Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Pharmacol ; 978: 176802, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38945288

RESUMEN

AIMS: Bitter taste receptors (TAS2Rs) and their downstream signaling pathways are expressed not only in the oral tissues but also in extraoral tissues. Emerging data has demonstrated the beneficial effect of ghrelin in neurodegenerative diseases. Gaining more insight into the interaction between TAS2Rs and gut hormones may expand their therapeutic applications. Herein, we aimed to assess the possible effect of TAS2R activation by denatonium benzoate (DB) in modulating functional and neurobiochemical alterations in a model of Parkinson's disease (PD). MAIN METHODS: PD model was induced by daily injection of rotenone (2 mg/kg). Rats received DB (5 mg/kg), atenolol (10 mg/kg), or both concomitantly with rotenone, daily for 28 days. Evaluation of the motor abnormalities and histological examination of brain tissues were conducted. In addition, striatal dopamine contents, immunohistochemical expression of tyrosine hydroxylase, plasma ghrelin level, and biochemical analysis of markers of inflammation and oxidative stress were assessed. KEY FINDINGS: Treatment with DB increased serum levels of ghrelin and striatal dopamine contents with consequent amelioration of oxidative stress and attenuation of inflammatory cytokines. Moreover, DB treatment significantly ameliorated motor disturbance and histological abnormalities compared to untreated rats. Atenolol inhibited ghrelin release and abolished the positive effect of DB suggesting the involvement of ghrelin on such effects. SIGNIFICANCE: The current study suggests that TAS2Rs agonists are promising candidates for ameliorating rotenone-induced PD pathology in rats, an action that could be linked to the enhancement of ghrelin release with consequent antioxidant and anti-inflammatory activities.


Asunto(s)
Ghrelina , Estrés Oxidativo , Receptores Acoplados a Proteínas G , Rotenona , Animales , Rotenona/toxicidad , Ghrelina/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Masculino , Ratas , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Dopamina/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
Biotechnol Bioeng ; 121(6): 1755-1758, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38587175

RESUMEN

Bitter taste involves the detection of diverse chemical compounds by a family of G protein-coupled receptors, known as taste receptor type 2 (TAS2R). It is often linked to toxins and harmful compounds and in particular bitter taste receptors participate in the regulation of glucose homeostasis, modulation of immune and inflammatory responses, and may have implications for various diseases. Human TAS2Rs are characterized by their polymorphism and differ in localization and function. Different receptors can activate various signaling pathways depending on the tissue and the ligand. However, in vitro screening of possible TAS2R ligands is costly and time-consuming. For this reason, in silico methods to predict bitterant-TAS2R interactions could be powerful tools to help in the selection of ligands and targets for experimental studies and improve our knowledge of bitter receptor roles. Machine learning (ML) is a branch of artificial intelligence that applies algorithms to large datasets to learn from patterns and make predictions. In recent years, there has been a record of numerous taste classifiers in literature, especially on bitter/non-bitter or bitter/sweet classification. However, only a few of them exploit ML to predict which TAS2R receptors could be targeted by bitter molecules. Indeed, the shortage and incompleteness of data on receptor-ligand associations in literature make this task non-trivial. In this work, we provide an overview of the state of the art dealing with this specific investigation, focusing on three ML-based models, namely BitterX (2016), BitterSweet (2019) and BitterMatch (2022). This review aims to establish the foundation for future research endeavours focused on addressing the limitations and drawbacks of existing models.


Asunto(s)
Aprendizaje Automático , Receptores Acoplados a Proteínas G , Gusto , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Humanos , Ligandos
3.
J Agric Food Chem ; 72(9): 4906-4917, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38378185

RESUMEN

Gastric parietal cells secrete chloride ions and protons to form hydrochloric acid. Besides endogenous stimulants, e.g., acetylcholine, bitter-tasting food constituents, e.g., caffeine, induce proton secretion via interaction with bitter taste receptors (TAS2Rs), leading to increased cytosolic Ca2+ and cAMP concentrations. We hypothesized TAS2R activation by bitter tastants to result in proton secretion via cellular Na+ influx mediated by transient receptor potential channels (TRP) M4 and M5 in immortalized human parietal HGT-1 cells. Using the food-derived TAS2R agonists caffeine and l-arginine, we demonstrate both bitter compounds to induce a TRPM4/M5-mediated Na+ influx, with EC50 values of 0.65 and 10.38 mM, respectively, that stimulates cellular proton secretion. Functional involvement of TAS2Rs in the caffeine-evoked effect was demonstrated by means of the TAS2R antagonist homoeriodictyol, and stably CRISPR-Cas9-edited TAS2R43ko cells. Building on previous results, these data further support the suitability of HGT-1 cells as a surrogate cell model for taste cells. In addition, TRPM4/M5 mediated a Na+ influx after stimulating HGT-1 cells with the acetylcholine analogue carbachol, indicating an interaction of the digestion-associated cholinergic pathway with a taste-signaling pathway in parietal cells.


Asunto(s)
Células Parietales Gástricas , Canales Catiónicos TRPM , Humanos , Células Parietales Gástricas/metabolismo , Gusto , Cafeína/farmacología , Cafeína/metabolismo , Protones , Sodio/metabolismo , Acetilcolina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
4.
Animal Model Exp Med ; 7(3): 324-336, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38155461

RESUMEN

BACKGROUND: Bitter taste receptors (Tas2rs) are generally considered to sense various bitter compounds to escape the intake of toxic substances. Bitter taste receptors have been found to widely express in extraoral tissues and have important physiological functions outside the gustatory system in vivo. METHODS: To investigate the physiological functions of the bitter taste receptor cluster Tas2r106/Tas2r104/Tas2r105/Tas2r114 in lingual and extraoral tissues, multiple Tas2rs mutant mice and Gnat3 were produced using CRISPR/Cas9 gene-editing technique. A mixture containing Cas9 and sgRNA mRNAs for Tas2rs and Gnat3 gene was microinjected into the cytoplasm of the zygotes. Then, T7EN1 assays and sequencing were used to screen genetic mutation at the target sites in founder mice. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunostaining were used to study the expression level of taste signaling cascade and bitter taste receptor in taste buds. Perception to taste substance was also studied using two-bottle preference tests. RESULTS: We successfully produced several Tas2rs and Gnat3 mutant mice using the CRISPR/Cas9 technique. Immunostaining results showed that the expression of GNAT3 and PLCB2 was not altered in Tas2rs mutant mice. But qRT-PCR results revealed the changed expression profile of mTas2rs gene in taste buds of these mutant mice. With two-bottle preference tests, these mutant mice eliminate responses to cycloheximide due to genetic mutation of Tas2r105. In addition, these mutant mice showed a loss of taste perception to quinine dihydrochloride, denatonium benzoate, and cucurbitacin B (CuB). Gnat3-mediated taste receptor and its signal pathway contribute to CuB perception. CONCLUSIONS: These findings implied that these mutant mice would be a valuable means to understand the biological functions of TAS2Rs in extraoral tissues and investigate bitter compound-induced responses mediated by these TAS2Rs in many extraoral tissues.


Asunto(s)
Mutación , Receptores Acoplados a Proteínas G , Percepción del Gusto , Animales , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Percepción del Gusto/genética , Percepción del Gusto/efectos de los fármacos , Ratones , Compuestos de Amonio Cuaternario/farmacología , Papilas Gustativas/efectos de los fármacos , Papilas Gustativas/metabolismo , Sistemas CRISPR-Cas , Gusto/efectos de los fármacos , Gusto/genética , Transducina/genética , Transducina/metabolismo , Edición Génica , Triterpenos , Proteínas de Unión al GTP Heterotriméricas , Fosfolipasa C beta
5.
Front Immunol ; 14: 1259521, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954611

RESUMEN

Tuft cells are a type of rare epithelial cells that have been recently found to utilize taste signal transduction pathways to detect and respond to various noxious stimuli and pathogens, including allergens, bacteria, protists and parasitic helminths. It is, however, not fully understood how many different types of pathogens they can sense or what exact molecular mechanisms they employ to initiate targeted responses. In this study, we found that an anaerobic pathobiont microbe, Ruminococcus gnavus (R. gnavus), can induce tuft cell proliferation in the proximal colon whereas the microbe's lysate can stimulate these proximal colonic tuft cells to release interleukin-25 (IL-25). Nullification of the Gng13 and Trpm5 genes that encode the G protein subunit Gγ13 and transient receptor potential ion channel Trpm5, respectively, or application of the Tas2r inhibitor allyl isothiocyanate (AITC), G protein Gßγ subunit inhibitor Gallein or the phospholipase Cß2 (PLCß2) inhibitor U73122 reduces R. gnavus-elicited tuft cell proliferation or IL-25 release or both. Furthermore, Gng13 conditional knockout or Trpm5 knockout diminishes the expression of gasdermins C2, C3 and C4, and concomitantly increases the activated forms of caspases 3, 8 and 9 as well as the number of TUNEL-positive apoptotic cells in the proximal colon. Together, our data suggest that taste signal transduction pathways are not only involved in the detection of R. gnavus infection, but also contribute to helping maintain gasdermin expression and prevent apoptotic cell death in the proximal colon, and these findings provide another strategy to combat R. gnavus infection and sheds light on new roles of taste signaling proteins along with gasdermins in protecting the integrity of the proximal colonic epithelium.


Asunto(s)
Gusto , Canales de Potencial de Receptor Transitorio , Ruminococcus , Transducción de Señal , Colon
6.
Biochem Biophys Res Commun ; 682: 138-140, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37806252

RESUMEN

Coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has remained a public health threat since late 2019. Among the strategies rapidly developed to prevent and treat COVID-19, the antiviral medication Paxlovid (nirmatrelvir/ritonavir combination) has shown remarkable efficacy in reducing viral load and relieving clinical symptoms. Unexpectedly, a persistent bitter/bad taste, referred to as "Paxlovid mouth", has been frequently noted. Consistent with this, dysgeusia (altered taste) is listed as a main adverse effect of Paxlovid based on clinical trial data. Nirmatrelvir inhibits Mpro, a SARS-CoV-2 main protease, whereas ritonavir prolongs the activity of nirmatrelvir by slowing its metabolism. Prior usage of ritonavir in other conditions has not been linked to a persistent bad taste, despite the fact that ritonavir tastes bitter. Therefore, we hypothesized that nirmatrelvir may account for Paxlovid mouth by activating one or more of the 25 human TAS2R bitter taste receptors. Here, we show that TAS2R1 is the primary bitter receptor activated by nirmatrelvir, at concentrations as low as 15 µM, which overlaps with plasma concentrations of nirmatrelvir in a subset of patients. We also show that saccharin, a non-nutritive sweetener that may block the activity of TAS2R1, has little or no effect on nirmatrelvir-stimulated TAS2R1 activity. Such findings may help identify novel strategies to alleviate Paxlovid mouth and increase treatment compliance.


Asunto(s)
COVID-19 , Disgeusia , Humanos , Disgeusia/inducido químicamente , Gusto , Ritonavir , Boca , Antivirales/farmacología
7.
Compr Rev Food Sci Food Saf ; 22(1): 187-232, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382875

RESUMEN

The bitter taste is generally considered an undesirable sensory attribute. However, bitter-tasting compounds can significantly affect the overall flavor of many foods and beverages and endow them with various beneficial effects on human health. To better understand the relationship between chemical structure and bitterness, this paper has summarized the bitter compounds in foodstuffs and classified them based on the basic skeletons. Only those bitter compounds that are confirmed by human sensory evaluation have been included in this paper. To develop food products that satisfy consumer preferences, correctly ranking the key bitter compounds in foodstuffs according to their contributions to the overall bitterness intensity is the precondition. Generally, three methods were applied to screen out the key bitter compounds in foods and beverages and evaluate their sensory contributions, including dose-over-threshold factors, taste dilution analysis, and spectrum descriptive analysis method. This paper has discussed in detail the mechanisms and applications of these three methods. Typical procedures for separating and identifying the main bitter compounds in foodstuffs have also been summarized. Additionally, the activation of human bitter taste receptors (TAS2Rs) and the mechanisms of bitter taste transduction are outlined. Ultimately, a conclusion has been drawn to highlight the current problems and propose potential directions for further research.


Asunto(s)
Percepción del Gusto , Gusto , Humanos , Preferencias Alimentarias , Alimentos
8.
Pharmaceutics ; 14(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36432645

RESUMEN

Prednisolone is a frequently prescribed steroid with a bitter, unpalatable taste that can result in treatment refusal. Oral suspensions or powder dosage forms are often prescribed, particularly to pediatric patients, as they improve swallowability and ease of dose adjustment. Consequently, the bitterness of prednisolone is more apparent in these dosage forms. Few studies have investigated prednisolone's bitterness. Thus, in this study, 50 adults evaluated the bitterness of prednisolone using the generalized Labeled Magnitude Scale (gLMS), in comparison with quinine, a standard bitter substance. Overall, prednisolone-saturated solution demonstrated the same extent (mean gLMS score: 46.8) of bitterness as 1 mM quinine solution (mean gLMS score: 40.1). Additionally, large individual differences were observed in the perception of the bitterness of prednisolone and quinine. Perceived flavors of some drugs are reportedly associated with bitter-taste receptor (TAS2Rs) polymorphisms. Therefore, we investigated the relationship between subjects' genetic polymorphisms of TAS2R19, 38, and 46, and their sensitivity to bitterness. Although a relationship between TAS2R19 polymorphisms and the perception of quinine bitterness was observed, no significant relationship was found between the perceived bitterness of prednisolone and the investigated genes. Ultimately, the results show that despite individual differences among subjects, the cause of prednisolone's strong bitterness is yet to be elucidated.

9.
Front Pharmacol ; 13: 916508, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721212

RESUMEN

Switching of airway smooth muscle (ASM) cell phenotype from differentiated-contractile to dedifferentiated-proliferative/synthetic state often occurs in asthmatic subjects with airway dysfunction. Evidence has been provided that chloroquine (an agonist of bitter taste receptors) presented benefits to ASM cell function implicated in asthma. However, the underlying mechanism is unclear. House dust mite (HDM)-sensitized mice were administered with chloroquine or dexamethasone before challenge. BALF and lung tissue were obtained for cell counting, histological analysis or ELISA. Primary cultured ASM cells were stimulated with transforming growth factor (TGF)-ß1 or H2O2. Cells and supernatant were collected for the detection of ASM phenotype, ROS level, and proinflammatory cytokine production. In HDM-sensitized mice, chloroquine attenuated airway hyperresponsiveness (AHR), inflammation and remodeling with an inhibition of immunoglobulin E, IL-4/-13, and TGF-ß1 in BALF. ASM cell proliferation (PCNA), hypertrophy (α-SMA), and parasecretion (MMP-9 and MMP-13) were strongly suppressed by chloroquine, hinting the rebalance of the heterogeneous ASM populations in asthmatic airway. Our data in vitro indicated that chloroquine markedly restrained maladaptive alteration in ASM phenotype in concert with a remission of ROS. Using H2O2 and PI3K inhibitor (LY294002), we found that the inhibition of oxidative stress level and ROS-AKT signal by chloroquine may serve as a potential mechanism that dedicates to the restoration of the phenotypic imbalance in ASM cells. Overall, the present findings suggested that chloroquine improves asthmatic airway function by controlling ASM cell phenotype shift, sketching a novel profile of chloroquine as a new therapeutic candidate for airway remodeling.

10.
Animals (Basel) ; 12(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35158677

RESUMEN

In the wild, mice have developed survival strategies to detect volatile cues that warn them of potential danger. Specific olfactory neurons found in the Grueneberg ganglion olfactory subsystem can detect alarm pheromones emitted by stressed conspecifics, as well as kairomones involuntarily released by their predators. These volatile chemical cues allow intra- and interspecies communication of danger, respectively. Alarm pheromones, kairomones and bitter taste ligands share a common chemical motif containing sulfur or nitrogen. Interestingly, three specific bitter taste receptors (TAS2Rs) have been found in the Grueneberg ganglion neurons that are implicated in danger signalling pathways. We have recently developed a TAS2R-expressing heterologous system that mimics the Grueneberg ganglion neuron responses after kairomone stimulation. Here, we demonstrated by in vitro, ex vivo and in vivo experiments that the biological secretions from the raccoon (Procyon lotor) and the skunk (Mephitis mephitis) were acting as potent sources of kairomones. They activated the Grueneberg ganglion neurons and induced fear-related behaviours in mice. Identification of new sources of semiochemicals is a first step towards an understanding of the interspecies danger communication that takes place in the Grueneberg ganglion.

11.
Cancers (Basel) ; 13(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34885005

RESUMEN

BACKGROUND: Since it is known that bitter taste receptors (TAS2Rs) are expressed and functionally active in various extra-oral cells, their genetic variability and functional response initiated by their activation have become of broader interest, including in the context of cancer. METHODS: A systematic research was performed in PubMed and Google Scholar to identify relevant publications concerning the role of TAS2Rs in cancer. RESULTS: While the findings on variations of TAS2R genotypes and phenotypes and their association to the risk of developing cancer are still inconclusive, gene expression analyses revealed that TAS2Rs are expressed and some of them are predominately downregulated in cancerous compared to non-cancerous cell lines and tissue samples. Additionally, receptor-specific, agonist-mediated activation induced various anti-cancer effects, such as decreased cell proliferation, migration, and invasion, as well as increased apoptosis. Furthermore, the overexpression of TAS2Rs resulted in a decreased tumour incidence in an in vivo study and TAS2R activation could even enhance the therapeutic effect of chemotherapeutics in vitro. Finally, higher expression levels of TAS2Rs in primary cancerous cells and tissues were associated with an improved prognosis in humans. CONCLUSION: Since current evidence demonstrates a functional role of TAS2Rs in carcinogenesis, further studies should exploit their potential as (co-)targets of chemotherapeutics.

12.
J Agric Food Chem ; 69(46): 13916-13924, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34762411

RESUMEN

Food compounds with a bitter taste have a role in human health, both for their capability to influence food choice and preferences and for their possible systemic effect due to the modulation of extra-oral bitter taste receptors (TAS2Rs). Investigating the interaction of bitter food compounds with TAS2Rs is a key step to unravel their complex effects on health and to pave the way to rationally design new additives for food formulation or drugs. Here, we propose a collection of food bitter compounds, for which in vitro activity data against TAS2Rs are available. The patterns of TAS2R subtype-specific agonists were analyzed using scaffold decomposition and chemical space analysis, providing a detailed characterization of the associations between food bitter tastants and TAS2Rs.


Asunto(s)
Preparaciones Farmacéuticas , Papilas Gustativas , Quimioinformática , Humanos , Receptores Acoplados a Proteínas G/genética , Gusto
13.
J Transl Med ; 19(1): 440, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674725

RESUMEN

Bitter taste-sensing type 2 receptors (TAS2Rs or T2Rs), belonging to the subgroup of family A G-protein coupled receptors (GPCRs), are of crucial importance in the perception of bitterness. Although in the first instance, TAS2Rs were considered to be exclusively distributed in the apical microvilli of taste bud cells, numerous studies have detected these sensory receptor proteins in several extra-oral tissues, such as in pancreatic or ovarian tissues, as well as in their corresponding malignancies. Critical points of extra-oral TAS2Rs biology, such as their structure, roles, signaling transduction pathways, extensive mutational polymorphism, and molecular evolution, have been currently broadly studied. The TAS2R cascade, for instance, has been recently considered to be a pivotal modulator of a number of (patho)physiological processes, including adipogenesis or carcinogenesis. The latest advances in taste receptor biology further raise the possibility of utilizing TAS2Rs as a therapeutic target or as an informative index to predict treatment responses in various disorders. Thus, the focus of this review is to provide an update on the expression and molecular basis of TAS2Rs functions in distinct extra-oral tissues in health and disease. We shall also discuss the therapeutic potential of novel TAS2Rs targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles.


Asunto(s)
Papilas Gustativas , Gusto , Ligandos , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
14.
J Agric Food Chem ; 69(36): 10550-10561, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34460245

RESUMEN

Red wine is rich in phenolic compounds, which chiefly determine its characteristic taste. One of its major phenolic acid constituents for which an astringency, yet no clear contribution to bitter taste has been reported, is gallic acid (GA). In previous studies, we have demonstrated bitter-tasting constituents to regulate cellular proton secretion (PS) as a key mechanism of gastric acid secretion via activation of bitter taste sensing receptors (TAS2Rs). Here, we hypothesized a contributing role of GA to the red wine-stimulated effect on PS in human gastric tumor cells (HGT-1 cells). Sensory analyses revealed that 10 µM GA as the lowest concentration tested more bitter than tap water, with increasing bitter ratings up to 1000 µM. In HGT-1 cells, the concentration of 10 µM GA evoked the most pronounced effect on PS secretion, either when added to cells as in-water solution or when spiked to a red wine matrix. GA-spiking of Zweigelt and Blaufränkisch red wine samples up to a concentration of 10 µM resulted in an equally stimulated PS, whereas the non-GA-spiked wine samples demonstrated contrary effects on PS, indicating a functional role of GA on PS. Involvement of TAS2R4 in the GA-induced PS was verified by means of an HGT-1 homozygote CRISPR-Cas9 TAS2R4 knockout approach. Moreover, gene expression analyses revealed GA to increase TAS2R4. These results demonstrate a functional role of TAS2R4 in GA-evoked PS as a key mechanism of gastric acid secretion aiding digestion. Moreover, our data provide mechanistic insights, which will help to produce stomach-friendly red wines.


Asunto(s)
Gusto , Vino , Astringentes , Digestión , Ácido Gálico/farmacología , Ácido Gástrico , Humanos , Vino/análisis
15.
Front Nutr ; 8: 683627, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307435

RESUMEN

Vanilla is widely used in food preparation worldwide for its sensory properties, mainly related to its fragrance, being vanillin the major compound present in the processed vanilla. Vanillin is also known to elicit bitterness as a secondary sensory sensation, but the molecular mechanism of its bitterness has never been reported. Assay buffers of vanillin were tested in vitro on all known 25 human bitter taste receptors TAS2Rs. Three receptors, TAS2R14, TAS2R20, and TAS2R39, were activated, showing that these receptors are mediating the bitterness of vanillin. The result could be useful to improve the overall sensory profile of this broadly used food ingredient, but even more could represent the starting point for further studies to investigate the potential of vanillin in sensory nutrition and other pharmaceutical applications.

16.
J Membr Biol ; 254(4): 343-352, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34173018

RESUMEN

The Up-and-Coming-Scientist section of the current issue of the Journal of Membrane Biology features the invited essay by Dr. Mercedes Alfonso-Prieto, Assistant Professor at the Forschungszentrum Jülich (FZJ), Germany, and the Heinrich-Heine University Düsseldorf, Vogt Institute for Brain Research. Dr. Alfonso-Prieto completed her doctoral degree in chemistry at the Barcelona Science Park, Spain, in 2009, pursued post-doctoral research in computational molecular sciences at Temple University, USA, and then, as a Marie Curie post-doctoral fellow at the University of Barcelona, worked on computations of enzyme reactions and modeling of photoswitchable ligands targeting neuronal receptors. In 2016, she joined the Institute for Advanced Science and the Institute for Computational Biomedicine at the FZJ, where she pursues research on modeling and simulation of chemical senses. The invited essay by Dr. Alfonso-Prieto discusses state-of-the-art modeling of molecular receptors involved in chemical sensing - the senses of taste and smell. These receptors, and computational methods to study them, are the focus of Dr. Alfonso-Prieto's research. Recently, Dr. Alfonso-Prieto and colleagues have presented a new methodology to predict ligand binding poses for GPCRs, and extensive computations that deciphered the ligand selectivity determinants of bitter taste receptors. These developments inform our current understanding of how taste occurs at the molecular level.


Asunto(s)
Receptores Odorantes , Humanos , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Gusto/fisiología , Lengua/metabolismo
17.
Front Immunol ; 12: 726546, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975834

RESUMEN

Sustained and non-resolved inflammation is a characteristic of periodontitis. Upon acute inflammation, gingival fibroblasts release cytokines to recruit immune cells to counter environmental stimuli. The intricate regulation of pro-inflammatory signaling pathways, such as NF-κB, is necessary to maintain periodontal homeostasis. Nonetheless, how inflammation is resolved has not yet been elucidated. In this study, 22 subtypes of taste receptor family 2 (TAS2Rs), as well as the downstream machineries of Gα-gustducin and phospholipase C-ß2 (PLCß2), were identified in human gingival fibroblasts (HGFs). Various bitter agonists could induce an intensive cytosolic Ca2+ response in HGFs. More importantly, TAS2R16 was expressed at a relatively high level, and its agonist, salicin, showed robust Ca2+ evocative effects in HGFs. Activation of TAS2R16 signaling by salicin inhibited the release of lipopolysaccharide (LPS)-induced pro-inflammatory cytokines, at least in part, by repressing LPS-induced intracellular cAMP elevation and NF-κB p65 nuclear translocation in HGFs. These findings indicate that TAS2Rs activation in HGFs may mediate endogenous pro-inflammation resolution by antagonizing NF-κB signaling, providing a novel paradigm and treatment target for the better management of periodontitis.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Citocinas/metabolismo , Fibroblastos/metabolismo , Encía/citología , Lipopolisacáridos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Adolescente , Adulto , Alcoholes Bencílicos/farmacología , Calcio/metabolismo , Señalización del Calcio/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Silenciador del Gen , Glucósidos/farmacología , Células HEK293 , Voluntarios Sanos , Humanos , Periodontitis/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Factor de Transcripción ReIA/metabolismo , Transfección , Adulto Joven
18.
Molecules ; 25(20)2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050648

RESUMEN

Tryptophan is an essential amino acid, required for the production of serotonin. It is the most bitter amino acid and its bitterness was found to be mediated by the bitter taste receptor TAS2R4. Di-tryptophan has a different selectivity profile and was found to activate three bitter taste receptors, whereas tri-tryptophan activated five TAS2Rs. In this work, the selectivity/promiscuity profiles of the mono-to-tri-tryptophans were explored using molecular modeling simulations to provide new insights into the molecular recognition of the bitter tryptophan. Tryptophan epitopes were found in all five peptide-sensitive TAS2Rs and the best tryptophan epitope was identified and characterized at the core of the orthosteric binding site of TAS2R4.


Asunto(s)
Triptófano/química , Aminoácidos/química , Sitios de Unión , Humanos , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/metabolismo
19.
FASEB J ; 34(5): 6008-6016, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32281695

RESUMEN

The sudden outbreak of COVID-19 has led to more than seven thousand deaths. Unfortunately, there are no specific drugs available to cure this disease. Type 2 taste receptors (TAS2Rs) may play an important role in host defense mechanisms. Based on the idea of host-directed therapy (HDT), we performed a negative co-expression analysis using big data of 60 000 Affymetrix expression arrays and 5000 TCGA data sets to determine the functions of TAS2R10, which can be activated by numerous bitter substances. Excitingly, we found that the main functions of TAS2R10 involved controlling infectious diseases caused by bacteria, viruses, and parasites, suggesting that TAS2R10 is a key trigger of host defense pathways. To quickly guide the clinical treatment of 2019-nCoV, we searched currently available drugs that are agonists of TAS2Rs. We identified many cheap, available, and safe medicines, such as diphenidol, quinine, chloroquine, artemisinin, chlorpheniramine, yohimbine, and dextromethorphan, which may target the most common symptoms caused by 2019-nCoV. We suggest that a cocktail-like recipe of existing bitter drugs may help doctors to fight this catastrophic disease and that the general public may drink or eat bitter substances, such as coffee, tea, or bitter vegetables, to reduce the risk of infection.


Asunto(s)
Antivirales/uso terapéutico , Biología Computacional , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Antivirales/farmacología , Betacoronavirus , COVID-19 , Bases de Datos Genéticas , Bases de Datos Farmacéuticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Pandemias , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , SARS-CoV-2
20.
Front Physiol ; 10: 861, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379593

RESUMEN

Significant advances have been made in the past decade in mapping the distributions and the physiological functions of extra-oral bitter taste receptors (TAS2Rs) in non-gustatory tissues. In particular, it has been found that TAS2Rs are expressed in various muscle tissues and activation of TAS2Rs can lead to muscle cell relaxation, which suggests that TAS2Rs may be important new targets in muscle relaxation therapy for various muscle-related diseases. So far, however, there is a lack of potent extra-oral TAS2R agonists that can be used as novel drug agents in muscle relaxation therapies. Interestingly, traditional Chinese medicine (TCM) often characterizes a drug's property in terms of five distinct flavors (bitter, sweet, sour, salty, and pungent) according to its taste and function, and commonly regards "bitterness" as an intrinsic property of "good medicine." In addition, many bitter flavored TCM are known in practice to cause muscle relaxation after long term use, and in lab experiments the compounds identified from some bitter flavored TCM do activate TAS2Rs and thus relax muscle cells. Therefore, it is highly possible to discover very useful extra-oral TAS2R agonists for muscle relaxation therapies among the abundant bitter compounds used in bitter flavored TCM. With this perspective, we reviewed in literature the distribution of TAS2Rs in different muscle systems with a focus on the map of bitter flavored TCM which can regulate muscle contractility and related functional chemical components. We also reviewed the recently established databases of TCM chemical components and the bioinformatics software which can be used for high-throughput screening and data mining of the chemical components associated with bitter flavored TCM. All together, we aim to present a knowledge-based approach and technological platform for identification or discovery of extra-oral TAS2R agonists that can be used as novel drug agents for muscle relaxation therapies through screening and evaluation of chemical compounds used in bitter flavored TCM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA