Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.270
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell Signal ; 122: 111330, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094673

RESUMEN

The WNT5B ligand regulates the non-canonical wingless-related integration site (WNT)-planar cell polarity (PCP) pathway. However, the detailed mechanism underlying the activity of WNT5B in the WNT-PCP pathway in non-small cell lung cancer (NSCLC) is unclear. In this study, we assessed the clinicopathological significance of WNT5B expression in NSCLC specimens. WNT5B-overexpression and -knockdown NSCLC cell lines were generated in vivo and in vitro, respectively. WNT5B overexpression in NSCLC specimens correlates with advanced tumor node metastasis (TNM) stage, lymph node metastasis, and poor prognosis in patients with NSCLC. Additionally, WNT5B promotes the malignant phenotype of NSCLC cells in vivo and in vitro. Interactions were identified among WNT5B, frizzled3 (FZD3), and disheveled3 (DVL3) in NSCLC cells, leading to the activation of WNT-PCP signaling. The FZD3 receptor initiates DVL3 recruitment to the membrane for phosphorylation in a WNT5B ligand-dependent manner and activates c-Jun N-terminal kinase (JNK) signaling via the small GTPase RAC1. Furthermore, the deletion of the DEP domain of DVL3 abrogated these effects. Overall, we demonstrated a novel signal transduction pathway in which WNT5B recruits DVL3 to the membrane via its DEP domain through interaction with FZD3 to promote RAC1-PCP-JNK signaling, providing a potential target for clinical intervention in NSCLC treatment.

2.
Life Sci ; 354: 122955, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122109

RESUMEN

AIMS: Losartan potassium-laden pegylated nanocubic vesicles (LP-NCVs-PEG) have an intriguing kidney-targeted nanoplatform for acute renal injury via blocking apoptosis and activating wnt/ß-catenin pathway. MAIN METHODS: Utilizing a thin-film hydration methodology established on 42 full factorial design to produce LP loaded nanocubic formulations (LP-NCVs) which composed mainly from L-α-phosphatidylcholine and poloxamer. The optimization process was designed to select the formulation with maximum entrapment efficiency (EE %), maximum in-vitro drug release (Q8h), and minimum vesicle size (VS). The optimum formulation was then pegylated to obtain LP-NCVs-PEG formulation that shields NCVs from the harsh ecosystem of the stomach, improves their oral drug delivery performance and targets the proximal renal tubules with no systemic toxicity. Male albino rats were injected with Cisplatin (6 mg/kg, i.p.) alone or with LP-formulations (5 mg/kg/day). Kidney injury markers, inflammatory markers, apoptotic markers. Besides renal tissue expression of Wnt, ß-Catenin, GSK-3ß, renal RNA gene expression of TCF-4, LEF-1 and histopathology were also analyzed to display pharmacological study. KEY FINDINGS: The pharmacokinetics studies demonstrated that LP-NCVs-PEG boosted LP bioavailability approximately 3.61 times compared to LP oral solution. Besides LP-NCVs-PEG may have an intriguing kidney-targeted nanoplatform for acute renal injury via decreased renal toxicity markers, renal expression of LEF-1, GSK3-ß, caspase, TNF-α, NF-κB and TUNEL expression. Alternatively, increased renal tissue level of Bcl-2, wnt, ß-catenin and TCF-4. SIGNIFICANCE: LP-NCVs-PEG improved LP pharmacokinetics targeting the kidney and improved injury by activating wnt/ß-catenin/TCF-4 pathway, blocking apoptosis, inflammation and renal toxicity markers suggesting it might be successful nephroprotective adjuvant therapy.

3.
J Mol Med (Berl) ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138828

RESUMEN

Fibrosis is an important pathological change in inflammatory bowel disease (IBD), but the mechanism has yet to be elucidated. WNT2B high­expressed fibroblasts are enriched in IBD intestinal tissues, although the precise function of this group of fibroblasts remains unclear. This study investigated whether WNT2B high­expressed fibroblasts aggravated intestinal tissue damage and fibrosis. Our study provides evidence that WNT2B high­expressed fibroblasts and NK cells were enriched in colitis tissue of patients with IBD. WNT2B high­expressed fibroblasts secreted wnt2b, which bound to FZD4 on NK cells and activated the NF-κB and STAT3 pathways to enhance IL-33 expression. TCF4, a downstream component of the WNT/ß-catenin pathway, bound to p65 and promoted binding to IL-33 promoter. Furthermore, Salinomycin, an inhibitor of the WNT/ß-catenin pathway, inhibited IL-33 secretion in colitis, thereby reducing intestinal inflammation.Knocking down WNT2B reduces NK cell infiltration and IL-33 secretion in colitis, and reduce intestinal inflammation and fibrosis. In conclusion, WNT2B high­expressed fibroblasts activate NK cells by secreting wnt2b, which activates the WNT/ß-catenin and NF-κB pathways to promote IL-33 expression and secretion, potentially culminating in the induction of colonic fibrosis in IBD. KEY MESSAGES: WNT2B high-expressed fibroblasts and NK cells are enriched in colitis tissue, promoting NK cells secreting IL-33. Wnt2b activates NF-κB and STAT3 pathways promotes IL-33 expression by activating p65 and not STAT3. syndrome TCF4 binds to p65 and upregulates the NF- κB pathway. Salinomycin reduces NK cell infiltration and IL-33 secretion in colitis. Knocking down WNT2B mitigates inflammation and fibrosis in chronic colitis.

4.
mSphere ; : e0020424, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140737

RESUMEN

We investigated the influence of a Wnt5A-gut microbiota axis on gut B-cell repertoire and protection from infection, having previously demonstrated that Wnt5A in association with gut commensals helps shape gut T-cell repertoire. Accordingly, Wnt5A heterozygous mice, which express less than wild-type level of Wnt5A, and their isolated Peyer's patches (PPs) were studied in comparison with the wild-type counterparts. The percentages of IgM- and IgA-expressing B cells were quite similar in the PP of both sets of mice. However, the PP of the Wnt5A heterozygous mice harbored significantly higher than wild-type levels of microbiota-bound B cell-secreted IgA, indicating the prevalence of a microbial population therein, which is significantly altered from that of wild-type. Additionally, the percentage of PP IgG1-expressing B cells was appreciably depressed in the Wnt5A heterozygous mice in comparison to wild-type. Wnt5A heterozygous mice, furthermore, exhibited notably higher than the wild-type levels of morbidity and mortality following infection with Salmonella typhimurium, a common gut pathogen. Differences in morbidity/mortality correlated with considerable disparity between the PP-B-cell repertoires of the Salmonella-infected Wnt5A heterozygous and wild-type mice, in which the percentage of IgG1-expressing B1b cells in the PP of heterozygous mice remains significantly low as compared to wild-type. Overall, these results suggest that a gut Wnt5A-microbiota axis is intrinsically associated with the maintenance of gut B-cell repertoire and protection from infection.IMPORTANCEAlthough it is well accepted that B cells and microbiota are required for protection from infection and preservation of gut health, a lot remains unknown about how the optimum B-cell repertoire and microbiota are maintained in the gut. The importance of this study lies in the fact that it unveils a potential role of a growth factor termed Wnt5A in the safeguarding of the gut B-cell population and microbiota, thereby protecting the gut from the deleterious effect of infections by common pathogens. Documentation of the involvement of a Wnt5A-microbiota axis in the shaping of a protective gut B-cell repertoire, furthermore, opens up new avenues of investigations for understanding gut disorders related to microbial dysbiosis and B-cell homeostasis that, till date, are considered incurable.

5.
J Bone Miner Res ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126373

RESUMEN

Osteogenesis imperfecta (OI) is a group of severe genetic bone disorders characterized by congenital low bone mass, deformity and frequent fractures. Type XV OI is a moderate to severe form of skeletal dysplasia caused by WNT1 variants. In this cohort study from southern China, we summarized the clinical phenotypes of patients with WNT1 variants and found that the proportion of type XV patients was around 10.3% (25 out of 243) with a diverse spectrum of phenotypes. Functional assays indicated that variants of WNT1 significantly impaired its secretion and effective activity, leading to moderate to severe clinical manifestations, porous bone structure and enhanced osteoclastic activities. Analysis of proteomic data from human skeleton indicated that the expression of SOST was dramatically reduced in type XV patients when comparing to the patients with COL1A1 quantitative variants. Single-cell transcriptome data generated from the human tibia samples of patients diagnosed with type XV OI and leg-length-discrepancy respectively, revealed aberrant differentiation trajectory of skeletal progenitors and impaired maturation of osteocytes with loss of WNT1, resulting in excessive CXCL12+ progenitors, fewer mature osteocytes and existence of abnormal cell populations with adipogenic characteristics. The integration of multi-omics data from human skeleton delineates how WNT1 regulates the differentiation and maturation of skeletal progenitors, which will provide a new direction for the treatment strategy of type XV osteogenesis imperfecta and relative low bone mass diseases such as early onset osteoporosis.


Osteogenesis imperfecta is a rare disease characterized by low bone mass, frequent fractures and long bone deformity. Type XV osteogenesis imperfect is an autosomal recessive disorder caused by WNT1 variants, while heterozygous variants of WNT1 result in early onset osteoporosis. In this cohort study, we summarized the clinical features of 25 patients diagnosed with type XV osteogenesis imperfect. The WNT1 variants were confirmed by genetic test. Molecular assays were conducted to reveal the impact of variants on WNT1 protein activity and bone structure. We then compared the protein levels in bone tissues isolated from the type XV patients and patients with mild deformity using proteomic method, and found the expression of SOST, mainly produced by mature osteoblasts and osteocytes, was dramatically reduced in type XV patients. We further compared the global mRNA expression levels in the skeletal cells using single-cell RNA sequencing. Analyses of these data indicated that more immature progenitors were identified and maturation of osteocytes was impaired with WNT1 loss-of-function. Our study helps to understand the underlying pathogenesis of type XV osteogenesis imperfecta.

6.
Cell Rep ; 43(8): 114616, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128004

RESUMEN

Although aberrant activation of the KRAS and PI3K pathway alongside TP53 mutations account for frequent aberrations in human gastric cancers, neither the sequence nor the individual contributions of these mutations have been clarified. Here, we establish an allelic series of mice to afford conditional expression in the glandular epithelium of KrasG12D;Pik3caH1047R or Trp53R172H and/or ablation of Pten or Trp53. We find that KrasG12D;Pik3caH1047R is sufficient to induce adenomas and that lesions progress to carcinoma when also harboring Pten deletions. An additional challenge with either Trp53 loss- or gain-of-function alleles further accelerated tumor progression and triggered metastatic disease. While tumor-intrinsic STAT3 signaling in response to gp130 family cytokines remained as a gatekeeper for all stages of tumor development, metastatic progression required a mutant Trp53-induced interleukin (IL)-11 to IL-6 dependency switch. Consistent with the poorer survival of patients with high IL-6 expression, we identify IL-6/STAT3 signaling as a therapeutic vulnerability for TP53-mutant gastric cancer.

7.
Gene Expr Patterns ; : 119374, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128795

RESUMEN

Wnt signal is crucial to correctly regenerate tissues along the original axis in many animals. Lizards are able to regenerate their tails spontaneously, while the anterior-posterior axis information required for the successful regeneration is still elusive. In this study, we investigated the expression pattern of Wnt ligands and HOX genes during regeneration. The results of in situ hybridization revealed that Wnt6 level is higher in wound epithelium (WE) than that in blastema during regeneration. In addition, we showed that Wnt agonist positively regulated the expression of HOXA13 in cultured blastema cells, while did not show similar effect on that of HOXB13, HOXC13 and HOXD13. Finally, we found that HOXA13 showed a gradient level along the anterior-posterior axis of regenerated blastema, with higher level at the caudal end. These data proposed that Wnt6 and HOXA13 might play an important role in establishing distal position for regeneration.

8.
Curr Mol Pharmacol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39129721

RESUMEN

OBJECTIVES: Increasing ratio of bone fragility, and susceptibility to fractures constitutes a major health problem worldwide. Therefore, we aimed to identify new compounds with a potential to increase proliferation and differentiation of osteoblasts. METHODS: Cellular and molecular assays, such as ALP activity, alizarin staining, and flow cytometry were employed to check the effect of TMF on osteogenesis. Moreover, gene expression analysis of certain important genes and transcriptional factors was also performed. RESULTS: Our findings report for the first time that 7,3',4'-trimethoxyflavone is capable of enhancing proliferation, and differentiation in osteoblast cells. Results from flow cytometry analysis also indicated that TMF increases the number of cells in S-phase. Furthermore, treatment with TMF altered the expression of osteogenic genes, OCN and Axin-2 indicating possible activation of Wnt signaling pathway. CONCLUSION: Taken together, this study identified that 7,3',4'-trimethoxyflavone has the potential to enhance osteoblast proliferation and differentiation, possibly due to the activation of Wnt/ß-catenin pathway. Thus, demonstrating TMF as naturally occurring agent to promote osteogenesis and prevention of bone fragility, and related disorders.

9.
Exp Dermatol ; 33(8): e15155, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39133009

RESUMEN

Hair loss affects men and women of all ages. Myokines, which are mainly secreted by skeletal muscles during exercise, have numerous health benefits. VEGF, IGF-1, FGF and irisin are reprehensive myokines. Although VEGF, IGF-1 and FGF are positively associated with hair growth, few studies have researched the effects of irisin on hair growth. Here, we investigated whether irisin promotes hair growth using in vitro, ex vivo and in vivo patch assays, as well as mouse models. We show that irisin increases proliferation, alkaline phosphatase (ALP) activity and mitochondrial membrane potential in human dermal papilla cells (hDPCs). Irisin activated the Wnt/ß-catenin signalling pathway, thereby upregulating Wnt5a, Wnt10b and LEF-1, which play an important role in hair growth. Moreover, irisin enhanced human hair shaft elongation. In vivo, patch assays revealed that irisin promotes the generation of new hair follicles, accelerates entry into the anagen phase, and significantly increases hair growth in C57BL/6 mice. However, XAV939, a Wnt/ß-catenin signalling inhibitor, suppressed the irisin-mediated increase in hair shaft and hair growth. These results indicate that irisin increases hair growth via the Wnt/ß-catenin pathway and highlight its therapeutic potential in hair loss treatment.


Asunto(s)
Fibronectinas , Glucógeno Sintasa Quinasa 3 beta , Folículo Piloso , Cabello , Ratones Endogámicos C57BL , Vía de Señalización Wnt , beta Catenina , Animales , Humanos , Fibronectinas/metabolismo , Ratones , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Cabello/crecimiento & desarrollo , beta Catenina/metabolismo , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Proliferación Celular , Proteína Wnt-5a/metabolismo , Proteínas Wnt/metabolismo , Masculino , Femenino , Proteínas Proto-Oncogénicas
10.
Cell Commun Signal ; 22(1): 402, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148040

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) infection is critical in the development and occurrence of gastric cancer. H. pylori secretes gamma-glutamyl transferase (GGT), which affects energy metabolism and histone methylation in mesenchymal stem cells. However, its effect on human gastric epithelial cells remains unclear. This study aimed to investigate the effects of GGT on energy metabolism and histone methylation in gastric epithelial cells and determine its role in the development and progression of H. pylori-induced gastric cancer. METHODS: A GGT knockout H. pylori strain and mouse gastric cancer model were constructed, and alpha-ketoglutarate (α-KG) was added. The underlying mechanism was investigated using proteomics, immunohistochemistry, Western blotting, and other experimental assays. RESULTS: H. pylori can colonize the host's stomach and destroy the gastric epithelium. GGT secreted by H. pylori decreased the concentration of glutamine in the stomach and increased H3K9me3 and H3K27me3 expression, which promoted the proliferation and migration of gastric epithelial cells. Additionally, α-KG reversed this effect. GGT increased the tumorigenic ability of nude mice. GGT, secreted by H. pylori, promoted the expression of ribosomal protein L15 (RPL15), while GGT knockout and supplementation with α-KG and trimethylation inhibitors reduced RPL15 expression and Wnt signaling pathway expression. CONCLUSIONS: H. pylori secreted GGT decreased the expression of glutamine and α-KG in gastric epithelial cells, increased the expression of histones H3K9me3 and H3K27me3, and activated the Wnt signaling pathway through RPL15 expression, ultimately changing the biological characteristics of the gastric epithelium and promoting the occurrence of gastric cancer. Altered energy metabolism and histone hypermethylation are important factors involved in this process.


Asunto(s)
Metabolismo Energético , Células Epiteliales , Helicobacter pylori , Histonas , Neoplasias Gástricas , gamma-Glutamiltransferasa , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Animales , Histonas/metabolismo , Metilación , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/patología , gamma-Glutamiltransferasa/metabolismo , gamma-Glutamiltransferasa/genética , Ratones , Humanos , Ratones Desnudos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Proliferación Celular , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Infecciones por Helicobacter/complicaciones , Ácidos Cetoglutáricos/metabolismo
11.
Biomed Pharmacother ; 179: 117292, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151314

RESUMEN

A type of colorectal cancer (CRC),Colitis-associated colorectal cancer (CAC), is closely associated with chronic inflammation and gut microbiota dysbiosis. Berberine (BBR) has a long history in the treatment of intestinal diseases, which has been reported to inhibit colitis and CRC. However, the mechanism of its action is still unclear. Here, this study aimed to explore the potential protective effects of BBR on azoxymethane (AOM)/dextransulfate sodium (DSS)-induced colitis and tumor mice, and to elucidate its potential molecular mechanisms by microbiota, genes and metabolic alterations. The results showed that BBR inhibited the gut inflammation and improved the function of mucosal barrier to ameliorate AOM/DSS-induced colitis. And BBR treatment significantly reduced intestinal tumor development and ki-67 expression of intestinal tissue along with promoted apoptosis. Through microbiota analysis based on the 16 S rRNA gene, we found that BBR treatment improved intestinal microbiota imbalance in AOM/DSS-induced colitis and tumor mice, which were characterized by an increase of beneficial bacteria, for instance Akkermanisa, Lactobacillus, Bacteroides uniformis and Bacteroides acidifaciens. In addition, transcriptome analysis showed that BBR regulated colonic epithelial signaling pathway in CAC mice particularly by tryptophan metabolism and Wnt signaling pathway. Notably, BBR treatment resulted in the enrichment of amino acids metabolism and microbiota-derived SCFA metabolites. In summary, our research findings suggest that the gut microbiota-amino acid metabolism-Wnt signaling pathway axis plays critical role in maintaining intestinal homeostasis, which may provide new insights into the inhibitory effects of BBR on colitis and colon cancer.

12.
Stem Cell Reports ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39151429

RESUMEN

The homeostasis of human pluripotent stem cells (hPSCs) requires the signaling balance of extracellular factors. Exogenous regulators from cell culture medium have been widely reported, but little attention has been paid to the autocrine factor from hPSCs themselves. In this report, we demonstrate that extracellular signal-related kinase 5 (ERK5) regulates endogenous autocrine factors essential for pluripotency and differentiation. ERK5 inhibition leads to erroneous cell fate specification in all lineages even under lineage-specific induction. hPSCs can self-renew under ERK5 inhibition in the presence of fibroblast growth factor 2 (FGF2) and transforming growth factor ß (TGF-ß), although NANOG expression is partially suppressed. Further analysis demonstrates that ERK5 promotes the expression of autocrine factors such as NODAL, FGF8, and WNT3. The addition of NODAL protein rescues NANOG expression and differentiation phenotypes under ERK5 inhibition. We demonstrate that constitutively active ERK5 pathway allows self-renewal even without essential growth factors FGF2 and TGF-ß. This study highlights the essential contribution of autocrine pathways to proper maintenance and differentiation.

13.
J Ethnopharmacol ; : 118688, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142622

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sea buckthorn (Hippophae rhamnoides L. ) has been designated a "medicine food homology" fruit by the National Health Commission of China due to its nutritional value. In traditional Chinese ethnomedicine, Hippophae rhamnoides L. is commonly used to treat nonhealing wounds such as burns, sores, and gastric ulcers. The aim of this study was to explore the healing effects of the ethyl acetate extract of sea buckthorn seeds (SBS-EF) on burn wounds. AIM OF THE STUDY: The primary objectives of this research were to determine the most effective medicinal site of action for treating burns with sea buckthorn seeds (SBS) and to investigate the underlying material basis and mechanisms of their therapeutic effects. MATERIALS AND METHODS: The effects of different components of SBS-EF on the proliferation and migration of human skin fibroblasts (HSFs) were evaluated via MTT assays, scratch assays, transwell assays, and hydroxyproline secretion analysis. SBS-EF displayed the greatest activity amongst the extracts. Subsequent analyses included network pharmacology methodology, molecular docking studies, ultraperformance liquid chromatography UPLC-Orbitrap-Exploris-120-MS and a severe second-degree burn rat model to investigate the chemical constituents and potential therapeutic mechanisms of the SBS-EF. RESULTS: In vitro studies demonstrated the efficacy of SBS-EF in promoting HSF growth and migration. UPLC-Orbitrap-Exploris-120-MS analysis revealed that SBS-EF had ten major constituents, with flavonoids being the predominant compounds, especially catechin, quercetin, and kaempferol derivatives. Network pharmacology and molecular docking analyses indicated that SBS-EF may exert its healing effects by modulating the Wnt/ß-catenin signalling pathway. Subsequent in vivo experiments demonstrated that SBS-EF accelerated burn wound healing in rats, increased hydroxyproline expression in skin tissue, facilitated skin structure repair, and enhanced collagen production and organisation over a 21 d period. Additionally, exposure to SBS-EF upregulated WNT3a and ß-catenin while downregulating GSK-3ß levels in rat skin tissue. CONCLUSIONS: The wound healing properties of SBS-EF were attributed to its ability to enhance HSF growth and migration, increase hydroxyproline levels in the skin, promote collagen accumulation, reduce scarring, and decrease the skin water content. SBS-EF may also provide therapeutic benefits for burns by modulating the Wnt/ß-catenin signalling pathway, as evidenced by its effective site and likely mechanism of action in the treatment of burned rats.

14.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125758

RESUMEN

APC is a tumor suppressor gene that exerts its effect through the regulation of the Wnt signaling pathway. Loss of function mutations of the gene are associated with familial adenomatous polyposis (FAP). Early diagnosis in FAP patients is essential to prevent the development of colorectal cancer. Extraintestinal manifestations often precede the formation of the polyposis; therefore, these manifestations may serve as a clinical indicator for the condition. The aim of this study was to assess genotype-phenotype associations between the location of APC mutations and various extraintestinal features, mainly focusing on osseous and dental anomalies. Analyses of our cases and the mutations available in the literature with these manifestations revealed that mutations in the N-terminal region (amino acids 1-~1000) of the protein are more frequently associated with only osseous anomalies, whereas dental manifestations are more prevalent in mutations in the middle region (amino acids 1000-~2100). In addition, supernumerary teeth were found to be the most common dental feature. Since dental abnormalities often precede intestinal polyposis, dentists have a crucial role in the early identification of patients at risk.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon , Poliposis Adenomatosa del Colon , Mutación de Línea Germinal , Humanos , Proteína de la Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/genética , Anomalías Dentarias/genética , Estudios de Asociación Genética , Diente Supernumerario/genética , Predisposición Genética a la Enfermedad , Masculino , Femenino
15.
Cancers (Basel) ; 16(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39123414

RESUMEN

Since the initial identification of oncogenic Wnt in mice and Drosophila, the Wnt signaling pathway has been subjected to thorough and extensive investigation. Persistent activation of Wnt signaling exerts diverse cancer characteristics, encompassing tumor initiation, tumor growth, cell senescence, cell death, differentiation, and metastasis. Here we review the principal signaling mechanisms and the regulatory influence of pathway-intrinsic and extrinsic kinases on cancer progression. Additionally, we underscore the divergences and intricate interplays of the canonical and non-canonical Wnt signaling pathways and their critical influence in cancer pathophysiology, exhibiting both growth-promoting and growth-suppressing roles across diverse cancer types.

16.
Cancers (Basel) ; 16(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39123466

RESUMEN

Bufalin, a cardiotonic steroid derived from the Chinese toad (Bufo gargarizans), has demonstrated potent anticancer properties across various cancer types, positioning it as a promising therapeutic candidate. However, comprehensive mechanistic studies specific to head and neck cancers have been lacking. Our study aimed to bridge this gap by investigating bufalin's mechanisms of action in head and neck cancer cells. Using several methods, such as Western blotting, immunofluorescence, and flow cytometry, we observed bufalin's dose-dependent reduction in cell viability, disruption of cell membrane integrity, and inhibition of colony formation in both HPV-positive and HPV-negative cell lines. Bufalin induces apoptosis through the modulation of apoptosis-related proteins, mitochondrial function, and reactive oxygen species production. It also arrests the cell cycle at the G2/M phase and attenuates cell migration while affecting epithelial-mesenchymal transition markers and targeting pivotal signaling pathways, including Wnt/ß-catenin, EGFR, and NF-κB. Additionally, bufalin exerted immunomodulatory effects by polarizing macrophages toward the M1 phenotype, bolstering antitumor immune responses. These findings underscore bufalin's potential as a multifaceted therapeutic agent against head and neck cancers, targeting essential pathways involved in proliferation, apoptosis, cell cycle regulation, metastasis, and immune modulation. Further research is warranted to validate these mechanisms and optimize bufalin's clinical application.

17.
Foods ; 13(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39123618

RESUMEN

Chlorpyrifos (CPF) biocide, exposure to which is mainly produced in the human population through diet, induces several neurotoxic effects. CPF single and repeated exposure induces memory and learning disorders, although the mechanisms that produce these outcomes are complex and not well understood. CPF treatment (single and repeated) of cholinergic septal SN56 cells induced an increase in phosphorylated-P38α levels that led to WNT/ß-Catenin and NGF/P75NTR/TrkA pathways disruption and cell death. These results provide new knowledge on the mechanisms that mediate CPF basal forebrain cholinergic neuronal loss induced by CPF single and repeated exposure and can help unravel the way through which this compound produces cognitive decline and develop efficient treatments against these effects.

18.
Nutrients ; 16(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125288

RESUMEN

Young-onset colorectal cancer is an increasing concern worldwide due to the growing prevalence of Westernized lifestyles in childhood and adolescence. Environmental factors during early life, particularly early-life nutrition, significantly contribute to the increasing incidence. Recently, there have been reports of beneficial effects, including anti-inflammation and anti-cancer, of a unique fungus (Antrodia camphorate, AC) native to Taiwan. The objective of this study is to investigate the impact of AC supplementation in early life on the development of young-onset intestinal tumorigenesis. APC1638N mice were fed with a high-fat diet (HF) at 4-12 weeks of age, which is equivalent to human childhood/adolescence, before switching to a normal maintenance diet for an additional 12 weeks up to 24 weeks of age, which is equivalent to young to middle adulthood in humans. Our results showed that the body weight in the HF groups significantly increased after 8 weeks of feeding (p < 0.05). Following a switch to a normal maintenance diet, the change in body weight persisted. AC supplementation significantly suppressed tumor incidence and multiplicity in females (p < 0.05) and reduced IGF-1 and Wnt/ß-catenin signaling (p < 0.05). Moreover, it altered the gut microbiota, suppressed inflammatory responses, and created a microenvironment towards suppressing tumorigenesis later in life.


Asunto(s)
Carcinogénesis , Dieta Alta en Grasa , Suplementos Dietéticos , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Ratones , Masculino , Dieta Alta en Grasa/efectos adversos , Carcinogénesis/efectos de los fármacos , Polyporales , Ratones Endogámicos C57BL , Vía de Señalización Wnt/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Colorrectales/prevención & control , Modelos Animales de Enfermedad , Proteína de la Poliposis Adenomatosa del Colon/genética
19.
Transl Cancer Res ; 13(7): 3729-3741, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39145094

RESUMEN

Background: Hepatocellular carcinoma is a widespread cancer worldwide, ranking as the fifth most frequent cancer and the fourth leading cause of cancer-related deaths. According to comprehensive research, TLK2, a phosphorylated kinase, has been discovered to play a crucial role in promoting tumor development. However, the prognostic significance and influence of TLK2 on hepatocellular carcinoma tumor cells and the immune microenvironment remain unexplored, warranting further investigation. The aim of this study was to investigate the role of TLK2 in promoting the development of hepatocellular carcinoma. Methods: The present study utilized The Cancer Genome Atlas (TCGA) database and other databases as training sets to examine the expression of TLK2 and its prognostic significance. The findings were subsequently validated through cell proliferation assays and cell colony assays. Gene set enrichment analysis (GSEA) was employed to investigate the tumor-related biological processes associated with TLK2 in hepatocellular carcinoma, while the relationship between TLK2 expression and Wnt/ß-catenin signaling pathway was analyzed via TCGA dataset analysis. Western blotting and immunofluorescence assays were used to confirm the experimental results. Results: TLK2 showed higher expression levels in tumor tissues than in normal tissues. Alpha fetoprotein (AFP), T stage, pathological stage, and histological grade were significantly associated with TLK2 expression. High TLK2 expression correlated with worse overall survival (OS) [hazard ratio (HR) =1.62, 95% confidence interval (CI): 1.14-2.29, P=0.007], progression-free survival (PFS) (HR =1.88, 95% CI: 1.40-2.52, P<0.001) and disease specific survival (DSS) (HR =1.86, 95% CI: 1.18-2.93, P=0.007) in the training and validation sets. Both univariate and multivariate analyses showed that TLK2 was an independent prognostic factor. GSEA showed that TLK2 was significantly enriched in tumor-related biological processes. TLK2 induced the activation of ß-catenin signaling, resulting in sustained tumor growth. Methyl thiazolyl tetrazolium (MTT) and colony formation assays demonstrated that TLK2 could promote hepatocellular carcinoma progression. Furthermore, TLK2 showed a significant association with ß-catenin in the Wnt pathway. Conclusions: TLK2 represents an independent prognostic factor in hepatocellular carcinoma and can promote cancer progression via the ß-catenin signaling pathway.

20.
J Gene Med ; 26(8): e3729, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39146560

RESUMEN

Identifying biomarkers to predict immune checkpoint inhibitor (ICI) efficacy is warranted. Considering that somatic mutation-derived neoantigens induce strong immune responses, patients with a high tumor mutational burden reportedly tend to respond to ICIs. Therefore, the original function of neoantigenic mutations and their impact on the tumor microenvironment (TME) require attention. RNF43 is a type of RING E3 ubiquitin ligase, and long-term survivors in most cancers had conserved patterns of mutations of RNF43. Also, high microsatellite instability patients had a higher RNF43 mutation rate compared with microsatellite stability tumor patients, who were more sensitive to ICI treatment. Therefore, RNF43 has become a promising biomarker of immunotherapy in a wide range of cancers. This review focuses on the up-to-date knowledge of RNF43 mutation in cancer. We summarize the cancer hallmarks involving activities regulated by RNF43 and highlight its extremely sophisticated regulation of WNT signaling and tumor microenvironment. The key genes interacting with RNF43 have also been summarized and discussed. Additionally, we highlight and propose new strategies of targeting RNF43 and RNF43-based combinations with established immunotherapy and combination therapy. These efforts may provide new perspectives for RNF43-based target therapy in cancer.


Asunto(s)
Inmunoterapia , Mutación , Neoplasias , Microambiente Tumoral , Ubiquitina-Proteína Ligasas , Humanos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inestabilidad de Microsatélites , Animales , Vía de Señalización Wnt , Relevancia Clínica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA