV could cause intestinal infection through hijacking RBCs, further providing a novel insight into the role of RBCs as potential cells for viral transmission in coronavirus pathogenesis.


Asunto(s)
Transfusión Sanguínea/veterinaria , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Eritrocitos/virología , Virus de la Diarrea Epidémica Porcina/patogenicidad , Enfermedades de los Porcinos/transmisión , Animales , Animales Recién Nacidos , Chlorocebus aethiops , Diarrea/virología , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Porcinos , Enfermedades de los Porcinos/virología , Linfocitos T/virología , Células Vero , Acoplamiento Viral
16.
Vet Res ; 52(1): 26, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597007

RESUMEN

Porcine epidemic diarrhea virus (PEDV) primarily infects neonatal piglets causing catastrophic effects on the global pig farming industry. PEDV infects piglets through the nasal cavity, a process in which dendritic cells (DCs) play an important role. However, neonatal piglets have fewer nasal DCs. This study found that subepithelial CD3+ T cells mediated PEDV invasion through the nasal cavity in neonatal piglets. PEDV could replicate in the nasal epithelial cells (NECs) isolated from the nasal cavity of neonatal piglets. Infection of NECs with PEDV could induce antiviral and inflammatory cytokines at the late stage. The infected NECs mediated transfer of virus to CD3+ T cells distributed in the subepithelial of the nasal cavity via cell-to-cell contact. The infected CD3+ T cells could migrate to the intestine via blood circulation, causing intestinal infection in neonatal piglets. Thus, the findings of this study indicate the importance of CD3+T cells in the dissemination of PEDV from the nasal cavity to the intestinal mucosa in neonatal piglets.


Asunto(s)
Complejo CD3/metabolismo , Infecciones por Coronavirus/veterinaria , Cavidad Nasal/fisiología , Virus de la Diarrea Epidémica Porcina/fisiología , Enfermedades de los Porcinos/inmunología , Linfocitos T/fisiología , Animales , Animales Recién Nacidos , Línea Celular , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Cavidad Nasal/virología , Porcinos , Enfermedades de los Porcinos/virología , Células Vero , Replicación Viral/fisiología
17.
J Agric Food Chem ; 69(6): 1831-1841, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33538162

RESUMEN

We tested the hypothesis that the consumption of different milk lipids is one of the factors affecting metabolic response to lipid in the early life of infants. Neonatal piglets, as animal models, were stratified by the feeding mode (formula-fed, bovine-, caprine-, and human milk-fed). Lipidomic profiles of plasma and liver samples were detected using liquid chromatography-mass spectrometry (LC-MS). The results indicate that 31, 54, and 28 differential lipid species could be used as potential biomarkers for bovine milk, caprine milk, and infant formula-fed samples, respectively, and the main lipid classes screened in plasma were SM, PC, and PE, including PC(14:1/P-20:0) as the isoform of PC(34:1), which regulates the lipid metabolism gene peroxisome proliferator-activated receptor α, PPAR-α. SM(d15:1/22:0) was the common potential biomarker screened from all of the groups. The amounts of biomarkers screened from the caprine milk-fed liver samples were the highest, which had a significant effect on the distribution of SM, PI, and PA. Infant formula, bovine-, and caprine milk-fed samples had an obvious effect on the metabolism of glycerophospholipid and glycerol ester, especially TG (16:0/18:0/18:2).


Asunto(s)
Fórmulas Infantiles , Leche , Animales , Bovinos , Cabras , Humanos , Lactante , Metabolismo de los Lípidos , Lípidos , Leche Humana , Porcinos
18.
Animals (Basel) ; 11(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494523

RESUMEN

The gut is one of the body's major immune structures, and the gut mucosa, which contains intestinal epithelium and subepithelial immune cells, is the primary site for eliciting local immune responses to foreign antigens. Intestinal immune system development in pigs is a transitional period during birth and weaning. This study compares the morphological and immunological differences in the small intestine of neonatal and weaned piglets to potentially prevent intestinal infectious diseases in neonatal piglets. Histological analyses of weaned piglet intestines showed increased crypt depth, higher IEL count, and larger ileal Peyer's patches compared with those of neonates. Additionally, the ileal villi of weaned piglets were longer than those of neonatal piglets, and claudin-3 protein expression was significantly higher in weaned than in neonatal piglets. The numbers of CD3+ T, goblet, and secretory cells were also higher in the small intestines of weaned piglets than in those of neonates. No significant differences were observed in the secretory IgA-positive cell number in the jejunum of weaned and neonatal piglets. The mRNA expression of most pattern recognition receptors genes in the duodenum and jejunum was higher in the weaned than neonatal piglets; however, the opposite was true in the ileum. The mRNA levels of IL-1ß and TNF-α in the jejunal and ileal mucosa were higher in weaned piglets than in neonatal piglets. There were significantly fewer CD3+, CD4+, and CD8+ T cells from peripheral blood-mononuclear cells in neonatal piglets. Our study provides insights regarding the different immune mechanisms within the small intestines of 0- and 21-day-old piglets. Studies on the additional developmental stages and how differences in the small intestines affect the response of pigs to pathogens remain warranted.

19.
Br J Nutr ; 125(7): 743-756, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32792039

RESUMEN

To investigate the cumulative effects of maternal supplementation with nucleotides in the form of uridine (UR) on fatty acid and amino acid constituents of neonatal piglets, fifty-two sows in late gestation were assigned randomly into the control (CON) group (fed a basal diet) or UR group (fed a basal diet with 150 g/t UR). Samples of neonates were collected during farrowing. Results showed that supplementing with UR in sows' diet significantly decreased the birth mortality of pigs (P = 0·05), and increased serum total cholesterol, HDL and LDL of neonatal piglets (P < 0·05). Moreover, the amino acid profile of serum and liver of neonatal piglets was affected by the addition of UR in sows' diets (P < 0·05). Furthermore, an up-regulation of mRNA expression of energy metabolism-related genes, including fatty acid elongase 5, fatty acid desaturase 1, hormone-sensitive lipase and cholesterol-7a-hydroxylase, was observed in the liver of neonates from the UR group. Additionally, a decrease in placental gene expression of excitatory amino acid transporters 2, excitatory amino acid transporter 3 and neutral AA transporter 1 in the UR group was concurrently observed (P < 0·05), and higher protein expression of phosphorylated protein kinase B, raptor, PPARα and PPARγ in placenta from the UR group was also observed (P < 0·05). Together, these results showed that maternal UR supplementation could regulate placental nutrient transport, largely in response to an alteration of mTORC1-PPAR signalling, thus regulating the nutrition metabolism of neonatal piglets and improving reproductive performance.

20.
J Sci Food Agric ; 101(10): 4018-4032, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33349941

RESUMEN

BACKGROUND: As an enzymatic product of yeast, yeast-based nucleotide (YN) is rich in nucleotides. To test the effects of maternal dietary supplementation with YN during late pregnancy on placental nutrient transport and nutrient metabolism in neonatal piglets, 64 pregnant sows (day 85 ± 3) were assigned into two groups: (i) control (CON) and (ii) treatment (YN; 4 g kg-1 ). Blood, placenta and liver samples of neonates during delivery were collected. RESULTS: The results showed that maternal YN supplementation decreased stillbirth rate and intra-uterine growth restriction rate (P < 0.05). In addition, maternal YN supplementation increased total serum protein, albumin and total cholesterol (P < 0.05). Furthermore, in neonatal piglets in the YN group, both serum amino acidand nucleotide profiles were affected, as well as liver amino acid, and fatty acid profiles were regulated (P < 0.05). Moreover, maternal YN supplementation increased liver mRNA expression of SLC28A3, SLC29A1, SLC29A2, PC, PCK1, FBP1, SREBP1c, HSL and CYP7a1 of neonatal piglets (P < 0.05). Meanwhile, there was a decrease in placental gene expression of EAAT2, EAAT3, LAT1 and PAT1, as well as lower protein expression of peroxisome proliferator-activated receptor (PPAR)γ, AKT, phosphorylated-AKT, phosphorylated-mammalian target of rapamycin (mTOR) and Raptor, in the YN group (P < 0.05). CONCLUSION: Taken together, these results indicate that maternal YN supplementation regulates placental nutrient transport by regulating the mTOR complex 1-PPAR pathway, and affects the liver metabolism of nucleotides, amino acids and fatty acids in neonatal piglets, thereby improving the reproductive performance of sow to a certain extent. © 2020 Society of Chemical Industry.


Asunto(s)
Nucleótidos/metabolismo , Embarazo/metabolismo , Saccharomyces cerevisiae/química , Mortinato/veterinaria , Porcinos/metabolismo , Aminoácidos/metabolismo , Alimentación Animal/análisis , Animales , Suplementos Dietéticos/análisis , Ácidos Grasos/metabolismo , Femenino , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Placenta/metabolismo , Reproducción , Saccharomyces cerevisiae/metabolismo , Porcinos/genética , Porcinos/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA