Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Structure ; 32(9): 1528-1543.e3, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39025067

RESUMEN

Many membrane transporters share the LeuT fold-two five-helix repeats inverted across the membrane plane. Despite hundreds of structures, whether distinct conformational mechanisms are supported by the LeuT fold has not been systematically determined. After annotating published LeuT-fold structures, we analyzed distance difference matrices (DDMs) for nine proteins with multiple available conformations. We identified rigid bodies and relative movements of transmembrane helices (TMs) during distinct steps of the transport cycle. In all transporters, the bundle (first two TMs of each repeat) rotates relative to the hash (third and fourth TMs). Motions of the arms (fifth TM) to close or open the intracellular and outer vestibules are common, as is a TM1a swing, with notable variations in the opening-closing motions of the outer vestibule. Our analyses suggest that LeuT-fold transporters layer distinct motions on a common bundle-hash rock and demonstrate that systematic analyses can provide new insights into large structural datasets.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
2.
Elife ; 132024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916596

RESUMEN

The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Mutación , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Especificidad por Sustrato , Evolución Molecular , Poliaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Aptitud Genética , Aminoácidos/metabolismo , Aminoácidos/genética
3.
bioRxiv ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352416

RESUMEN

Many membrane transporters share the LeuT fold-two five-helix repeats inverted across the membrane plane. Despite hundreds of structures, whether distinct conformational mechanisms are supported by the LeuT fold has not been systematically determined. After annotating published LeuT-fold structures, we analyzed distance difference matrices (DDMs) for nine proteins with multiple available conformations. We identified rigid bodies and relative movements of transmembrane helices (TMs) during distinct steps of the transport cycle. In all transporters the bundle (first two TMs of each repeat) rotates relative to the hash (third and fourth TMs). Motions of the arms (fifth TM) to close or open the intracellular and outer vestibules are common, as is a TM1a swing, with notable variations in the opening-closing motions of the outer vestibule. Our analyses suggest that LeuT-fold transporters layer distinct motions on a common bundle-hash rock and demonstrate that systematic analyses can provide new insights into large structural datasets.

4.
Front Physiol ; 12: 708639, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335311

RESUMEN

The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera:Delphacidae), is one of the most destructive pests of rice worldwide. As a sap-feeding insect, the BPH is incapable of synthesizing several amino acids which are essential for normal growth and development. Therefore, the insects have to acquire these amino acids from dietary sources or their endosymbionts, in which amino acid transporters (AATs) play a crucial role by enabling the movement of amino acids into and out of insect cells. In this study, a common amino acid transporter gene family of amino acid/polyamine/organocation (APC) was identified in BPHs and analyzed. Based on a homology search and conserved functional domain recognition, 20 putative APC transporters were identified in the BPH genome. Molecular trait analysis showed that the verified BPH APC family members were highly variable in protein features, conserved motif distribution patterns, and exon/intron organization. Phylogenetic analysis of five hemipteran species revealed an evolutionary pattern of interfamily conservation and lineage-specific expansion of this gene family. Moreover, stage- and tissue-specific expression analysis revealed diverse expression patterns in the 20 BPH APC transporter genes. Lastly, a potential BPH fecundity regulatory gene of NlAPC09 was identified and shown to participate in the fecundity regulation through the use of quantitative polymerase chain reaction (qPCR) and RNA inference experiments. Our results provide a basis for further functional investigations of APC transporters in BPH.

5.
Comput Struct Biotechnol J ; 19: 1713-1737, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897977

RESUMEN

Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin-related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.

6.
Subcell Biochem ; 92: 275-299, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214990

RESUMEN

Transport of solutes across biological membranes is essential for cellular life. This process is mediated by membrane transport proteins which move nutrients, waste products, certain drugs and ions into and out of cells. Secondary active transporters couple the transport of substrates against their concentration gradients with the transport of other solutes down their concentration gradients. The alternating access model of membrane transporters and the coupling mechanism of secondary active transporters are introduced in this book chapter. Structural studies have identified typical protein folds for transporters that we exemplify by the major facilitator superfamily (MFS) and LeuT folds. Finally, substrate binding and substrate translocation of the transporters LacY of the MFS and AdiC of the amino acid-polyamine-organocation (APC) superfamily are described.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/química
7.
Int J Biol Sci ; 13(6): 735-747, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28655999

RESUMEN

The whitefly (Bemisia tabaci) is a cosmopolitan and devastating pest of agricultural crops and ornamentals. B. tabaci causes extensive damage by feeding on phloem and by transmitting plant viruses. Like many other organisms, insects depend on amino acid transporters (AATs) to transport amino acids into and out of its cells. We present a genome-wide and transcriptome-wide investigation of the following two families of AATs in B. tabaci biotype B: amino acid/auxin permease (AAAP) and amino acid/polyamine/organocation (APC). A total of 14 putative APCs and 25 putative AAAPs were identified, and a 10-paralog B. tabaci-specific expansion of AAAPs was found by maximum likelihood phylogeny. Detailed gene structure information revealed that 9 members of the B. tabaci-specific AAAP family expansion closely situated on a same scaffold. Expression profiling of the B. tabaci B APC and AAAP genes as affected by stage and plant host showed diverse expression patterns. The analysis of evolutionary rates indicated that purifying selection can explain the B. tabaci-specific AAAP expansion. RNA interference (RNAi)-mediated suppression of two AAAP genes (BtAAAP15 and BtAAAP21) significantly increased the mortality of B. tabaci B adults. The results provide a foundation for future functional analysis of APC and AAAP genes in B. tabaci.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Hemípteros/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animales , Genoma de los Insectos/genética , Hemípteros/genética , Interferencia de ARN , Transcriptoma/genética
8.
Trends Pharmacol Sci ; 38(3): 305-315, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27939446

RESUMEN

Membrane-bound solute carrier (SLC) transporter proteins are vital to the human body, as they sustain homeostasis by moving soluble molecule as nutrients, drugs, and waste across lipid membranes. Of the 430 identified secondary active transporters in humans, 30% are still orphans, and systematic research has been requested to elaborate on their possible involvement in diseases and their potential as drug targets. To enable this, the various classification systems in use must be understood and used correctly. In this review, we describe how various classification systems for human SLCs are constructed, and how they overlap and differ. To facilitate communication between researchers and to avoid ambiguities, everyone must clearly state which classification system they are referring to when writing scientific articles.


Asunto(s)
Proteínas Transportadoras de Solutos/clasificación , Transporte Biológico Activo , Humanos , Lípidos de la Membrana/metabolismo , Proteínas Transportadoras de Solutos/química , Proteínas Transportadoras de Solutos/metabolismo
9.
Data Brief ; 10: 198-201, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27995154

RESUMEN

We introduce the value of information obtained by comparing alternative crystal forms of the same sub-state (of outward open UlaA, our example protein), which is found in the same lattice configuration but different space groups. We compare instability estimates obtained using this new method (alternative crystal forms) with temperature factors. Using a transport assay result, we correlate observations for two homologous secondary structure elements, and show that the alternative states method for obtaining instability estimates provide differentiating information about an important and immobilized mid-TMS region. The data presented in this article are related to the article entitled "The V-motifs facilitate the substrate capturing step of the PTS elevator mechanism" (A. Vastermark, A. Driker, J. Weng, X. Li, J. Wang, M.H. Saier Jr., 2016).

10.
Proteins ; 82(10): 2797-811, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25043943

RESUMEN

The amino acid-polyamine-organoCation (APC) superfamily is the second largest superfamily of secondary carriers currently known. In this study, we establish homology between previously recognized APC superfamily members and proteins of seven new families. These families include the PAAP (Putative Amino Acid Permease), LIVCS (Branched Chain Amino Acid:Cation Symporter), NRAMP (Natural Resistance-Associated Macrophage Protein), CstA (Carbon starvation A protein), KUP (K⁺ Uptake Permease), BenE (Benzoate:H⁺ Virginia Symporter), and AE (Anion Exchanger). The topology of the well-characterized human Anion Exchanger 1 (AE1) conforms to a UraA-like topology of 14 TMSs (12 α-helical TMSs and 2 mixed coil/helical TMSs). All functionally characterized members of the APC superfamily use cation symport for substrate accumulation except for some members of the AE family which frequently use anion:anion exchange. We show how the different topologies fit into the framework of the common LeuT-like fold, defined earlier (Proteins. 2014 Feb;82(2):336-46), and determine that some of the new members contain previously undocumented topological variations. All new entries contain the two 5 or 7 TMS APC superfamily repeat units, sometimes with extra TMSs at the ends, the variations being greatest within the CstA family. New, functionally characterized members transport amino acids, peptides, and inorganic anions or cations. Except for anions, these are typical substrates of established APC superfamily members. Active site TMSs are rich in glycyl residues in variable but conserved constellations. This work expands the APC superfamily and our understanding of its topological variations.


Asunto(s)
Modelos Moleculares , Proteínas de Transporte de Catión Orgánico/química , Secuencias de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/clasificación , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Antiportadores/química , Antiportadores/clasificación , Antiportadores/genética , Antiportadores/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/clasificación , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Análisis por Conglomerados , Biología Computacional , Bases de Datos de Proteínas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/clasificación , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Internet , Proteínas de Transporte de Catión Orgánico/clasificación , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Programas Informáticos , Terminología como Asunto , Transactivadores/química , Transactivadores/clasificación , Transactivadores/genética , Transactivadores/metabolismo
11.
Proteins ; 82(2): 336-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24038584

RESUMEN

Evidence has been presented that 5+5 TMS and 7+7 TMS inverted repeat fold transporters are members of a single superfamily named the Amino acid-Polyamine-organoCation (APC) superfamily. However, the evolutionary relationship between the 5+5 and the 7+7 topological types has not been established. We have identified a common fold, consisting of a spiny membrane helix/sheet, followed by a U-like structure and a V-like structure that is recurrent between domain duplicated units of 5+5 and 7+7 inverted repeat folds. This fold is found in the following protein structures: AdiC, ApcT, LeuT, Mhp1, BetP, CaiT, and SglT (all 5+5 TMS repeats), as well as UraA and SulP (7+7 TMS repeats). AdiC, LeuT and Mhp1 have two extra TMSs after the second duplicated domain, SglT has four extra C-terminal TMSs, and BetP has two extra TMSs before the first duplicated domain. UraA and SulP on the other hand have two extra TMSs at the N-terminus of each duplicated domain unit. These observations imply that multiple hairpin and domain duplication events occurred during the evolution of the APC superfamily. We suggest that the five TMS architecture was primordial and that families gained two TMSs on either side of this basic structure via dissimilar hairpin duplications either before or after intragenic duplication. Evidence for homology between TMSs 1-2 of AdiC and TMSs 1-2 and 3-4 of UraA suggests that the 7+7 topology arose via an internal duplication of the N-terminal hairpin loop within the five TMS repeat unit followed by duplication of the 7 TMS domain.


Asunto(s)
Sistemas de Transporte de Aminoácidos/química , Animales , Proteínas de Transporte de Anión/química , Evolución Molecular , Humanos , Secuencias Invertidas Repetidas , Modelos Moleculares , Estructura Secundaria de Proteína , Ratas , Secuencias Repetitivas de Aminoácido , Análisis de Secuencia de Proteína , Homología Estructural de Proteína , Transportadores de Sulfato
12.
Bioinformation ; 2(4): 144-52, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-21670792

RESUMEN

The molecular basis for the survival of bacteria under extreme conditions in which growth is inhibited is a question of great current interest. A preliminary study was carried out to determine residue pattern conservation among the antiporters of enteric bacteria, responsible for extreme acid sensitivity especially in Escherichia coli and Shigella flexneri. Here we found the molecular evidence that proved the relationship between E. coli and S. flexneri. Multiple sequence alignment of the gadC coded acid sensitive antiporter showed many conserved residue patterns at regular intervals at the N-terminal region. It was observed that as the alignment approaches towards the C-terminal, the number of conserved residues decreases, indicating that the N-terminal region of this protein has much active role when compared to the carboxyl terminal. The motif, FHLVFFLLLGG, is well conserved within the entire gadC coded protein at the amino terminal. The motif is also partially conserved among other antiporters (which are not coded by gadC) but involved in acid sensitive/resistance mechanism. Phylogenetic cluster analysis proves the relationship of Escherichia coli and Shigella flexneri. The gadC coded proteins are converged as a clade and diverged from other antiporters belongs to the amino acid-polyamine-organocation (APC) superfamily.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA